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Abstract

In this paper the sets of discontinuity points and the sets of ap-
proximate discontinuity points of function f : R — R, satisfying some
special approximate quasi-continuity conditions introduced in [2], are
investigated.

Let R be the set of all reals. Denote by p the Lebesgue measure in R and
by pe the outer Lebesgue measure in R. For a set A C R and a point z we
define the upper (lower) outer density D, (A,z) (D;(A4,x)) of the set A at the
point x as

) pe(AN [z — h,z+ h))
lim sup
h—0t 2h

(lim inf pe(AN [z —h o+ h])
h—0*t 2h

If D,(A,z) = Di(A, ), then D(A,z) = D, (A, x) is called the outer density
of the set A at x. In the case where the set A is measurable in the Lebesgue
sense, the outer densities D, (4, z), D;(A, z) and respectively D(A, x) are said
to be in short the densities. A point x is called an outer density point (a
density point) of a set A if D;(A, x) =1 (if there is a Lebesgue measurable set
B C A such that Dy(B,z) =1).

respectively).
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The family Ty of all sets A for which the implication
x € A = x is a density point of A

holds, is a topology called the density topology ([1, 4]). The sets A € T, are
Lebesgue measurable [1].

If T, denotes the Euclidean topology in R, then the continuity of a function
f as an application from (R,T,) to (R, T:) is called approximate continuity
([1, 4]).

For a function f : R — R denote by C(f) the set of all continuity points
of f, by A(f) the set of all approximate continuity points of f, by D(f) the
set R\ C(f) and by D,,(f) the set R\ A(f).

Denote by A the family of all functions f : R — R which are approximately
continuous at each point x € R.

In [2] the following properties are investigated:

1. A function f : R — R has the property (so) at a point « (f € so(x)) if
for each positive real r and for each set U > = belonging to T}, there is
a point ¢t € C'(f) N U such that |f(t) — f(z)] <.

2. A function f : R — R has the property (s1) [(s2)] at a point = (f € s1(x)
[f € s2(x)]) if for each positive real r and for each set U € T containing x
there is an open interval I such that () £ INU C C(f) [0 # INU C A(f)]
and |f(t) — f(z)| <r for all points t € I NU.

3. For i = 0,1,2 a function f has the property (s;) if f € s;(z) for every
point x € R.

4. A function f : R — R has the property (s3) if for each nonempty set
U € Ty there is an open interval I such that § ZINU C C(f).

Evidently each function f having the property (s1) has also the properties
(s2), (so) and (s3) and for each function f having the property (s3) the set
D(f) = R\ C(f) is nowhere dense and of Lebesgue measure 0. But the closure
cl(D(f)) of some functions f having the property (s1) may be of positive
measure.

For example, if A C [0, 1] is a Cantor set of positive measure and (I,,) is a
sequence of all components of the set [0, 1]\ A such that I,, # I, for n # m.

Let J, C int(I,,) be nondegenerate closed intervals such that ‘; E‘I]")) < L for

n=1,2,... (int(I,,) denotes the interior of I,,). On each interval .J,, we define a
function f, : J, — [0, 2] which is discontinuous only at one point a,, € int(.J;,)
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and such that f,(z) = 0 if x < a,, or x is the right endpoint of J,,, fn(a,) = 1

and f,, is linear otherwise on J,. Then the function
f(x) = fu(z) for x € J,, n=1,2,...

and f(xz) = 0 otherwise on R has the property (s1) but p(cl(D(f))) > 0.

For a nonempty family H of functions from R to R denote by X(H) (re-
spectively by X,p(H)) the family of all sets A C R for which there are the
functions f € H such that A = D(f) (resp. A = Dg,(f)).

Evidently, if H, C Ha, then X (H1) C X (Ha).

Let S;, where i = 0, 1, 2, 3, be the family of all functions having the property

(84)-

Theorem 1. The equalities X (AN Sy) = X(S1) = X(S3) are true and a set
A€ X(ANSy) if and only if it is an F, set of measure zero and satisfies the
following condition

(a) for each nonempty set U € Ty contained in the closure cl(A) of the set
A the set U N A is nowhere dense in U.

PrROOF. The inclusions X (AN S1) C X(S1) C X(S3) are obvious.

If A e X(S3), then there is a function f € S3 such that D(f) = A. Since
the set of all discontinuity points of an arbitrary function is an F,-set, the set
A is the same. From the definition of the property (s3) follows that p(A) = 0.
If p(cl(A)) = 0, then the set D(cl(A)) of all density points of the closure cl(A)
is empty and ANU is nowhere dense in U for every U C cl(A) belonging to Ty.
So, we suppose that u(cl(4)) > 0 and fix a nonempty set U € T, contained in
cl(A). If an open interval I is such that §) ## I NU, then I NU € T, and, by
the property (s3), there is an open interval J C I such that

04£JNUCCf).

So, the set AN U is nowhere dense in U.

