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ON HENSTOCK’S INNER VARIATION AND
STRONG DERIVATIVES

Abstract

The Lebesgue and Bochner integrals are characterized by strong
derivatives, inner variation and Lusin condition in this note.

In his book [6, p.148], Henstock surmises that by using the concept of inner
variation, eventually a theory of differentiation not based on Vitali’s covering
theorem will emerge. Along this direction, the differentiation of Henstock
integrals in n-dimensional Euclidean space has been discussed in [2, 7]. In
this note, we shall discuss the differentiation of McShane integrals, which
provides another example, based on inner variation. We remark that even
in the one-dimensional case, we need to use inner variation, since Vitali’s
covering theorem cannot be applied. For McShane integrals, we should use
strong derivatives [1, 4, 12, 16], since they correspond to McShane interval-
point pairs, which are used in the definition of McShane integrals. The family
of those interval-point pairs, for which derivation property does not hold may
not be a Vitali’s cover. Some interesting properties of strong derivatives are
mentioned in [1, 4, 16].

1 Derivatives of Lebesgue Integrals

In this section, we shall characterize Lebesgue integrals using strong deriva-
tives. Let R be the real line; and [a, b] be a compact interval in R.

Definition 1.1. Let F': [a,b] — R. F'is said to be McShane differentiable at
x € [a, b] with the McShane derivative Dy, F(z) if for every e > 0, there exists
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a positive number §(z) such that whenever ([u,v],z) is McShane d-fine, i.e.,
[u,v] C (z — d(x), z+ d(x)), we have

|F(v) — F(u) — Dy F(x)(v — )| < €lv—ul.

We remark that the McShane derivative is called the strong derivative in
[1, 4, 16] or the sharp derivative in [12, p.199] or full derivative in [9, p.136].
The McShane derivative is named after its corresponding McShane interval-
point pairs. It is clear that the McShane derivative is stronger than the or-
dinary derivative, which, in fact, is induced by Henstock interval-point pairs,
where z € [u,v] in the above definition. It is well-known that the primitive
(the indefinite integral) of a Lebesgue integrable function has the ordinary
derivative almost everywhere. However it may not have the McShane deriva-
tive on a set of positive Lebesgue measure. An example can be constructed
by using a Cantor set of positive Lebesgue measure, see [16]. In fact, Hen-
stock has already proved that although it is of positive measure, it has inner
variation zero, [6, p.14], or see Theorem 1.1 in this note.

In the following, we shall consider the converse of Henstock’s result above,
using the idea in [2, 7]. First we introduce inner covers and inner variation
zero. The formulations are slightly different from those given in [6, 2, 7].
However their concepts are not different.

For each positive function § on [a, b] and each > 0, let I'(d, 1) be a family
of McShane J-fine interval -point pairs. Assume that for fixed 9§, I'(6,m1) C
T'(d,n2) if ne < m and for fixed n, I'(d1,n) C I'(d2,n) if 61(£) < d2(£) on [a, b].
A family T'(d,n) is called an inner cover of X C [a,b] if for each & € X, there
is at least one (I,x) € T'(§,n). An inner cover is also called a fine cover in [12].
Assume that for each §, I'(0,n) is an inner cover of X if 5 is small enough. Let
G be a real-valued function defined on the family of all interval-point pairs
(I,z) with I C [a,b], € [a,b]. The set X has inner G-variation zero with
respect to the given collection {I'(d,7)} as given above if for each € > 0, there
exists a positive function § such that for any McShane §-fine partial division
D ={(1,z)} of [a,b] with € X and D C UT'(4,7), we have

n

(D) Z |G(I,x)| < e.

