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ON HENSTOCK’S INNER VARIATION AND
STRONG DERIVATIVES

Abstract

The Lebesgue and Bochner integrals are characterized by strong
derivatives, inner variation and Lusin condition in this note.

In his book [6, p.148], Henstock surmises that by using the concept of inner
variation, eventually a theory of differentiation not based on Vitali’s covering
theorem will emerge. Along this direction, the differentiation of Henstock
integrals in n-dimensional Euclidean space has been discussed in [2, 7]. In
this note, we shall discuss the differentiation of McShane integrals, which
provides another example, based on inner variation. We remark that even
in the one-dimensional case, we need to use inner variation, since Vitali’s
covering theorem cannot be applied. For McShane integrals, we should use
strong derivatives [1, 4, 12, 16], since they correspond to McShane interval-
point pairs, which are used in the definition of McShane integrals. The family
of those interval-point pairs, for which derivation property does not hold may
not be a Vitali’s cover. Some interesting properties of strong derivatives are
mentioned in [1, 4, 16].

1 Derivatives of Lebesgue Integrals

In this section, we shall characterize Lebesgue integrals using strong deriva-
tives. Let R be the real line; and [a, b] be a compact interval in R.

Definition 1.1. Let F : [a, b]→ R. F is said to be McShane differentiable at
x ∈ [a, b] with the McShane derivative DMF (x) if for every ε > 0, there exists
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a positive number δ(x) such that whenever ([u, v], x) is McShane δ-fine, i.e.,
[u, v] ⊂ (x− δ(x), x+ δ(x)), we have

|F (v)− F (u)−DMF (x)(v − u)| < ε|v − u|.

We remark that the McShane derivative is called the strong derivative in
[1, 4, 16] or the sharp derivative in [12, p.199] or full derivative in [9, p.136].
The McShane derivative is named after its corresponding McShane interval-
point pairs. It is clear that the McShane derivative is stronger than the or-
dinary derivative, which, in fact, is induced by Henstock interval-point pairs,
where x ∈ [u, v] in the above definition. It is well-known that the primitive
(the indefinite integral) of a Lebesgue integrable function has the ordinary
derivative almost everywhere. However it may not have the McShane deriva-
tive on a set of positive Lebesgue measure. An example can be constructed
by using a Cantor set of positive Lebesgue measure, see [16]. In fact, Hen-
stock has already proved that although it is of positive measure, it has inner
variation zero, [6, p.14], or see Theorem 1.1 in this note.

In the following, we shall consider the converse of Henstock’s result above,
using the idea in [2, 7]. First we introduce inner covers and inner variation
zero. The formulations are slightly different from those given in [6, 2, 7].
However their concepts are not different.

For each positive function δ on [a, b] and each η > 0, let Γ(δ, η) be a family
of McShane δ-fine interval -point pairs. Assume that for fixed δ, Γ(δ, η1) ⊂
Γ(δ, η2) if η2 ≤ η1 and for fixed η, Γ(δ1, η) ⊂ Γ(δ2, η) if δ1(ξ) ≤ δ2(ξ) on [a, b].
A family Γ(δ, η) is called an inner cover of X ⊂ [a, b] if for each x ∈ X, there
is at least one (I, x) ∈ Γ(δ, η). An inner cover is also called a fine cover in [12].
Assume that for each δ, Γ(δ, η) is an inner cover of X if η is small enough. Let
G be a real-valued function defined on the family of all interval-point pairs
(I, x) with I ⊂ [a, b], x ∈ [a, b]. The set X has inner G-variation zero with
respect to the given collection {Γ(δ, η)} as given above if for each ε > 0, there
exists a positive function δ such that for any McShane δ-fine partial division
D = {(I, x)} of [a, b] with x ∈ X and D ⊂ ∪

η
Γ(δ, η), we have

(D)
∑
|G(I, x)| < ε.

Note that if D ⊂ ∪
η
Γ(δ, η) then D ⊂ Γ(δ, η) for some η, if G(I, x) represents

the length of I, then inner G-variation is simply called inner variation. We
shall use the following notations: Let

IV (G,X,Γ(δ, η)) = sup
D

(D)
∑
|G(I, x)|
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where sup
D

is the supremum over all McShane δ-fine partial division D =

{(I, x)} of [a, b] with D ⊂ Γ(δ, η) and x ∈ X.
Let

IV (G,X) = inf
δ

sup
η
IV (G,X,Γ(δ, η)).

