ON THE SETS OF DISCONTINUITY POINTS OF FUNCTIONS SATISFYING SOME APPROXIMATE QUASI-CONTINUITY CONDITIONS

Abstract

In this paper the sets of discontinuity points and the sets of approximate discontinuity points of function $f: \mathcal{R} \rightarrow \mathcal{R}$, satisfying some special approximate quasi-continuity conditions introduced in [2], are investigated.

Let \mathcal{R} be the set of all reals. Denote by μ the Lebesgue measure in \mathbb{R} and by μ_{e} the outer Lebesgue measure in \mathbb{R}. For a set $A \subset \mathbb{R}$ and a point x we define the upper (lower) outer density $D_{u}(A, x)\left(D_{l}(A, x)\right)$ of the set A at the point x as

$$
\begin{gathered}
\limsup _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x-h, x+h])}{2 h} \\
\left(\liminf _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x-h, x+h])}{2 h} \text { respectively }\right) .
\end{gathered}
$$

If $D_{u}(A, x)=D_{l}(A, x)$, then $D(A, x)=D_{u}(A, x)$ is called the outer density of the set A at x. In the case where the set A is measurable in the Lebesgue sense, the outer densities $D_{u}(A, x), D_{l}(A, x)$ and respectively $D(A, x)$ are said to be in short the densities. A point x is called an outer density point (a density point) of a set A if $D_{l}(A, x)=1$ (if there is a Lebesgue measurable set $B \subset A$ such that $\left.D_{l}(B, x)=1\right)$.

[^0]The family T_{d} of all sets A for which the implication

$$
x \in A \Longrightarrow x \text { is a density point of } A
$$

holds, is a topology called the density topology ([1, 4]). The sets $A \in T_{d}$ are Lebesgue measurable [1].

If T_{e} denotes the Euclidean topology in \mathbb{R}, then the continuity of a function f as an application from $\left(\mathbb{R}, T_{d}\right)$ to $\left(\mathbb{R}, T_{e}\right)$ is called approximate continuity $([1,4])$.

For a function $f: \mathbb{R} \rightarrow \mathbb{R}$ denote by $C(f)$ the set of all continuity points of f, by $A(f)$ the set of all approximate continuity points of f, by $D(f)$ the set $\mathbb{R} \backslash C(f)$ and by $D_{a p}(f)$ the set $\mathbb{R} \backslash A(f)$.

Denote by \mathcal{A} the family of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which are approximately continuous at each point $x \in \mathbb{R}$.

In [2] the following properties are investigated:

1. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property $\left(s_{0}\right)$ at a point $x\left(f \in s_{0}(x)\right)$ if for each positive real r and for each set $U \ni x$ belonging to T_{d}, there is a point $t \in C(f) \cap U$ such that $|f(t)-f(x)|<r$.
2. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property $\left(s_{1}\right)\left[\left(s_{2}\right)\right]$ at a point $x\left(f \in s_{1}(x)\right.$ $\left.\left[f \in s_{2}(x)\right]\right)$ if for each positive real r and for each set $U \in T_{d}$ containing x there is an open interval I such that $\emptyset \neq I \cap U \subset C(f)[\emptyset \neq I \cap U \subset A(f)]$ and $|f(t)-f(x)|<r$ for all points $t \in I \cap U$.
3. For $i=0,1,2$ a function f has the property $\left(s_{i}\right)$ if $f \in s_{i}(x)$ for every point $x \in \mathbb{R}$.
4. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property $\left(s_{3}\right)$ if for each nonempty set $U \in T_{d}$ there is an open interval I such that $\emptyset \neq I \cap U \subset C(f)$.

Evidently each function f having the property $\left(s_{1}\right)$ has also the properties $\left(s_{2}\right),\left(s_{0}\right)$ and $\left(s_{3}\right)$ and for each function f having the property $\left(s_{3}\right)$ the set $D(f)=\mathbb{R} \backslash C(f)$ is nowhere dense and of Lebesgue measure 0 . But the closure $\operatorname{cl}(D(f))$ of some functions f having the property $\left(s_{1}\right)$ may be of positive measure.

