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STRONGLY Q-DIFFERENTIABLE
FUNCTIONS

Abstract

A real function is called strongly Q-differentiable if, for every real
number h , the limit of the ratio (f(x + rh)− f(x)) /r exists whenever x
tends to any fixed real number and r tends to zero through the positive
rationals. After examining the dependence of strong Q-derivatives on
their parameters, we prove that every strongly Q-differentiable function
can be represented as the sum of an additive mapping and a continuously
differentiable function.

1 Introduction

It is well known that the graph of a non-linear additive function φ : R→ R is
dense in R2, thus such a function φ serves as a counterexample for the usual
regularity concepts in mathematical analysis. However, one can observe that
the difference ∆hφ(x) = φ(x + h) − φ(x) does not depend on x. Therefore,
supposing that the real function g has some nice regularity property and f =
g + φ, we obtain that the difference function ∆hf fulfils the same regularity
assumption for each value of h. The converse of this implication has been
proved by de Bruijn [2] for a number of standard regularity properties including
continuity and differentiability.

General solutions of the polynomial (and monomial) functional equations
have been characterized as functions having vanishing higher order (modified)
Dinghas interval derivatives [6], [3]. Non-linear additive functions, as well as
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other discontinuous solutions of those functional equations, serve as examples
for that regularity concept.

Nikodem and Páles [5] used an inequality and a weak continuity property
in order to characterize the composition of an upper (or lower) semicontinuous
strictly monotonic function with an additive mapping. The definition of that
continuity property involves a limit of a function as a rational coefficient in its
argument tends to 0 from above.

Motivated by these results we will introduce a differentiability property
involving positive rational numbers in the denominator of the appropriate
difference quotient. We shall call it “strong”, because we need a double limit in
order to obtain a decomposition theorem which is similar to the ones mentioned
above. The set of the positive rationals will be denoted by Q+.

Definition 1. Let f : R→ R , h, x0 ∈ R . If the finite limit

DQ
h f(x0) = lim

R×Q+3(x,r)→(x0 ,0)

f(x+ rh)− f(x)
r

= lim
x→x0

Q+3r→0

f(x+ rh)− f(x)
r

exists, it is called the strong Q-derivative of f at x0 in the direction h (where
we consider the first limit as the exact definition and the second limit as an
abbreviation for the first one, understanding that x0 is an admissible value for
x). We shall say that f is strongly Q-differentiable if DQ

h f(x0) ∈ R exists for
every h, x0 ∈ R .

This definition is motivated by the following fundamental examples.

Example 1.1. Let f : R → R be continuously differentiable. Applying La-
grange’s middle value theorem it is easy to check that f is strongly Q-differ-
entiable and

DQ
h f(x0) = f ′(x0)h for every h, x0 ∈ R .

Let us recall that a mapping φ : R→ R is additive if

φ(x+ y) = φ(x) + φ(y) for every x, y ∈ R . (1)

We shall also apply the well known basic result that every additive function
is linear over Q [4, Theorem 5.2.1 (p. 121)].

Example 1.2. If f : R→ R is additive, then

f(x+ rh)− f(x)
r

=
f(rh)
r

= f(h)
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for every h, x ∈ R, r ∈ Q+. Hence f is strongly Q-differentiable and

DQ
h f(x0) = f(h) for every h, x0 ∈ R .

It is an immediate consequence of the definition that the set of strongly Q-
differentiable functions is a linear space (over R) and the mapping f 7→ DQ

h f(x)
is a linear functional for every h, x ∈ R . However, the following example shows
that the square of a strongly Q-differentiable function may fail to inherit this
property.

Example 1.3. Let φ : R → R be a discontinuous additive function and for
x ∈ R let f(x) = (φ(x))2 . Then

f(x+ rh)− f(x)
r

=
(φ(x) + rφ(h))2 − (φ(x))2

r
= r (φ(h))2 + 2φ(x)φ(h)

for every h, x ∈ R, r ∈ Q+. Keeping h fixed, the first term tends to 0 as r
tends to 0 , while the second term has no limit as x tends to any fixed real
number unless φ(h) = 0 . Therefore f is not strongly Q-differentiable.