Note that if D C UT'(6,n) then D C T'(4,n) for some 0, if G(I,x) represents
n

the length of I, then inner G-variation is simply called inner variation. We
shall use the following notations: Let

IV(G, X, T(5,m) = sup(D) > IG(I, )]
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where sup is the supremum over all McShane d-fine partial division D =

D
{(I,x)} of [a,b] with D C T'(J,n) and = € X.
Let
V(G X) = irgf suplV (G, X,T'(4,n)).
n

Note that IV(G, X) = 0 if and only if X has inner G-variation zero. If G(I,x)
represents the length of I, IV (G, X,T'(6,n)) and IV (G, X) are simply denoted
by IV(X,I'(6,n)) and IV (X) respectively.

We need to specify T'(d, ) when we discuss derivatives.

Let f,F be real-valued functions on [a,b]. For each §(§) > 0 and each
n > 0, define

D(f, F0,m) ={(L,z) : |[F(I) — f(2)I]] = nlI]},
where F(I) = F(v) — F(u) and |I| = v — w if I = [u,v].

X(f,F,0,n) = {x € [a,b] : there exists I such that (I,z) € T(f, F,d,n)},
X(f,F) = X (£, F,5,1).
"

However

Note that X (f, F') consists of points & where Dy F(x) # f(z).
,x) may still

when x € X(f, F), some (certainly not all) interval-point pairs (I
satisfy derivation inequality

[ (1) = f(@)[]] < el1].

X (f,F) may not be a Vitali’s cover. Hence inner variation will be used to
discuss the McShane derivatives. {I'(f, F,0,n)} satisfies all the conditions im-
posed on I'(d, n) mentioned above. From now on, we shall use I'(d, n) instead of
L(f, F,d,n) if it is obvious that we are discussing f and F’; and inner variation
is with respect to this specific family {I'(f, F,d,n)}, when we are discussing
differentiation.

Theorem 1.2. [6, p. 143] If f is Lebesque integrable on [a,b] with primitive
F, then Dy F(x) = f(x) except at points of a set X with inner variation zero.

Definition 1.3. Let F : [a,b] — R. Then F is said to have strong Lusin
condition if IV (Y) =0 then IV(F,Y) =0.

We remark that if f is Lebesgue integrable on [a, b] with primitive F', then
F has strong Lusin condition, in view of Henstock’s Lemma [6, pp.86-87] and
IV (Y) = 0. Now we shall prove the converse of Theorem 1.2.
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Theorem 1.4. Let f and F be real-valued functions defined on [a,b]. Suppose
(i) Dy F(x) = f(x) except at points of a set X with inner variation zero; and
(i) F has strong Lusin condition. Then f is Lebesgue integrable on [a,b] with
primitive F'.

PROOF. It can be proved by similar idea used for Henstock integrals [2, 7].

It is sufficient to assume that f is bounded on [a,b], say |f(z)| < « for all z,

since we may consider [a,b] = k(f,lo {z:k—1<|f(x)] < k}. Let € > 0. There
=1

exists a positive function §(z) on [a, b]\ X such that
[ (1) = f(@) ]| < el1]

whenever (I,z) is McShane 0-fine. On the other hand, there exists a positive
function § on X such that

suplV(X,T'(6,n)) < e.
"

Hence IV(X,I'(d,n)) < € for all n > 0. Then (D) |I| < € whenever D =
{(I,z)} is a McShane J-fine partial division with D C I'(d,n) for some n > 0
and x € X. Recall that

[E(I) = f(@)I ]| = nl 1|

for all (I,z) € D C T'(d,7n). Suppose (I, z) is McShane é-fine with € X and
(I,x) ¢ T'(d,n). Then
[E(1) = f(@) ]| < nlI].

By given IV (F, X) = 0, so we may assume that with the same 4, we have
supIV(F, X,T'(6,n)) < e.
n
Hence (D) > |F(I)| < €, when D = {(I,z)} is a McShane d-fine partial divi-

sion with D C T'(d,n) for some n > 0 and z € X. Now let D = {(I,z)} be a
McShane d-fine division of [a, b] with z € [a, b].

