Andrzej Nowik, Institute of Mathematics, Polish Academy of Sciences, Abrahama 18, 81-825 Sopot, Poland. e-mail: nowik@impan.gda.pl Permanent address: University of Gdańsk, Institute of Mathematics, Wita Stwosza 57, 80-952 Gdańsk, Poland. e-mail: matan@julia.univ.gda.pl

ON SOME PROPERTIES OF THE CLASS OF REAL FUNCTIONS WITH λ AND λ' GRAPHS

Abstract

We show that (under CH) there exists a CIVP function with a λ' graph. We examine some properties of $\mathcal{M}_a(\lambda)$ and $\mathcal{M}_a(\lambda')$ class of real valued functions.

1 General Notation

First, let us recall a couple of definitions:

- 1. A set *L* is said to be a λ -set if every countable subset of *L* is G_{δ} relative to *L*.
- 2. A subset L of a space X is said to be a λ' (rel X) if for every countable subset D of X, $L \cup D$ has property λ .

We shall need also the following well-known fact, basic in our investigations.

Fact 1.1. If $A \subseteq \mathbb{R}$ has property λ' (rel \mathbb{R}) and is the one-to-one projection of the subset H of \mathbb{R}^2 (i.e., H is the graph of an arbitrary real valued function with domain A), then H has property λ' (rel \mathbb{R}^2). The corresponding assertion for the λ property instead λ' holds.

Key Words: λ set, λ' set, $\mathcal{M}_a(\cdot)$, $\mathcal{M}_m(\cdot)$ families.

Mathematical Reviews subject classification: Primary 03E15; Secondary 03E20, 28E15 Received by the editors June 7, 2001

⁷¹¹

(See for example [1] or [8]). Note also that property λ' is countably additive. On the other hand, property λ is not preserved even under taking finite unions.

For $A \subseteq \mathbb{R}^2$ we denote by A_x and $A^{(y)}$ the x-section and y-section of A, respectively (i.e., $A_x = \{y : \langle x, y \rangle \in A\}$, $A^{(y)} = \{x : \langle x, y \rangle \in A\}$). Throughout this paper no distinction is made between a function and its graph. Therefore, to shorten notation we write $f \in \lambda$ (λ' , resp.) in the case when f has a λ (λ' , resp.) graph or we say that f is a λ (λ' , resp.) function. Let C denote as usual the ternary Cantor set.

We say that a function $f \in \mathbb{R}^{\mathbb{R}}$ has the CIVP property (*Cantor Interme*diate Value Property) if for all different $x, y \in \mathbb{R}$ such that $f(x) \neq f(y)$ and for every Cantor set P between f(x) and f(y), there exists a Cantor set Q between x and y such that $f(Q) \subseteq P$.

Let Mkb denote the Mokobodzki σ -ideal:

$$Mkb = \{ X \subseteq \mathbb{R}^2 \colon \forall_{\epsilon > 0} \exists_{U \supseteq X} \left[U \text{ open } \land \forall_x \mu(U_x) < \epsilon \right] \}.$$

Let us denote by Mkb^{-1} the "inverse" Mokobodzki σ -ideal, namely:

$$Mkb^{-1} = \{i(X) \colon X \in Mkb\},\$$

where $i(\langle x, y \rangle) = \langle y, x \rangle$. It is well known that the σ -ideals Mkb, Mkb⁻¹ are generated by G_{δ} sets; i.e.,

$$\forall_{X \in \mathcal{I}} \exists_{G \in G_{\delta} \cap \mathcal{I}} X \subseteq G.$$

where $\mathcal{I} = Mkb$ or $\mathcal{I} = Mkb^{-1}$.

In the sequel, $\operatorname{Perf}_{\mathcal{C}}$ denotes the collection of all perfect subsets of \mathbb{R} homeomorphic to 2^{ω} . By Intr we denote the family of all open intervals (a, b), a < b. We define ω_1^{Ev} (ω_1^{Od}) to be the set of all even (odd, respectively) ordinals from ω_1 .

2 Introduction

As it was observed by T. Natkaniec and I. Recław, under CH there exists a function $f \in \lambda'$ such that f is almost continuous. Indeed, suppose that $S \subseteq \mathbb{R}$ is a **c**-dense λ' subset of \mathbb{R} (for example, take any **c**-dense Sierpiński set). There exists a function $f_1: S \to \mathbb{R}$ such that for each $f^* \supseteq f_1$, f^* is almost continuous. (see for example [6] or [3]). Let $\tilde{f}: \mathbb{R} \to S$ be any oneto-one function. Note that λ' subsets of \mathbb{R}^2 forms a σ -ideal, thus if we define $f = \tilde{f} \upharpoonright (\mathbb{R} \setminus S) \cup f_1$, then the function f will be almost continuous and $f \in \lambda'$. On the other hand, it is obvious that there is no λ function with the Ext property (for definition of Ext and almost continuous property see for example [7]).