These examples show that the sum of a continuously differentiable function
and an additive mapping is a typical strongly Q-differentiable function. Our
main result (Theorem 3.1) states that the converse is also true; namely, that
every strongly Q-differentiable function can be decomposed into such a sum.

2 Basic properties

In this section, we encounter some interesting properties of strongly Q-differ-
entiable functions and strong Q-derivatives. These properties also motivate
and anticipate our main result.

The real open interval with lower limit a and upper limit b will be denoted
by ]a, b[ , and we shall write U(x, δ) =]x− δ, x+ δ[ for the open neighborhood
in R with center x ∈ R and radius δ > 0 .

Proposition 2.1. Let f : R → R be strongly Q-differentiable, x0 ∈ R , and
for h ∈ R let φ(h) = DQ

h f(x0). Then φ : R→ R is additive.
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Proof. For every h1 , h2 ∈ R we have

φ(h1 + h2) = DQ
h1+h2

f(x0) = lim
x→x0

Q+3r→0

f (x+ r(h1 + h2))− f(x)
r

= lim
x→x0

Q+3r→0

f(x+ rh1 + rh2)− f(x+ rh1) + f(x+ rh1)− f(x)
r

= lim
x→x0

Q+3r→0

f(x+ rh1)− f(x)
r

+ lim
x→x0

Q+3r→0

f((x+ rh1) + rh2)− f(x+ rh1)
r

= DQ
h1
f(x0) +DQ

h2
f(x0) = φ(h1) + φ(h2) ,

because x+ rh1 tends to x0 as x tends to x0 and r tends to 0.

Proposition 2.2. Let f : R → R be strongly Q-differentiable, h0 ∈ R , and
for x ∈ R let ψ(x) = DQ

h0
f(x). Then ψ : R→ R is continuous.

Proof. Fix an arbitrary ε > 0. According to the definition, for every u ∈ R
there exists δ(u) > 0 such that∣∣∣∣f(y + rh0)− f(y)

r
−DQ

h0
f(u)

∣∣∣∣ < ε

2
(2)

for all y ∈ R , r ∈ Q+ with |y − u| < δ(u) and |r| < δ(u).
If x0 ∈ R is given, take x ∈ R satisfying |x−x0| < δ(x0)/2 , and choose y ∈

R , r ∈ Q+ such that |y− x| < min{δ(x), δ(x0)/2} and |r| < min{δ(x), δ(x0)}.
Then we also have |y − x0| < δ(x0). Therefore (2) holds for u = x and also
for u = x0 . This yields

|ψ(x)− ψ(x0)| =
∣∣∣DQ

h0
f(x)−DQ

h0
f(x0)

∣∣∣ < ε .

Theorem 2.3. Suppose that f : R → R is strongly Q-differentiable, h ∈
R \ {0}, α , β ∈ R with α < β , and M ∈ R such that∣∣∣DQ

h f(x)
∣∣∣ ≤M for every x ∈ [α , β].

If u, v ∈ [α , β] satisfy (v − u)/h ∈ Q , then

|f(v)− f(u)| ≤ M

|h|
|v − u| . (3)
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Proof. Let ε > 0 be arbitrarily given. Again, by definition, for every x ∈
[α , β] there exists δ(x) > 0 such that∣∣∣∣f(y + rh)− f(y)

r
−DQ

h f(x)
∣∣∣∣ < ε (4)

for all y ∈ U(x, δ(x)) , r ∈ Q ∩ ]0, δ(x)/|h|[ . Obviously,

[α , β] ⊂
⋃

x∈[α , β]

U(x, δ(x))

and the interval [α , β] is compact. Hence there exist k ∈ N and xj ∈ [α , β]
(j = 1, 2, . . . , k) such that

[α , β] ⊂
k⋃
j=1

U(xj , δ(xj)). (5)

Put δ = min{ δ(xj) | j = 1, 2, . . . , k }. Clearly, δ > 0. Take x, y ∈ [α , β] such
that (y−x)/h ∈ Q+ and |y−x| < δ . Due to (5), there exists m ∈ {1, 2, . . . , k}
such that x ∈ U(xm , δ(xm)). Then

y − x
h
∈ Q ∩

]
0,
δ(xm)
|h|

[

and y = x+ y−x
h h . Hence, applying (4), we obtain∣∣∣∣f(y)− f(x)

(y − x)/h
−DQ

h f(xm)
∣∣∣∣ < ε .