For example, if $A \subset[0,1]$ is a Cantor set of positive measure and $\left(I_{n}\right)$ is a sequence of all components of the set $[0,1] \backslash A$ such that $I_{n} \neq I_{m}$ for $n \neq m$. Let $J_{n} \subset \operatorname{int}\left(I_{n}\right)$ be nondegenerate closed intervals such that $\frac{\mu\left(J_{n}\right)}{\mu\left(I_{n}\right)}<\frac{1}{n}$ for $n=1,2, \ldots\left(\operatorname{int}\left(I_{n}\right)\right.$ denotes the interior of $\left.I_{n}\right)$. On each interval J_{n} we define a function $f_{n}: J_{n} \rightarrow\left[0, \frac{1}{n}\right]$ which is discontinuous only at one point $a_{n} \in \operatorname{int}\left(J_{n}\right)$
and such that $f_{n}(x)=0$ if $x<a_{n}$ or x is the right endpoint of $J_{n}, f_{n}\left(a_{n}\right)=\frac{1}{n}$ and f_{n} is linear otherwise on J_{n}. Then the function

$$
f(x)=f_{n}(x) \text { for } x \in J_{n}, \quad n=1,2, \ldots
$$

and $f(x)=0$ otherwise on \mathbb{R} has the property $\left(s_{1}\right)$ but $\mu(\operatorname{cl}(D(f)))>0$.
For a nonempty family \mathcal{H} of functions from \mathbb{R} to \mathbb{R} denote by $X(\mathcal{H})$ (respectively by $X_{a p}(\mathcal{H})$) the family of all sets $A \subset \mathbb{R}$ for which there are the functions $f \in \mathcal{H}$ such that $A=D(f)\left(\right.$ resp. $\left.A=D_{a p}(f)\right)$.

Evidently, if $\mathcal{H}_{1} \subset \mathcal{H}_{2}$, then $X\left(\mathcal{H}_{1}\right) \subset X\left(\mathcal{H}_{2}\right)$.
Let S_{i}, where $i=0,1,2,3$, be the family of all functions having the property $\left(s_{i}\right)$.

Theorem 1. The equalities $X\left(\mathcal{A} \cap S_{1}\right)=X\left(S_{1}\right)=X\left(S_{3}\right)$ are true and a set $A \in X\left(\mathcal{A} \cap S_{1}\right)$ if and only if it is an F_{σ} set of measure zero and satisfies the following condition
(a) for each nonempty set $U \in T_{d}$ contained in the closure $\operatorname{cl}(A)$ of the set A the set $U \cap A$ is nowhere dense in U.

Proof. The inclusions $X\left(\mathcal{A} \cap S_{1}\right) \subset X\left(S_{1}\right) \subset X\left(S_{3}\right)$ are obvious.
If $A \in X\left(S_{3}\right)$, then there is a function $f \in S_{3}$ such that $D(f)=A$. Since the set of all discontinuity points of an arbitrary function is an F_{σ}-set, the set A is the same. From the definition of the property $\left(s_{3}\right)$ follows that $\mu(A)=0$. If $\mu(\operatorname{cl}(A))=0$, then the set $D(\operatorname{cl}(A))$ of all density points of the closure $\operatorname{cl}(A)$ is empty and $A \cap U$ is nowhere dense in U for every $U \subset \operatorname{cl}(A)$ belonging to T_{d}. So, we suppose that $\mu(\operatorname{cl}(A))>0$ and fix a nonempty set $U \in T_{d}$ contained in $\operatorname{cl}(A)$. If an open interval I is such that $\emptyset \neq I \cap U$, then $I \cap U \in T_{d}$ and, by the property $\left(s_{3}\right)$, there is an open interval $J \subset I$ such that

$$
\emptyset \neq J \cap U \subset C(f)
$$

So, the set $A \cap U$ is nowhere dense in U.
Now let A be an F_{σ}-set of measure zero satisfying the condition (a). We will construct a function $f \in \mathcal{A} \cap S_{1}$ such that $D(f)=A$. Since A is of the first category, there are closed sets A_{n} such that

$$
\begin{equation*}
A=\bigcup_{n} A_{n}, \text { and } A_{n} \cap A_{m}=\emptyset \text { for } n \neq m, n, m=1,2, \ldots \tag{3}
\end{equation*}
$$

Without loss of generality we may suppose that the sets $A_{n} \neq \emptyset$ for $n=$ $1,2, \ldots$.

