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STOKES’ THEOREM

Abstract

Jean Mawhin has proved a version of Stokes’ theorem on a cube
using a generalized Riemann integral. We give a new, much simpler,
and intuitive proof of his theorem using the integral definition of the
exterior derivative.

1 Introduction

Stokes’ theorem on a manifold is a central theorem of mathematics. Special
cases of the theorem include the fundamental theorem of calculus, the integral
theorems of vector analysis, and the Cauchy-Goursat theorem (as we shall
see). Jean Mawhin has proved a version of the theorem on a cube using his
RP generalized Riemann integral [12, Theorem 2 ]:

Stokes’ Theorem on a Cube. Let ω be a differential (n− 1)-form defined
on an open set U ⊇

[
0, 1
]n. If dω exists on

[
0, 1
]n, then dω is RP-Integrable

on
[

0, 1
]n and

(RP)
∫

[
0,1
]n

dω =
∫

∂
[
0,1
]n

ω . (1)

My main purpose here is to give a new, much simpler, and intuitive proof
of this theorem. I then prove an easy consequence.

Corollary. Let ω be a continuous differential (n−1)-form on
[

0, 1
]n. Suppose

that dω exists on (0, 1)n and is Lebesgue integrable there. Then∫
[
0,1
]n

dω =
∫

∂
[
0,1
]n

ω. (2)
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Using standard techniques [15, pp. 303, 353 ], [24, p. 124 ], [25, p. 354 ],
[2], the corollary can then be lifted to a Lebesgue integral version of Stokes’
theorem on a manifold:

Stokes’ Theorem on a Manifold. Let ω be a continuous differential (n−1)-
form on a compact oriented n-manifold M with boundary ∂M . Suppose that
ω is differentiable on M − ∂M and dω is Lebesgue integrable there. Then∫

M

dω =
∫

∂M

ω. (3)

Traditional statements of Stokes’ theorem, from those of Green’s theorem
on a rectangle to those of Stokes’ theorem on a manifold, elementary and
sophisticated alike, require that dω be continuous. See for example de Rham
[5, p. 27 ], Grunsky [6, p. 97 ], Nevanlinna [16, p. 131 ], and Rudin [22, p.
272 ].

Standard versions of Green’s theorem imply Cauchy’s integral theorem.
As Mawhin observes [12], Stokes’ theorem above specializes to a version of
Green’s theorem which implies the Cauchy-Goursat theorem. Acker [1] points
out that this counters the usual view that the Cauchy-Goursat theorem is not
a corollary of Green’s theorem and so requires a special proof.

Traditional statements of Stokes’ theorem also require dω to exist on all
of M . But dω need not exist on ∂M in Stokes’ theorem above. Thus the
Cauchy-Goursat theorem can be extended to the case where f is continuous
on a simple closed curve and its interior, and analytic in its interior. This
result can also be found in [11, Th. 3.10 ], where it is called “important”.

The key to our proof of Mawhin’s theorem is the integral definition of
dω. The integral definition gives dω a simple geometric meaning. The defini-
tion makes possible a simple and intuitive one line heuristic demonstration of
Stokes’ theorem, which shows us the reason for the theorem. This is the topic
of §2. Mawhin’s RP generalized Riemann integral is discussed in §3. In §4, I
show how the integral definition of dω and the RP integral fit hand in glove
to turn the heuristic demonstration of Stokes’ theorem on a cube into a new,
simple, and intuitive proof of Mawhin’s theorem.

The techniques of this paper were used recently to give the first - to my
knowledge - rigorous proof of the fundamental theorem of geometric calculus
[10].

2 The Integral Definition of dω.

Let ω be an (n − 1)-form on Rn. Fix x ∈ Rn. Let c denote an n-cube (of
arbitrary orientation) with x ∈ c. Define
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dω(x) = lim
x∈c

diam(c)→0

1
|c |

∫
∂c

ω . (4)

(By a slight abuse of notation we identify the n-form dω with its (single)
coefficient function dω(x): dω = dω(x) dx1 ∧ . . . ∧ dxn.)