Thus we have

|f(y)− f(x)| <
(∣∣∣DQ

h f(xm)
∣∣∣+ ε

) |y − x|
|h|

≤ (M + ε)
|y − x|
|h|

. (6)

Let us consider u, v ∈ [α , β] that satisfy (v − u)/h ∈ Q . We may assume,
without loss of generality, that (v−u)/h > 0 . Take n ∈ N with nδ > |v−u| and
define yj = u+(j/n)(v−u) (j = 0, 1, . . . , n). Then |yj−yj−1| = |v−u|/n < δ
and (yj − yj−1)/h = (v − u)/(nh) ∈ Q+ for j = 1, 2, . . . , n ; so we can apply
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(6) to obtain

|f(v)− f(u)| =

∣∣∣∣∣∣
n∑
j=1

(f(yj)− f(yj−1))

∣∣∣∣∣∣ ≤
n∑
j=1

|f(yj)− f(yj−1)|

≤
n∑
j=1

(M + ε)
yj − yj−1

h
=
M + ε

h

n∑
j=1

(yj − yj−1)

=
M + ε

h
(v − u) =

M + ε

|h|
|v − u| .

Letting ε tend to 0 , we obtain (3).

Corollary 2.4. Suppose that f : R → R is strongly Q-differentiable and
h ∈ R \ {0} such that DQ

h f(x) = 0 for every x ∈ R . If u, v ∈ R satisfy
(v − u)/h ∈ Q , then f(v) = f(u).

Proof. Take u, v ∈ R with (v − u)/h ∈ Q and choose α , β ∈ R such that

α ≤ min{u, v} and β ≥ max{u, v} .

Now we can apply Theorem 2.3 with M = 0.

3 Decomposition

Strongly Q-differentiable functions are characterized in the following theorem.

Theorem 3.1. A function f : R→ R is strongly Q-differentiable if, and only
if, there exist a continuously differentiable function g : R→ R and an additive
mapping φ : R→ R such that

f(x) = g(x) + φ(x) for every x ∈ R .

Proof. Clearly, we have to prove the “only if” part. For this purpose, let
us assume that f : R → R is strongly Q-differentiable. Since the mapping
x 7→ DQ

1 f(x) is continuous by Proposition 2.2, for x ∈ R we may define

g(x) = f(0) +
∫ x

0

DQ
1 f(s) ds.

Then g : R → R is continuously differentiable and g′(x) = DQ
1 f(x) for all

x ∈ R .



Strongly Q-Differentiable Functions 23

Due to the examples and the note on the linear structure of strongly Q-dif-
ferentiable functions, the function φ = f − g is also strongly Q-differentiable
and

DQ
hφ(x) = DQ

h f(x)−DQ
h g(x) = DQ

h f(x)− g′(x)h = DQ
h f(x)−DQ

1 f(x)h

for all x , h ∈ R . In particular, DQ
1 φ(x) = 0 for every x ∈ R. Hence, by

Corollary 2.4,

φ(x+ s) = φ(x) for all x ∈ R and s ∈ Q . (7)

Observing φ(0) = f(0) − g(0) = 0 and applying (7) with x = 0 , we obtain
that f(s)− g(s) = φ(s) = 0 for every s ∈ Q .

Our next statement is that the mapping x 7→ DQ
hφ(x) is constant for every

h ∈ R . For this purpose, let us fix h , x , y ∈ R and consider sequences (xn) :
N → R , (rn) : N → Q+ such that x = limn→∞ xn and 0 = limn→∞ rn . For
every n ∈ N , we can choose sn ∈ Q∩U(y−xn , 1/n). Thus y = lim

n→∞
(xn + sn)

and, applying (7), we obtain

DQ
hφ(x) = lim

n→∞

φ(xn + rnh)− φ(xn)
rn

= lim
n→∞

φ(xn + sn + rnh)− φ(xn + sn)
rn

= DQ
hφ(y).

For each y ∈ R , define

ψy(x) = φ(x+ y)− φ(x) (x ∈ R).

Then ψy is strongly Q-differentiable and

DQ
hψy(x) = DQ

hφ(x+ y)−DQ
hφ(x) = 0 for every x , h ∈ R .