Fix a positive integer k. If $(a, b), a, b \in \mathbb{R}$, is a component of the complement $\mathbb{R} \backslash A_{k}$, then we find two monotone sequences of points

$$
a<\cdots<a_{n+1}<a_{n}<\cdots<a_{1}=b_{1}<\cdots<b_{n}<b_{n+1}<\cdots<b
$$

such that

$$
\lim _{n \rightarrow \infty} a_{n}=a \text { and } \lim _{n \rightarrow \infty} b_{n}=b
$$

and

$$
\lim _{n \rightarrow \infty} \frac{b_{n+1}-b_{n}}{b-b_{n+1}}=\lim _{n \rightarrow \infty} \frac{a_{n}-a_{n+1}}{a_{n+1}-a}=0
$$

In each interval $\left(a_{n+1}, a_{n}\right)\left(\left(b_{n}, b_{n+1}\right)\right)$ we find a nondegenerate closed interval $I_{n} \subset\left(a_{n+1}, a_{n}\right)\left(J_{n} \subset\left(b_{n}, b_{n+1}\right)\right)$ such that

$$
\frac{d\left(I_{n}\right)}{a_{n}-a_{n+1}}>1-\frac{1}{8^{k+n}} \quad\left(\frac{d\left(J_{n}\right)}{b_{n+1}-b_{n}}>1-\frac{1}{8^{k+n}}\right)
$$

where $d\left(I_{n}\right)$ denotes the length of I_{n}.
If (a, b) is an unbounded component of the complement $\mathbb{R} \backslash A_{k}$; i.e., $a=$ $-\infty$ or $b=\infty$, then we find only one sequence $\left(I_{n}\right)$ or $\left(J_{n}\right)$ satisfying the above conditions (as a_{1} or b_{1} we take arbitrary point in this component). For $x \in(a, b)$ let

$$
f_{k,(a, b)}(x)=\left\{\begin{array}{ccl}
\frac{1}{4^{k}} & \text { if } & x=a_{n} \text { or } x=b_{n}, \\
& & n=1,2, \ldots \\
0 & \text { if } & x \in I_{n} \cup J_{n}, n=1,2, \ldots \\
\text { linear } & \text { on the components of } & {\left[a_{n}+1, a_{n}\right] \backslash \int\left(I_{n}\right),} \\
& & n=1,2, \ldots \\
\text { linear } & \text { on the components of } & {\left[b_{n}, b_{n}+1\right] \backslash \int\left(J_{n}\right)} \\
& & n=1,2, \ldots
\end{array}\right.
$$

Define

$$
f_{k}(x)=f_{k,(a, b)}(x) \text { on the components }(a, b) \text { of the set } \mathbb{R} \backslash A_{k}
$$

and

$$
f_{k}(x)=0 \text { on } A_{k}
$$

and observe that the function f_{k} is continuous at each point $x \in \mathbb{R} \backslash A_{k}$, and discontinuous at each point $x \in A_{k}$. Since for every $x \in A_{k}$ the density

$$
D\left(\left(f_{k}\right)^{-1}(0), x\right)=1 \text { and } f_{k}(x)=0
$$

the function f_{k} is approximately continuous. Let

$$
f(x)=\sum_{k=1}^{\infty} f_{k}(x)
$$

Since $\left|f_{k}\right| \leq \frac{1}{4^{k}}$ for $k=1,2, \ldots$ and $\sum_{k=1}^{\infty} \frac{1}{4^{k}}<\infty$, the series $\sum_{k=1}^{\infty} f_{k}$ uniformly converges to f. So, the function f is continuous at each point $x \in \mathbb{R} \backslash A$ and approximately continuous everywhere on \mathbb{R}. If $x \in A$, then there is a positive integer k_{1} such that

$$
x \in A_{k_{1}} \text { and } x \in \mathbb{R} \backslash A_{k} \text { for } k \neq k_{1}
$$

So the function $f_{k_{1}}$ is discontinuous at x and for $k \neq k_{1}$ the functions f_{k} are continuous at x. Consequently

$$
f=f_{k_{1}}+\sum_{k \neq k_{1}} f_{k}
$$

is discontinuous at x and

$$
A=\bigcup_{k=1}^{\infty} A_{k}=D(f)
$$

We will prove that $f \in S_{1}$. For this fix a real $r>0$, a point x and a set $U \ni x$ belonging to T_{d}. If $x \in \mathbb{R} \backslash A$, then f is continuous at x and there is a real $s>0$ such that

$$
|f(t)-f(x)|<r \text { for } t \in(x-s, x+s)
$$

Since

$$
U \cap(x-s, x+s) \neq \emptyset \text { and } U \cap(x-s, x+s) \in T_{d}
$$

and A satisfies the condition (a), there is an open interval $I \subset(x-s, x+s)$ such that $\mathbb{R} \backslash A \supset U \cap I \neq \emptyset$ and in the considered case $f \in s_{1}(x)$.