Note that IV (G,X) = 0 if and only if X has inner G-variation zero. If G(I, x)
represents the length of I, IV (G,X,Γ(δ, η)) and IV (G,X) are simply denoted
by IV (X,Γ(δ, η)) and IV (X) respectively.

We need to specify Γ(δ, η) when we discuss derivatives.
Let f, F be real-valued functions on [a, b]. For each δ(ξ) > 0 and each

η > 0, define

Γ(f, F, δ, η) = {(I, x) : |F (I)− f(x)|I|| ≥ η|I|},

where F (I) = F (v)− F (u) and |I| = v − u if I = [u, v].

X(f, F, δ, η) = {x ∈ [a, b] : there exists I such that (I, x) ∈ Γ(f, F, δ, η)},
X(f, F ) = ∪

η
∩
δ
X(f, F, δ, η).

Note that X(f, F ) consists of points x where DMF (x) 6= f(x). However
when x ∈ X(f, F ), some (certainly not all) interval-point pairs (I, x) may still
satisfy derivation inequality

|F (I)− f(x)|I|| < ε|I|.

X(f, F ) may not be a Vitali’s cover. Hence inner variation will be used to
discuss the McShane derivatives. {Γ(f, F, δ, η)} satisfies all the conditions im-
posed on Γ(δ, η) mentioned above. From now on, we shall use Γ(δ, η) instead of
Γ(f, F, δ, η) if it is obvious that we are discussing f and F ; and inner variation
is with respect to this specific family {Γ(f, F, δ, η)}, when we are discussing
differentiation.

Theorem 1.2. [6, p. 143] If f is Lebesgue integrable on [a, b] with primitive
F , then DMF (x) = f(x) except at points of a set X with inner variation zero.

Definition 1.3. Let F : [a, b] → R. Then F is said to have strong Lusin
condition if IV (Y ) = 0 then IV (F, Y ) = 0.

We remark that if f is Lebesgue integrable on [a, b] with primitive F , then
F has strong Lusin condition, in view of Henstock’s Lemma [6, pp.86-87] and
IV (Y ) = 0. Now we shall prove the converse of Theorem 1.2.
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Theorem 1.4. Let f and F be real-valued functions defined on [a, b]. Suppose
(i) DMF (x) = f(x) except at points of a set X with inner variation zero; and
(ii) F has strong Lusin condition. Then f is Lebesgue integrable on [a, b] with
primitive F .

Proof. It can be proved by similar idea used for Henstock integrals [2, 7].
It is sufficient to assume that f is bounded on [a, b], say |f(x)| ≤ α for all x,
since we may consider [a, b] =

∞
∪
k=1
{x : k − 1 ≤ |f(x)| < k}. Let ε > 0. There

exists a positive function δ(x) on [a, b]\X such that

|F (I)− f(x)|I|| < ε|I|

whenever (I, x) is McShane δ-fine. On the other hand, there exists a positive
function δ on X such that

sup
η
IV (X,Γ(δ, η)) < ε.

Hence IV (X,Γ(δ, η)) < ε for all η > 0. Then (D)
∑
|I| < ε whenever D =

{(I, x)} is a McShane δ-fine partial division with D ⊂ Γ(δ, η) for some η > 0
and x ∈ X. Recall that

|F (I)− f(x)|I|| ≥ η|I|

for all (I, x) ∈ D ⊂ Γ(δ, η). Suppose (I, x) is McShane δ-fine with x ∈ X and
(I, x) /∈ Γ(δ, η). Then

|F (I)− f(x)|I|| < η|I|.
By given IV (F,X) = 0, so we may assume that with the same δ, we have

sup
η
IV (F,X,Γ(δ, η)) < ε.

Hence (D)
∑
|F (I)| < ε, when D = {(I, x)} is a McShane δ-fine partial divi-

sion with D ⊂ Γ(δ, η) for some η > 0 and x ∈ X. Now let D = {(I, x)} be a
McShane δ-fine division of [a, b] with x ∈ [a, b].
Then

(D)
∑
x/∈X

|F (I)− f(x)|I|| < ε(D)
∑
x/∈X

|I|

≤ ε|b− a|.