Then it follows from Corollary 2.4 that ψy is a constant function. Hence there
exists χ : R→ R such that

φ(x+ y)− φ(x) = χ(y) for every x, y ∈ R . (8)

Substituting x = 0 into equation (8) we obtain that χ(y) = φ(y)−φ(0) = φ(y)
for every y ∈ R; i.e., χ = φ . Thus equation (8) yields that φ is additive.

With the aid of this decomposition theorem one can transport various
results concerning additive functions to strongly Q-differentiable functions.
We formulate only one typical application.
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Corollary 3.2. If f : R → R is strongly Q-differentiable and f is bounded
from above (or below) on a measurable set of positive Lebesgue measure, then
f is continuously differentiable.

Proof. Since R is σ-compact, we conclude from our hypotheses that there
exists a bounded (i.e., precompact) set T of positive Lebesgue measure such
that f is bounded from above (or below) on T . By Theorem 3.1, there exist
a continuously differentiable function g : R → R and an additive mapping
φ : R→ R such that f = g+φ (with pointwise addition). Since g is continuous,
it is bounded on (the closure of) T . Therefore, φ is also bounded from above
(or below) on T . As is well known [4, Theorem 9.3.1, p. 210], this property
implies that φ(x) = cx for x ∈ R for some c ∈ R and thus f = g + φ is also
continuously differentiable.

4 Restricted Domain

It is worth noting that our results can be reformulated and proved analogously
for functions defined on an arbitrary real open interval. However, such a
reformulation makes the description of our ideas a little bit more complicated,
including additional constraints for most of the equations and inequalities.
Therefore, it is reasonable to present our concepts and arguments for the
simplest case and let the proper reformulation of them to those readers who
are interested in the case of a restricted domain. In the rest of the paper we
provide the definition and a few hints for that case.

Let I ⊂ R be a non-void open interval. For every h ∈ R define

T (I, h) = { (x, r) ∈ I ×Q+ |x+ rh ∈ I } .

Let us note that, for every h ∈ R , T (I, h) is an open subset of R × Q+ with
respect to the topology induced by the restriction of the Euclidean topology
to R×Q+.

We say that f : I → R is strongly Q-differentiable if the finite limit

DQ
h f(x0) = lim

T (I,h)3(x,r)→(x0 ,0)

f(x+ rh)− f(x)
r

exists for every x0 ∈ I , h ∈ R .
The reformulation of Example 1.1 for this case is quite simple. One has

to be a little bit more careful with Example 1.2. Namely, if A : R → R is
additive and φ : I → R is defined by φ(x) = A(x) for x ∈ I, then φ is strongly
Q-differentiable and DQ

hφ(x0) = A(h) for every x0 ∈ I , h ∈ R .
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Now it is easy to reformulate Theorem 3.1: a function f : I → R is
strongly Q-differentiable if, and only if, there exist a continuously differen-
tiable function g : I → R and an additive mapping A : R → R such that
f(x) = g(x) + A(x) for every x ∈ I . The proof of this theorem involves
the same argument as that of Theorem 3.1, including auxiliary results on the
analogy of Propositions 2.1, 2.2 and Theorem 2.3, with a little difference if
0 /∈ I . Namely, we may define g : I → R by

g(x) = f(r0) +
∫ x

r0

DQ
1 f(s) ds (x ∈ I),

where r0 ∈ Q∩ I is fixed. Then, following the same argument, we obtain that
φ = f − g fulfills φ(u) = 0 for every u ∈ Q ∩ I and there exists χ : I − I → R
satisfying

φ(x+ y)− φ(x) = χ(y) for every x ∈ I , y ∈ I − x

(where I − x = { z − x | z ∈ I } and I − I = { z − x |x, z ∈ I }). Applying an
extension theorem [1, Theorem 1] concerning Pexider’s equation, we obtain
that there exist an additive mapping A : R → R and a real number b ∈ R
such that φ(x) = A(x) + b for x ∈ I and χ(y) = A(y) for y ∈ I − I. Using the
property that φ vanishes at the rationals in I, we can easily show that b = 0.

The statement and the proof of Corollary 3.2 also remain valid for functions
defined on I.
Acknowledgement. The author is grateful to the referee for a valuable
suggestion concerning the proof of the main theorem.
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