Now let A be an F,-set of measure zero satisfying the condition (a). We
will construct a function f € AN Sy such that D(f) = A. Since A is of the
first category, there are closed sets A,, such that

A:UAn, and A, NA, =0 for n#m, nm=1,2,.... (13])

Without loss of generality we may suppose that the sets A, # (0 for n =
1,2,....
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Fix a positive integer k. If (a,b), a,b € R, is a component of the comple-
ment R\ A, then we find two monotone sequences of points

a< - <apr1<ap<---<ap=by < <b, <bpy1 <---<b

such that
lim a, =a and lim b, = b,
n—oo n—oo
and
. bpy1 =D . Qp — Gpt1
lim Intl " ¥n _ lim n T Pntl 0.
W b—bpn | e Gt —a

In each interval (an+1, an) ((bn, bnt1)) we find a nondegenerate closed interval
I, C (ant1,an) (Jn C (bn,bns1)) such that

) 1 d()

o {k+n >1

b, LT g

Qp — An41 bn+1

where d(I,,) denotes the length of I,.

If (a,b) is an unbounded component of the complement R\ Ag; i.e., a =
—o0 or b = oo, then we find only one sequence (I,,) or (J,) satisfying the
above conditions (as a; or b; we take arbitrary point in this component). For
x € (a,b) let

ﬁ if r=a, or r=b,,
n=12...
0 if 2 €I UJy, n=12,...
fr(ap)(x) = & linear on the components of [an + 1,a,]\ [(In),
n=12,...
linear on the components of  [bn, by, + 1]\ [(Jn),
n=12....

Define
Jr(x) = fi,(ap)(z) on the components (a,b) of the set R\ Ay

and
fi(z) =0 on Ay

and observe that the function f; is continuous at each point € R\ Ay, and
discontinuous at each point x € Ay. Since for every = € Ay the density

D((fx)'(0),2) =1 and fi(x) =0
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the function fj is approximately continuous. Let
o0
fl@) =" fula).
k=1

Since |fi| < 45 for k =1,2,... and Y2, 35 < oo, the series > 7, fi uni-
formly converges to f. So, the function f is continuous at each point € R\ A
and approximately continuous everywhere on R. If x € A, then there is a pos-
itive integer kq such that

x € A, and z € R\ Ay for k # ky.

So the function fi, is discontinuous at x and for k # k; the functions f;, are
continuous at x. Consequently

f=Fu+ > I
k#ky
is discontinuous at x and
A=J A =D
k=1

We will prove that f € S;. For this fix a real » > 0, a point z and aset U > «
belonging to T;. If x € R\ A, then f is continuous at x and there is a real
s > 0 such that

|f(t) — f(z)| <r for t € (z—s,x+s).

Since
Un(xz—s,24+s)#0 and UN(z—s,z+s) €Ty

and A satisfies the condition (a), there is an open interval I C (z — s, + 8)
such that R\ A D UN T # () and in the considered case f € s1(x).

So we suppose that x € Ay, for some integer k. Since the function h = f— fj
is continuous at x, there is a real s > 0 such that

h(t) — h(z)] < g for t € (z— s, +5).
But the density

D(int((fx)~'(0)),2) = D((fx) "' (0),2) = 1,
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D((z — s,z +s)NU Nint((fr) 1 (0)),2) = 1.

If
((z = s,2+s)NUNnt((fr)71(0))) Z cl(A),

then there is an open interval
IC (z—s,z+s)Nnint((fr)"(0)) =W,

such that ) £ I NU C C(f). Suppose that T, 2 WNU C cl(A). Since the set
ANWNU is nowhere dense in WNU, there is an open interval I C WN(R\ A)
such that 0 A INU C C(f). For t e INU C W we have

£ (&) = (@) < [fu(t) = fr()| + [h(t) = h(z)] < 0+% <,

thus f € s1(x) and the proof is complete. O

Next example shows that the condition (a) from Theorem 1 can’t be re-
placed by the condition

(b) the set AN D(cl(A)) is nowhere dense in D(cl(A)).

Example 1. Let C C [0,1] be a Cantor set of positive measure such that
u(I N C) > 0 for every open interval I with TN C # 0. Let B C C be a
compact set of positive measure which is nowhere dense in C. Let (I,,) be a
sequence of all components of the set [0,1] \ C such that I,, # I,,, for n # m.
For each n = 1,2,... let ¢, € int(l,) be a fixed point. Let E C D(B) be
a countable set dense in D(B). Then the set A = EU{¢c,;n = 1,2,...} is
countable (so it is an F,-set of measure zero) and satisfies the condition (b),
but it does not satisfy the condition (a).

Theorem 2. The equality X (So) = X (S2) is true. Moreover a set A € X(Sp)
if and only if A is an F,-set of measure zero.

PRrROOF. In [2] it is observed that Sy C Sp and that each function f € Sy is
almost everywhere continuous. So if f € Sy, then the set D(f) is an Fj,-set of
measure zero.

On the other hand if A is an F,-set of measure zero, then the same as in
the proof of Theorem 1 we construct an approximately continuous function
f with D(f) = A. We will show that f € S5. For this fix a point € R,
areal r > 0, and a set U > z belonging to Ty. Since f is an approximately
continuous function, the set

W=7 (@)~ 5. 0@) + 5) €Ty
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and consequently U N W € Ty is of positive measure. But f is almost every-
where continuous, so there is a point u € C(f) N U NW. Let s > 0 be a real
such that ,

[f(t) — f(uw)] < 3 for tel=(u—s,u+s).