So we suppose that $x \in A_{k}$ for some integer k. Since the function $h=f-f_{k}$ is continuous at x, there is a real $s>0$ such that

$$
|h(t)-h(x)|<\frac{r}{2} \text { for } t \in(x-s, x+s)
$$

But the density

$$
D\left(\operatorname{int}\left(\left(f_{k}\right)^{-1}(0)\right), x\right)=D\left(\left(f_{k}\right)^{-1}(0), x\right)=1
$$

so

$$
D\left((x-s, x+s) \cap U \cap \operatorname{int}\left(\left(f_{k}\right)^{-1}(0)\right), x\right)=1
$$

If

$$
\left((x-s, x+s) \cap U \cap \operatorname{int}\left(\left(f_{k}\right)^{-1}(0)\right)\right) \not \subset \operatorname{cl}(A)
$$

then there is an open interval

$$
I \subset(x-s, x+s) \cap \operatorname{int}\left(\left(f_{k}\right)^{-1}(0)\right)=W
$$

such that $\emptyset \neq I \cap U \subset C(f)$. Suppose that $T_{d} \ni W \cap U \subset \operatorname{cl}(A)$. Since the set $A \cap W \cap U$ is nowhere dense in $W \cap U$, there is an open interval $I \subset W \cap(\mathbb{R} \backslash A)$ such that $\emptyset \neq I \cap U \subset C(f)$. For $t \in I \cap U \subset W$ we have

$$
|f(t)-f(x)| \leq\left|f_{k}(t)-f_{k}(x)\right|+|h(t)-h(x)|<0+\frac{r}{2}<r
$$

thus $f \in s_{1}(x)$ and the proof is complete.
Next example shows that the condition (a) from Theorem 1 can't be replaced by the condition
(b) the set $A \cap D(\operatorname{cl}(A))$ is nowhere dense in $D(\operatorname{cl}(A))$.

Example 1. Let $C \subset[0,1]$ be a Cantor set of positive measure such that $\mu(I \cap C)>0$ for every open interval I with $I \cap C \neq \emptyset$. Let $B \subset C$ be a compact set of positive measure which is nowhere dense in C. Let $\left(I_{n}\right)$ be a sequence of all components of the set $[0,1] \backslash C$ such that $I_{n} \neq I_{m}$ for $n \neq m$. For each $n=1,2, \ldots$ let $c_{n} \in \operatorname{int}\left(I_{n}\right)$ be a fixed point. Let $E \subset D(B)$ be a countable set dense in $D(B)$. Then the set $A=E \cup\left\{c_{n} ; n=1,2, \ldots\right\}$ is countable (so it is an F_{σ}-set of measure zero) and satisfies the condition (b), but it does not satisfy the condition (a).
Theorem 2. The equality $X\left(S_{0}\right)=X\left(S_{2}\right)$ is true. Moreover a set $A \in X\left(S_{0}\right)$ if and only if A is an F_{σ}-set of measure zero.

Proof. In [2] it is observed that $S_{2} \subset S_{0}$ and that each function $f \in S_{0}$ is almost everywhere continuous. So if $f \in S_{0}$, then the set $D(f)$ is an F_{σ}-set of measure zero.

On the other hand if A is an F_{σ}-set of measure zero, then the same as in the proof of Theorem 1 we construct an approximately continuous function f with $D(f)=A$. We will show that $f \in S_{2}$. For this fix a point $x \in \mathbb{R}$, a real $r>0$, and a set $U \ni x$ belonging to T_{d}. Since f is an approximately continuous function, the set

$$
W=f^{-1}\left(\left(f(x)-\frac{r}{2}, f(x)+\frac{r}{2}\right)\right) \in T_{d}
$$

and consequently $U \cap W \in T_{d}$ is of positive measure. But f is almost everywhere continuous, so there is a point $u \in C(f) \cap U \cap W$. Let $s>0$ be a real such that

$$
|f(t)-f(u)|<\frac{r}{2} \text { for } t \in I=(u-s, u+s)
$$

Consequently, $I \cap U \neq \emptyset$ and for $t \in I \cap U$ we obtain

$$
|f(t)-f(x)| \leq|f(t)-f(u)|+|f(u)-f(x)|<\frac{r}{2}+\frac{r}{2}=r
$$

This completes the proof.
The same as in the proof of Theorem 1 we can prove that for each function $f \in S_{3}$ the set $D_{a p}(f)$ is a set satisfying the condition (a) from Theorem 1. Since $D_{a p}(f) \subset D(f)$ and the function $f \in S_{3}$ is almost everywhere continuous, for $f \in S_{3}$ the set $D_{a p}(f)$ is contained in an F_{σ}-set of measure zero.