This integral definition gives dω a clear geometric meaning. The integral
definition tells us the reason for Stokes’ theorem. To see this, partition

[
0, 1
]n

with small cubes
{
cj
}

and let xj ∈ cj . Then if dω is Riemann integrable,∫
∂
[
0,1
]n

ω =
∑

j

∫
∂cj

ω ≈
∑

j

dω
(
xj

)∣∣cj∣∣→ ∫
[
0,1
]n

dω . (5)

The integral definition is essential in turning this heuristic argument into
our proof of Mawhin’s version of Stokes’ theorem on a cube.

There is a step-by-step parallel between the heuristic argument and a proof
of the fundamental theorem of calculus which requires that f ′ exist and be
Riemann integrable on (a, b) (and that f be continuous on [a, b]): Let a =
x0 < . . . < xj < . . . < xn = b. Then using a telescoping series and the mean
value theorem,

f(b)− f(a) =
n∑

j=1

{f(xj)− f(xj−1)} =
n∑

j=1

f ′(cj)(xj − xj−1)→
∫ b

a

f ′. (6)

The integral definition of dω is invariant under a rotation of coordinates.
In contrast, the usual derivative definition of dω is given in terms of partial
derivatives with respect to some coordinate system. It must then be proved
that the derivative definition is invariant under a rotation of coordinates.

One might say that the integral definition tells us what dω is, whereas the
derivative definition tells us how to compute it.

In Section 5 we show that if ω is differentiable; i.e., its coefficient functions
are linearly approximate, then dω exists and the integral definition is equiva-
lent to the derivative definition. This shows that the derivative definition of
dω is invariant under a rotation of coordinates.

The integral definition of dω and the heuristic demonstration of Stokes’
theorem are used in many physics oriented texts, e.g., [2, p. 188 ], [21, p.
10 ], [23, Section 5.8 ], and [26, pp. 83, 93 ]. They should be better known to
mathematicians.
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3 The RP Integral

The first generalized Riemann integral was the Henstock-Kurzweil integral in
R1 [7] [9]. Bartle has given an excellent elementary account of this integral
[3]. See also [14].

The HK integral solves a problem in formulating the fundamental theorem
of calculus: a derivative need not be Riemann, or even Lebesgue, integrable.
Among the impressive features of the HK integral is its formulation of the
fundamental theorem:

If f ′ exists on [a, b], then f ′ is HK-integrable on [a, b] and

(HK)
∫ b

a

f ′(x) dx = f(b)− f(a). (7)

Equally impressive is the trivial proof of the theorem. All this even though f ′

need not be Lebesgue integrable. Moreover, the HK integral is super Lebesgue:
If f is Lebesgue integrable, then it is HK integrable to the same value.

The HK integral in Rn does not always integrate dω [18, Example 5.7 ].
Mawhin designed his RP integral to overcome this deficiency.

According to Mawhin’s theorem, the RP integral always integrates dω.
In addition, the integral is super Lebesgue. See [18, Prop. 4.1] for a short
proof and [4] for a different proof. Why, then, don’t we abandon the Lebesgue
integral in favor of the RP integral? Most important for us, the change of
variable theorem fails [19, p. 143 ], and so the integral cannot be lifted to
manifolds. Fubini’s theorem also fails [18, Remark 5.8 ]. And there are other
deficiencies [18, Remark 7.3 ].

Unlike R1, where the HK integral seems to be completely satisfactory, none
of the several generalized Riemann integrals in higher dimensions seems to have
enough desirable properties to make it a useful general purpose integral. Thus
current versions of Stokes’ theorem stated in terms of a generalized Riemann
integral (e.g., [8], [13], [17], [19], [20]) cannot serve as a general purpose Stokes’
theorem. We consider the RP integral to be only a catalyst to compute the
Lebesgue integral on the left side of Eq. (3).