Consequently, I NU # () and for t € I N U we obtain
r
2

=T

() = f@)] < (1) = f(u)] + |f(u) = f2)] < g +
This completes the proof. O

The same as in the proof of Theorem 1 we can prove that for each function
f € Ss the set Dg,(f) is a set satisfying the condition (a) from Theorem 1.
Since Dg,(f) C D(f) and the function f € S5 is almost everywhere continu-
ous, for f € S3 the set Dg,(f) is contained in an F,-set of measure zero.

Theorem 3. The inclusion X (S1) C X4, (S1) is true.

PROOF. Suppose that A is an Fj,-set of measure zero satisfying the condition
(a). Without loss of generality we can suppose that the set A is the union of
an infinite family of pairwise disjoint compact sets A,, # (.

Fix a positive integer k. Let

Uy = {x : dist(z, A;) < 1},

where
dist(z, Ag) = inf{|t — z|;t € Ax}.

Observe that the set U; is open and since Ay is compact, the family of the
components of U; is finite. Let {I11,...,11;1)} be the family of all com-
ponents of U;. For each positive integer ¢ < i(1) there are pairwise disjoint
nondegenerate closed intervals

Kiin, o Kk C i\ Ag

such that
(K10 U UKy k) 1
>1—-.
p(11,:) 2
Let
i(1) k(1,4) i(1) k(1,3)
ro = dlSt(U U Kl,i,ijk) = 1Hf{|t — Il,t S U U Kl,i,ja T € Ak},
i=1 j=1 i=1 j=1
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let ,
Uy = {z : dist(z, Ag) < 52}

and let I 1,...,15;2) be the components of the set U;. In each component
I, 1 <i(2), we find pairwise disjoint nondegenerate closed intervals

Ko, Kok Clai\ Ak

such that
u(KQ,M Uu...u K2,i,k(2,i)) 1
>1—-.
w(12,) 4

In general in the n-th step we define

i(n—1) k(n—1,)
ry, = dist( U U Kn-1,ij, Ak)s
=1 j=1

U, = {z : dist(z, Ax) < %L},

and in each component I,, ;, i < i(n), of the set U, we find pairwise disjoint
nondegenerate closed intervals

Kn,i,h B Kn,i,k(n,i) C In,i \ Ak

such that
p(Kn,it U UK kn,i)) S L
N(In,i) n’
Now for each triple (n,%,5), n > 1, i < i(n), j < k(n,i), we find closed
intervals Jy ; ; C I, ; such that

Kn,i,j C int(Jmm) and Jmi,jl N Jn,i,jz =0 for jl 75 jg

and define a continuous function fy, i ; : Jn; — [0, 3¢ such that
1
frig(Knig) = {27;} and f,;;(x) =0 if x is an endpoint of J, ; ;.

Let fr(x) = fon,ij;(x) for & € Jop,ij, n > 1, i < i(2n), j < k(2n,4) and
fr(z) = 0 otherwise on R. Then C(f;) = R\ Ax. If © € Ay, then fi(z) =0
and for each positive integer n there is a positive integer a(z) < i(2n) such
that @ € Iy, q(s). Since
. /J/(Uffln,a(ll)) KQn,a(z),j)
lim
n—0oo /U‘(IZma(w))

:17
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the function fj is not approximately continuous at . Let f = > "7~ fi. Since
the convergence of the above series is uniform, we have

C(f)=R\ A and D,,(f) = A.

We will prove that f € Sj. For this fix a real » > 0, a point z and aset U > x
belonging to Ty. If © € R\ A = C(f), then the proof of the relation f € s1(x)
is the same as one in the proof of Theorem 1.

So we suppose that x € Ay for some integer k& > 0. Since the function
h = f — fi is continuous at x, there is a real s > 0 such that

h(t) — h(z)] < % for t € (z — 5,2 + 5).

But

lim M(KQn—l,a(x),l U...u K2n—1,a(:c),k(2n—1,a(9c)))

n—oo M(Ianl,a(:E))

so there is a positive integer j < k(2n — 1,a(z)) such that
Ty > int(Kop_1,a(2),;) NUN(x—s,2+5) #0.

If
(x — 8,2+ 8) Nint(Kop_1,a(z),;) NU & cl(4),

then there is an open interval
IC((x—s2+5)N Ky 1a);) \cl(A)
such that C'(f) D I'NU # (. Similarly if
Ty (x—s,2+5) Nint(Kap_1,4(2),;) VU Ccl(A),
then by the condition (a) there is an open interval
ICc((x—s,24+5)NKop_1a0),;)\A

such that C(f) D INU # (. For t € INU we have
() = F@)] < 1flt) = ful@)| + |h() = h@)| <0+ 5 <.

This completes the proof. O

Problem 1. Does there exist a function f € Sy such that the set Dg,(f) is
not an F,-set?
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