Theorem 3. The inclusion $X\left(S_{1}\right) \subset X_{a p}\left(S_{1}\right)$ is true.
Proof. Suppose that A is an F_{σ}-set of measure zero satisfying the condition (a). Without loss of generality we can suppose that the set A is the union of an infinite family of pairwise disjoint compact sets $A_{n} \neq \emptyset$.

Fix a positive integer k. Let

$$
U_{1}=\left\{x: \operatorname{dist}\left(x, A_{k}\right)<1\right\}
$$

where

$$
\operatorname{dist}\left(x, A_{k}\right)=\inf \left\{|t-x| ; t \in A_{k}\right\}
$$

Observe that the set U_{1} is open and since A_{k} is compact, the family of the components of U_{1} is finite. Let $\left\{I_{1,1}, \ldots, I_{1, i(1)}\right\}$ be the family of all components of U_{1}. For each positive integer $i \leq i(1)$ there are pairwise disjoint nondegenerate closed intervals

$$
K_{1, i, 1}, \ldots, K_{1, i, k(1, i)} \subset I_{1, i} \backslash A_{k}
$$

such that

$$
\frac{\mu\left(K_{1, i, 1} \cup \ldots \cup K_{1, i, k(1, i)}\right)}{\mu\left(I_{1, i}\right)}>1-\frac{1}{2}
$$

Let

$$
r_{2}=\operatorname{dist}\left(\bigcup_{i=1}^{i(1)} \bigcup_{j=1}^{k(1, i)} K_{1, i, j}, A_{k}\right)=\inf \left\{|t-x| ; t \in \bigcup_{i=1}^{i(1)} \bigcup_{j=1}^{k(1, i)} K_{1, i, j}, x \in A_{k}\right\}
$$

let

$$
U_{2}=\left\{x: \operatorname{dist}\left(x, A_{k}\right)<\frac{r_{2}}{2}\right\}
$$

and let $I_{2,1}, \ldots, I_{2, i(2)}$ be the components of the set U_{2}. In each component $I_{2, i}, i \leq i(2)$, we find pairwise disjoint nondegenerate closed intervals

$$
K_{2, i, 1}, \ldots, K_{2, i, k(2, i)} \subset I_{2, i} \backslash A_{k}
$$

such that

$$
\frac{\mu\left(K_{2, i, 1} \cup \ldots \cup K_{2, i, k(2, i)}\right)}{\mu\left(I_{2, i}\right)}>1-\frac{1}{4} .
$$

In general in the n-th step we define

$$
\begin{gathered}
r_{n}=\operatorname{dist}\left(\bigcup_{i=1}^{i(n-1)} \bigcup_{j=1}^{k(n-1, i)} K_{n-1, i, j}, A_{k}\right), \\
U_{n}=\left\{x: \operatorname{dist}\left(x, A_{k}\right)<\frac{r_{n}}{2}\right\},
\end{gathered}
$$

and in each component $I_{n, i}, i \leq i(n)$, of the set U_{n} we find pairwise disjoint nondegenerate closed intervals

$$
K_{n, i, 1}, \ldots, K_{n, i, k(n, i)} \subset I_{n, i} \backslash A_{k}
$$

such that

$$
\frac{\mu\left(K_{n, i, 1} \cup \ldots \cup K_{n, i, k(n, i)}\right)}{\mu\left(I_{n, i}\right)}>1-\frac{1}{2^{n}} .
$$

Now for each triple $(n, i, j), n \geq 1, i \leq i(n), j \leq k(n, i)$, we find closed intervals $J_{n, i, j} \subset I_{n, i}$ such that

$$
K_{n, i, j} \subset \operatorname{int}\left(J_{n, i, j}\right) \text { and } J_{n, i, j_{1}} \cap J_{n, i, j_{2}}=\emptyset \text { for } j_{1} \neq j_{2}
$$

and define a continuous function $f_{n, i, j}: J_{n, i, j} \rightarrow\left[0, \frac{1}{2^{k}}\right]$ such that

$$
f_{n, i, j}\left(K_{n, i, j}\right)=\left\{\frac{1}{2^{k}}\right\} \text { and } f_{n, i, j}(x)=0 \text { if } x \text { is an endpoint of } J_{n, i, j} .
$$