We now give a series of definitions leading to the RP integral [12] [13],
specialized to

[
0, 1
]n. The definition of the RP integral becomes that of the

Riemann integral if the function δ(x) below is replaced with a constant δ and
the cubes cj with rectangles.

A gauge on
[

0, 1
]n is a positive function δ(x) on

[
0, 1
]n.

A tagged regular partition {cj , xj}kj=1 of
[

0, 1
]n is a decomposition of[

0, 1
]n into closed subcubes {cj} together with points xj ∈ cj . The cj are

disjoint except for boundaries.
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Let δ be a gauge on
[

0, 1
]n. A tagged regular partition {cj , xj}kj=1 is

δ-fine if diam(cj) ≤ δ(xj), j = 1 . . . k.
Let dω be an n-form defined on [ 0, 1]n. A number, denoted (RP)

∫
[0,1]n

dω,

is the RP integral of dω over
[

0, 1
]n if, given ε > 0, there is a gauge δ on

[
0, 1
]n

so that for every δ-fine tagged regular partition {cj , xj} of
[

0, 1
]n,∣∣∣∣∣ (M)

∫[
0,1
]n dω −

k∑
j=1

dω
(
xj

)
| cj|

∣∣∣∣∣ ≤ ε. (8)

If this definition is to make sense, we need to prove two things:
(i) Given a gauge δ on

[
0, 1
]n, there is a δ-fine tagged regular partition of[

0, 1
]n (Cousin’s lemma). To see this, first note that if a cube c is partitioned

into subcubes, each of which has a δ-fine regular partition, then c has a δ-
fine regular partition. Thus if

[
0, 1
]n has no δ-fine regular partition, then

there is a sequence
[

0, 1
]n ⊃ c1 ⊃ c2 ⊃ . . . of compact cubes with no δ-

fine regular partition and diam(ci) → 0. Let {x} =
⋂

i ci. Choose j so that
diam (cj) ≤ δ(x). Then {(cj , x)} is a δ-fine regular partition of cj , which is a
contradiction.

(It is interesting to note that the standard proof of the Cauchy-Goursat
theorem and Acker’s proof of Stokes’ theorem [1] use similar compactness
arguments.)

(ii) If the RP integral exists, then it is unique. For if δ1 and δ2 are gauges
and δ = Min(δ1, δ2), then a δ-fine regular partition is also δ1-fine and δ2-fine.

4 Proof of Stokes’ Theorem

Proof of Stokes Theorem.
Given ε > 0, define a gauge δ(x) > 0 on

[
0, 1
]n as follows. Choose x ∈[

0, 1
]n. Then, according to the integral definition of dω, Eq. (4), there is a

δ(x) > 0 so that if x ∈ c, a cube with diam(c) ≤ δ(x), then
∣∣∫

∂c
ω−dω

(
x
)
|c |
∣∣ <

ε|c |. Now let
{
cj , xj

}
be a δ-fine tagged regular partition of

[
0, 1
]n. Then∣∣∣∣∣

∫
∂
[
0,1
]n

ω −
∑

j

dω
(
xj

)
|cj |

∣∣∣∣∣=
∣∣∣∣∣∑

j

∫
∂cj

ω −
∑

j

dω
(
xj

)∣∣cj∣∣
∣∣∣∣∣<∑

j

ε
∣∣cj∣∣ = ε.

By the definition of the RP integral, Eq. (8), (RP)
∫ [

0,1
]n dω exists and is

equal to
∫

∂
[
0,1
]n ω.
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As stated in Section 1, “The RP integral fits hand in glove with the integral
definition of dω to turn the heuristic demonstration of Stokes’ on a cube [Eq.
(5)] into a simple and intuitive proof.”

Proof of Corollary.
We can now prove the corollary from Section 1. Let ck =

[
k−1, 1− k−1

]n.
From the result just proved and the fact that the RP integral is super Lebesgue
[18, Prop. 4.1], we have ∫

ck

dω =
∫

∂ck

ω. (9)

Let k→∞ in Eq. (9). The left side approaches the left side of Eq. (2) by
the Lebesgue dominated convergence theorem. And the right side approaches
the right side of Eq. (2) by the uniform continuity of ω on

[
0, 1
]n
.