Then
(D)> IF(I) = f(@)|I]| < e(D) > ||
¢ X ¢ X
<e€lb—al.

On the other hand,

D' = {(La)eD:we X, (La) ¢ (5,0},
D'={(I,z)eD:ze X,(I,z) €T(d,¢)}
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Then

(DN IF(I) = f@)|| < elb—a,|
(D") Y | <,
(D) |F(I) <.

Hence (D) |F(I) — f(x)|I]] < 2€|b — a| + e + €. Thus f is Lebesgue
integrable on [a, b] with primitive F. O

Remark 1.5. In general, we cannot change the values of f on X, where X is
of inner variation zero. We can only change the values of f on Y C X, when Y
is of variation zero. Recall that variation V(Y") is defined by replacing I'(4,7)
by all McShane d-fine interval-point pairs, [6, p.76].

2 Derivatives of Bochner Integrals

Now we shall consider the Bochner integral which is equivalent to the strong
McShane integral, see [5, 14, 11]. Let (E, || ||) be a Banach space.

Definition 2.1. Let f : [a,b] — E. f is said to be Bochner (or strongly
McShane) integrable on [a, b] with primitive F' if for every € > 0, there exists
a positive function ¢ on [a, b] such that whenever D = {(I,z)} is a McShane
0-fine partial division of [a, b], we have

(D)YIIF() = f@)I] < e
In [10], some examples are given for the strong Henstock integral.

Definition 2.2. Let F : [a,b] — E. F is said to be McShane differentiable at
x € [a,b] with the McShane derivative Dy, F(z) if for every € > 0, there exists
a positive number é(x) such that whenever (I, z) is McShane §-fine, we have

1F(I) = Dy F () ][] < €lI].

Note that Dy F(z) : [a,b] — E.
Using the idea in section 1 with | - | replaced by || || we have

Theorem 2.3. Let f and F be E-valued functions defined on [a,b]. Then f is
Bochner integrable on [a, b] with primitive F if and only if (i) Dy F(x) = f(x)
except at points of a set X with inner variation zero, and (ii) F has strong
Lusin condition.
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Example 2.4. In the classical stochastic analysis, we need to consider Lq (£ x
[a,b]), see [13, 15]. Let (2, F,P) be a measure space, where 2 is a set, F is a o-
field of subsets of 2 and P is a measure on F, with P(2) = 1. Let L1 (Q x [a, b])
be the space of all real-valued functions f(w,t) which are classical integrable
on the product measure space 2 x [a, b].

It is reasonable to guess that the integral above can be defined by the
McShane approach and the positive function 6(w,t) in the approach depends
onw € Qand ¢t € [a,b]. In the following, we shall point out that if we consider
the above integral as a Bochner integral for L;(Q2)-valued functions, the §
depends only on t € [a, b].

Let (L1(9),]|||) be the Li-space with ||g|| = fQ lg|ldP. Let f f(w,t)dt
belong to L1(Q) for almost all w € Q and [, f(w,t)dP € Ly[a,b] for almost
all ¢ € [a,b]. However in order that the Bochner integral in Definition 2.1 is
well-defined, we have to assume that [, f(w,t)dP € Ly[a,b] for all t € [a, b].
It can be assumed, since we can change the values of fQ f(w,t)dP on points ¢
of a set of Lebesgue measure zero.

Theorem 2.5. Let f € L1(2x[a,b]), and g(t)(w) = f(w,t). Theng: [a,b] —
(L1(2),||ll) is Bochner integrable on [a,b].

PROOF. It is clear that g : [a,b] — (L1(£2),|||]), as we assume that for each
t € [a,b], f(w,t) € L1(£2). Observe that

b
/ / |f(w,t)|dP dt exists
a Q

and hence f: lF (-, t)] dt = f llg(t)| dt exists.
Thus [|g(t)| is Lebesgue 1ntegrable on [a b} Therefore g is Bochner inte-

grable on [a,b] with primitive G(t)( f g(w, s) ds, see [3, p 45]. O

The converse of the above theorem is also true.