Let $f_{k}(x)=f_{2 n, i, j}(x)$ for $x \in J_{2 n, i, j}, n \geq 1, i \leq i(2 n), j \leq k(2 n, i)$ and $f_{k}(x)=0$ otherwise on \mathbb{R}. Then $C\left(f_{k}\right)=\mathbb{R} \backslash A_{k}$. If $x \in A_{k}$, then $f_{k}(x)=0$ and for each positive integer n there is a positive integer $a(x) \leq i(2 n)$ such that $x \in I_{2 n, a(x)}$. Since

$$
\lim _{n \rightarrow \infty} \frac{\mu\left(\bigcup_{j=1}^{k(2 n, a(x))} K_{2 n, a(x), j}\right)}{\mu\left(I_{2 n, a(x)}\right)}=1,
$$

the function f_{k} is not approximately continuous at x. Let $f=\sum_{k=1}^{\infty} f_{k}$. Since the convergence of the above series is uniform, we have

$$
C(f)=\mathbb{R} \backslash A \text { and } D_{a p}(f)=A
$$

We will prove that $f \in S_{1}$. For this fix a real $r>0$, a point x and a set $U \ni x$ belonging to T_{d}. If $x \in \mathbb{R} \backslash A=C(f)$, then the proof of the relation $f \in s_{1}(x)$ is the same as one in the proof of Theorem 1.

So we suppose that $x \in A_{k}$ for some integer $k>0$. Since the function $h=f-f_{k}$ is continuous at x, there is a real $s>0$ such that

$$
|h(t)-h(x)|<\frac{r}{2} \text { for } t \in(x-s, x+s)
$$

But

$$
\lim _{n \rightarrow \infty} \frac{\mu\left(K_{2 n-1, a(x), 1} \cup \ldots \cup K_{2 n-1, a(x), k(2 n-1, a(x))}\right)}{\mu\left(I_{2 n-1, a(x)}\right)}=1
$$

so there is a positive integer $j \leq k(2 n-1, a(x))$ such that

$$
T_{d} \ni \operatorname{int}\left(K_{2 n-1, a(x), j}\right) \cap U \cap(x-s, x+s) \neq \emptyset
$$

If

$$
(x-s, x+s) \cap \operatorname{int}\left(K_{2 n-1, a(x), j}\right) \cap U \not \subset \operatorname{cl}(A),
$$

then there is an open interval

$$
I \subset\left((x-s, x+s) \cap K_{2 n-1, a(x), j}\right) \backslash \operatorname{cl}(A)
$$

such that $C(f) \supset I \cap U \neq \emptyset$. Similarly if

$$
T_{d} \ni(x-s, x+s) \cap \operatorname{int}\left(K_{2 n-1, a(x), j}\right) \cap U \subset \operatorname{cl}(A)
$$

then by the condition (a) there is an open interval

$$
I \subset\left((x-s, x+s) \cap K_{2 n-1, a(x), j}\right) \backslash A
$$

such that $C(f) \supset I \cap U \neq \emptyset$. For $t \in I \cap U$ we have

$$
|f(t)-f(x)| \leq\left|f_{k}(t)-f_{k}(x)\right|+|h(t)-h(x)|<0+\frac{r}{2}<r
$$

This completes the proof.
Problem 1. Does there exist a function $f \in S_{1}$ such that the set $D_{a p}(f)$ is not an F_{σ}-set?

References

[1] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Mathematics 659, Springer-Verlag, New York, 1978.
[2] Z. Grande, On some special notions of approximate quasi-continuity, Real Analysis Exchange, 24(1) (1998-99), 171-183.
[3] W. Sierpiński, Sur une propriété des ensembles F_{σ} linearies, Fund. Math., 14 (1929), 216-220.
[4] F. D. Tall, The density topology, Pacific J. Math., 62 (1976), 275-284.

[^0]: Key Words: Density topology, continuity, approximate continuity, discontinuity points. Mathematical Reviews subject classification: 26A15, 54C08
 Received by the editors November 8, 2001
 *The author is a student of Professor Valenty Skworcow.