5 Existence of dω and Its Coordinate Representation

Let

ω =
n∑

j=1

fj(x) dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn (10)

be an (n − 1)-form, where the hat indicates that dxj is omitted. If the fj are
differentiable at 0, then dω(0) (defined by the integral definition) exists and is
given by the derivative definition:

dω(0) =
n∑

j=1

(−1)j−1∂jfj(0). (11)

Proof. By the integral definition of dω, Eq. (4), we must show that

lim
0∈c

diam(c)→0

1
|c |

∫
∂c

n∑
j=1

fj(x) dx1∧. . .∧d̂xj ∧. . .∧ dxn =
n∑

j=1

(−1)j−1∂jfj(0). (12)

We first prove Eq. (12) for cubes with sides parallel to the x-axes. For such
cubes it suffices to show that for an arbitrary p and differentiable function f ,

lim
0∈c

diam(c)→0

1
|c |

∫
∂c

f(x) dx1 ∧ . . . ∧ d̂xp ∧ . . . ∧ dxn = (−1)p−1∂pf(0). (13)

Let c have width ε and sides s±j , on which xj is constant. The only sides
in ∂c contributing to the integral in Eq. (13) are s±p . And by definition, the
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orientation of s±p in ∂c is ±(−1)p−1 times the orientation of s±p in Rn; i.e.,
±(−1)p−1(x1, . . . x̂p , . . . xn) [24, p. 98 ]. Thus Eq. (13) can be written

lim
ε→0

(−1)p−1

εn

[∫
s+

p

f(x)−
∫

s−p

f(x)
]

= (−1)p−1∂pf(0). (14)

Our hypothesis that f is differentiable at 0 means that

f(x) = f(0) +
n∑

k=1

∂kf(0) xk +R
(
x
)
, (15)

where
∣∣R(x)

∣∣/∣∣x∣∣→ 0 as
∣∣x∣∣→ 0.

We prove Eq. (14) by substituting separately the three terms on the right
side of Eq. (15) for f(x) in the left side of Eq. (14). The result will be the
right side of Eq. (14).

First term. Substitute f(0) for f(x) in the left side of Eq. (14). The
two integrals are equal and so the result is zero.

Second term. For x ∈ s+p , let x̃ = (x̃1, . . . x̃p, . . . x̃n) be the corresponding
point on the opposite side s−p . Then x̃p = xp − ε, and for k 6= p, x̃k = xk.
Substitute ∂kf(0)xk for f(x) in the left side of Eq. (14), omitting the limit:(

−1
)p−1

∂kf(0)
εn

∫
s+

p

(xk − x̃k).

If k = p, this expression is equal to the right side of Eq. (14). If k 6= p, the
expression is zero.

Third term. Substitute R (x) for f(x) in the left side of Eq. (14). Since
|x| ≤

√
nε on c,∣∣∣∣ (−1) p−1

εn

∫
s±p

R(x)
∣∣∣∣ ≤ 1

εn

∫
s±p

√
n ε

|x|
|R(x)| ≤

√
n sup
|x| ≤

√
nε

|R(x)|
|x|

→ 0. (16)

We have now proved Eq. (12) for cubes with sides parallel to the axes.
However, the limit in Eq. (12) is taken as diam(c)→ 0 for cubes of arbitrary
orientation. Thus it remains to show that the limit is independent of and
uniform in, the orientation of the cubes.

The only limit taken in proving Eq. (14) is in Eq. (16). This limit is
independent of and uniform in the orientation of the cubes because R(x) is
invariant under a rotation of coordinates. To see this, observe that the other
three terms in Eq. (15) are invariant under a rotation. (f(x) is independent
of the coordinates assigned to the point x, and the sum is ∇f ·x, where, since
f is differentiable, ∇f is a vector.)
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