On the other hand,

D′ = {(I, x) ∈ D : x ∈ X, (I, x) /∈ Γ(δ, ε)},
D′′ = {(I, x) ∈ D : x ∈ X, (I, x) ∈ Γ(δ, ε)}
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Then

(D′)
∑
|F (I)− f(x)|I|| < ε|b− a, |

(D′′)
∑
|I| < ε,

(D′′)
∑
|F (I) < ε.

Hence (D)
∑
|F (I) − f(x)|I|| < 2ε|b − a| + αε + ε. Thus f is Lebesgue

integrable on [a, b] with primitive F .

Remark 1.5. In general, we cannot change the values of f on X, where X is
of inner variation zero. We can only change the values of f on Y ⊂ X, when Y
is of variation zero. Recall that variation V (Y ) is defined by replacing Γ(δ, η)
by all McShane δ-fine interval-point pairs, [6, p.76].

2 Derivatives of Bochner Integrals

Now we shall consider the Bochner integral which is equivalent to the strong
McShane integral, see [5, 14, 11]. Let (E, ‖ ‖) be a Banach space.

Definition 2.1. Let f : [a, b] → E. f is said to be Bochner (or strongly
McShane) integrable on [a, b] with primitive F if for every ε > 0, there exists
a positive function δ on [a, b] such that whenever D = {(I, x)} is a McShane
δ-fine partial division of [a, b], we have

(D)
∑
‖F (I)− f(x)|I|‖ < ε.

In [10], some examples are given for the strong Henstock integral.

Definition 2.2. Let F : [a, b]→ E. F is said to be McShane differentiable at
x ∈ [a, b] with the McShane derivative DMF (x) if for every ε > 0, there exists
a positive number δ(x) such that whenever (I, x) is McShane δ-fine, we have

‖F (I)−DMF (x)|I|‖ < ε|I|.

Note that DMF (x) : [a, b]→ E.
Using the idea in section 1 with | · | replaced by ‖ ‖ we have

Theorem 2.3. Let f and F be E-valued functions defined on [a, b]. Then f is
Bochner integrable on [a, b] with primitive F if and only if (i) DMF (x) = f(x)
except at points of a set X with inner variation zero, and (ii) F has strong
Lusin condition.
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Example 2.4. In the classical stochastic analysis, we need to consider L1(Ω×
[a, b]), see [13, 15]. Let (Ω,F ,P) be a measure space, where Ω is a set, F is a σ-
field of subsets of Ω and P is a measure on F , with P (Ω) = 1. Let L1(Ω×[a, b])
be the space of all real-valued functions f(w, t) which are classical integrable
on the product measure space Ω× [a, b].

It is reasonable to guess that the integral above can be defined by the
McShane approach and the positive function δ(w, t) in the approach depends
on w ∈ Ω and t ∈ [a, b]. In the following, we shall point out that if we consider
the above integral as a Bochner integral for L1(Ω)-valued functions, the δ
depends only on t ∈ [a, b].

Let (L1(Ω), ‖‖) be the L1-space with ‖g‖ =
∫

Ω
|g|dP . Let

∫ b
a
f(w, t) dt

belong to L1(Ω) for almost all w ∈ Ω and
∫

Ω
f(w, t)dP ∈ L1[a, b] for almost

all t ∈ [a, b]. However in order that the Bochner integral in Definition 2.1 is
well-defined, we have to assume that

∫
Ω
f(w, t)dP ∈ L1[a, b] for all t ∈ [a, b].

It can be assumed, since we can change the values of
∫

Ω
f(w, t)dP on points t

of a set of Lebesgue measure zero.

Theorem 2.5. Let f ∈ L1(Ω×[a, b]), and g(t)(w) = f(w, t). Then g : [a, b]→
(L1(Ω), ‖‖) is Bochner integrable on [a, b].

Proof. It is clear that g : [a, b] → (L1(Ω), ‖‖), as we assume that for each
t ∈ [a, b], f(w, t) ∈ L1(Ω). Observe that∫ b

a

∫
Ω

|f(w, t)|dP dt exists

and hence
∫ b
a
‖f(·, t)‖ dt =

∫ b
a
‖g(t)‖ dt exists.