Theorem 2.6. Let f(w,t) : Q x [a,b] — R and g(t)(w) = f(w,t). Suppose
g:[a,b] — (L1(2), |[l) and g is Bochner integrable on [a,b]. Then f € Lq(£2x
[0,1].

PROOF. Suppose ¢ is Bochner integrable on [a,b], then [|g(t)| is Lebesgue
integrable [3, p 45]. Hence

b
//|g w)|dP dt = //|f(w,t)|dP dt exists
a JQ

Hence f € L1(Q x [a, b]). O
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Consequently, by Theorem 2.1, we have

Theorem 2.7. Let f € L1(Q x [a,b]) and F(t)(w) = [ f(w,s)ds. Then (i)
Dy F(t)(w) = f(w,t) except at points of a set with inner variation zero, and
(i) F has strong Lusin condition.

Remark 2.8. If we use ordinary derivatives Dy i.e. derivation with respect
to Henstock interval-point pairs, then instead of (i) and (ii) in Theorem 2.7, we
have (i) D F(t)(w) = f(w,t) except at points of a set with Lebesque measure
zero and (ii)’ F has strong Lusion condition (with respect to Henstock interval-
point pairs). Certainly we can replace (i)’ by (ii)* F is absolutely continuous
on [a, b] with respect to || ||

Finally we remark that a set of inner variation (with respect to Henstock
interval-point pairs) zero if and only if it is a set of Lebesgue measure zero,
since we can apply Vitali’s covering theorem to the corresponding 5U r'6,n)

n

used in Section 1. Hence (i)’ is true in Remark 2.1 or see [3, p.49].

Example 2.9. In the classical stochastic analysis, we also consider the belated
Bochner integral (or the belated strong McShane integral), see [13, 15].

Definition 2.10. Let f and B defined on [a, b] with values in (E, ||||). f is said
to be belated Bochner (belated strongly McShane) integrable with respect to
B on [a, b] with primitive F if for every € > 0, there exists a positive function
0 on [a, b] such that whenever D = {(I,z)} is a belated McShane ¢-fine partial
division of [a, b], we have

(D) IIF() = fa) (D) <e

Recall that an interval-point pair (I, x) is said to be belated d-fine if I C

(z,z + 6(x)). Note that the point z is always on the left-hand side of I. We
may not have full belated McShane J-fine division of [a, b].
In the classical stochastic analysis, we always assume that F' is absolutely
continuous with respect to ||||. Hence the primitive is unique. Note that
if (E,||II) is (R,| |) then the belated Bochner integral is equivalent to the
Bochner (Lebesgue) integral, see [8]. In general they are not equivalent.

Definition 2.11. Let F : [a,b] — E. F is said to be belated McShane
differentiable at = € [a,b] with respect to B, where B : [a,b] — E, with the
belated McShane derivative Dyps F'(z) if for every e > 0, there exists a positive
number §(x) such that whenever (I,x) is belated McShane d-fine, we have

I1F(I) = Dop F () B(I|| < €| BD)]-
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In the following, we assume that the variation V (B, [a,b]) of B over [a,b] is
finite. Recall V (B, [a,b]) = irélfsup(D) STIB(I)|| where D = {(I,x)} is belated
D

McShane 0-fine partial division of [a, b].
Similar to Theorem 2.1 with > |I| < (b — a) replaced by > [|B(I)| <
V(B, [a,b]) in the proof of Theorem 1.4, we have

Theorem 2.12. Let f and F be E-valued functions defined on [a,b]. Then f
is belated Bochner integrable with respect to B (with finite variation) on [a, b]
with primitive F if and only if

(i) Dop F(z) = f(x) except at points of a set X with inner variation zero,
and (ii) F has strong Lusin condition.
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