Thus ‖g(t)‖ is Lebesgue integrable on [a, b]. Therefore g is Bochner inte-
grable on [a, b] with primitive G(t)(w) =

∫ t
a
g(w, s) ds, see [3, p 45].

The converse of the above theorem is also true.

Theorem 2.6. Let f(w, t) : Ω × [a, b] → R and g(t)(w) = f(w, t). Suppose
g : [a, b]→ (L1(Ω), ‖‖) and g is Bochner integrable on [a, b]. Then f ∈ L1(Ω×
[0, 1].

Proof. Suppose g is Bochner integrable on [a, b], then ‖g(t)‖ is Lebesgue
integrable [3, p 45]. Hence∫ b

a

∫
Ω

|g(t)(w)|dP dt =
∫ b

a

∫
Ω

|f(w, t)|dP dt exists

Hence f ∈ L1(Ω× [a, b]).
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Consequently, by Theorem 2.1, we have

Theorem 2.7. Let f ∈ L1(Ω × [a, b]) and F (t)(w) =
∫ t
a
f(w, s) ds. Then (i)

DMF (t)(w) = f(w, t) except at points of a set with inner variation zero, and
(ii) F has strong Lusin condition.

Remark 2.8. If we use ordinary derivatives DH i.e. derivation with respect
to Henstock interval-point pairs, then instead of (i) and (ii) in Theorem 2.7, we
have (i)′ DHF (t)(w) = f(w, t) except at points of a set with Lebesque measure
zero and (ii)′ F has strong Lusion condition (with respect to Henstock interval-
point pairs). Certainly we can replace (ii)′ by (ii)* F is absolutely continuous
on [a, b] with respect to ‖ ‖.

Finally we remark that a set of inner variation (with respect to Henstock
interval-point pairs) zero if and only if it is a set of Lebesgue measure zero,
since we can apply Vitali’s covering theorem to the corresponding ∪

δ,η
Γ(δ, η)

used in Section 1. Hence (i)′ is true in Remark 2.1 or see [3, p.49].

Example 2.9. In the classical stochastic analysis, we also consider the belated
Bochner integral (or the belated strong McShane integral), see [13, 15].

Definition 2.10. Let f and B defined on [a, b] with values in (E, ‖‖). f is said
to be belated Bochner (belated strongly McShane) integrable with respect to
B on [a, b] with primitive F if for every ε > 0, there exists a positive function
δ on [a, b] such that whenever D = {(I, x)} is a belated McShane δ-fine partial
division of [a, b], we have

(D)
∑
‖F (I)− f(x)(I)‖ < ε.

Recall that an interval-point pair (I, x) is said to be belated δ-fine if I ⊂
(x, x + δ(x)). Note that the point x is always on the left-hand side of I. We
may not have full belated McShane δ-fine division of [a, b].
In the classical stochastic analysis, we always assume that F is absolutely
continuous with respect to ‖‖. Hence the primitive is unique. Note that
if (E, ‖‖) is (R, | |) then the belated Bochner integral is equivalent to the
Bochner (Lebesgue) integral, see [8]. In general they are not equivalent.

Definition 2.11. Let F : [a, b] → E. F is said to be belated McShane
differentiable at x ∈ [a, b] with respect to B, where B : [a, b] → E, with the
belated McShane derivative DbMF (x) if for every ε > 0, there exists a positive
number δ(x) such that whenever (I, x) is belated McShane δ-fine, we have

‖F (I)−DbMF (x)B(I)‖ < ε‖B(I)‖.
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In the following, we assume that the variation V (B, [a, b]) of B over [a, b] is
finite. Recall V (B, [a, b]) = inf

δ
sup
D

(D)
∑
‖B(I)‖ where D = {(I, x)} is belated

McShane δ-fine partial division of [a, b].
Similar to Theorem 2.1 with

∑
|I| ≤ (b − a) replaced by

∑
‖B(I)‖ ≤

V (B, [a, b]) in the proof of Theorem 1.4, we have

Theorem 2.12. Let f and F be E-valued functions defined on [a, b]. Then f
is belated Bochner integrable with respect to B (with finite variation) on [a, b]
with primitive F if and only if

(i) DbMF (x) = f(x) except at points of a set X with inner variation zero,
and (ii) F has strong Lusin condition.
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