Since $AC \neq CIVP$, it is a natural question whether (under CH) there exists a λ' function with the CIVP property. In the sequel we shall answer this question in the affirmative. In fact, we will show something more.

Theorem 2.1. Assume CH. There exists a function $f \in \mathbb{R}^{\mathbb{R}}$ such that

- 1. f is a λ' set.
- 2. for each interval (a,b) and for each $P \in Perf$ there is $Q \subseteq (a,b), Q \in Perf$ such that $Q \subseteq f^{-1}[P]$. (in particular, f has the CIVP property)

We shall use two (folklore?) lemmas some of which might be well known. We give the proofs for completeness.

Lemma 2.2. Suppose that $X \in \text{Mkb}^{-1}$. For each $P \in Perf_{\mathcal{C}}$ and for each interval $(a, b) \subseteq \mathbb{R}$ there exists $Q, R \in Perf$ such that $Q \subseteq (a, b), R \subseteq P$ and $(Q \times R) \cap X = \emptyset$.

PROOF. Since $X \in \text{Mkb}^{-1}$, there exists $G \in G_{\delta}$ such that $G \in \text{Mkb}^{-1}$ and $X \subseteq G$. Then $\forall_{y \in P} G^{(y)} \in \mathcal{N}$, thus $G \cap ((a, b) \times P)$ is of measure zero in the space $(a, b) \times P$. (homeomorphic to $(a, b) \times 2^{\omega}$). Next, by the classical Mycielski theorem (see [5]), the conclusion follows.

Throughout this proof, $\{C_{\alpha}\}_{\alpha \in \omega_1^{E_v}}$ is a fixed enumeration of all countable subsets of \mathbb{R}^2 .

Lemma 2.3. Assume CH. Let $\langle G_{\alpha} : \alpha \in \omega_1 \rangle$, $\langle l_{\alpha} : \alpha \in \omega_1 \rangle$ be a sequences of subsets of \mathbb{R}^2 such that

- 1. $\forall_{\alpha \in \omega_1} G_\alpha \in G_\delta \text{ and } l_\alpha \in \lambda',$
- 2. $\bigcup_{\alpha < \theta} G_{\alpha} \cup l_{\theta} \subseteq G_{\theta} \text{ and } \bigcup_{\alpha < \theta} G_{\alpha} \cap l_{\theta} = \emptyset \text{ for each } \theta < \omega_1.$
- 3. For each $\theta \in \omega_1^{Ev}$, $C_{\theta} \setminus \bigcup_{\alpha < \theta} G_{\alpha} \neq \emptyset \Rightarrow l_{\theta} \cap C_{\theta} \neq \emptyset$.

Then the set $l = \bigcup_{\alpha < \omega_1} l_{\alpha}$ is a λ' set.

PROOF. Let $D \subseteq l$ be a countable set. There exists $\theta \in \omega_1$ such that $D \subseteq \bigcup_{\alpha \leq \theta} l_{\alpha}$. Since sets with a λ' property forms a σ -ideal, we have $\bigcup_{\alpha \leq \theta} l_{\alpha} \in \lambda'$. Hence there exists a G_{δ} set H such that $H \cap \bigcup_{\alpha < \theta} l_{\alpha} = D$. Thus

$$(G_{\theta} \cap H) \cap l = \left[(G_{\theta} \cap H) \cap \bigcup_{\alpha \le \theta} l_{\alpha} \right] \cup \left[(G_{\theta} \cap H) \cap \bigcup_{\theta < \alpha < \omega_{1}} l_{\alpha} \right] = D.$$

Therefore $l \in \lambda$.

Let $D \subseteq \mathbb{R}^2$ be a countable set such that $D \cap l = \emptyset$. Then there exists $\theta \in \omega_1^{Ev}$ such that $D = C_{\theta}$. We have $C_{\theta} \setminus \bigcup_{\alpha < \theta} G_{\alpha} = \emptyset$: if not we would have $l_{\theta} \cap C_{\theta} \neq \emptyset$, a contradiction. This means that $D = C_{\theta} \subseteq \bigcup_{\alpha < \theta} G_{\alpha}$. Since $\bigcup_{\alpha \leq \theta} l_{\alpha} \in \lambda'$, there exists $H \in G_{\delta}$ such that $H \cap \left[\bigcup_{\alpha \leq \theta} l_{\alpha} \cup D\right] = D$. Define $H^* = G_{\theta} \cap H$, obviously $H^* \in G_{\delta}$. Next, we have

$$H^* \cap (l \cup D) = (G_{\theta} \cap H) \cap \left[\bigcup_{\alpha \le \theta} l_{\alpha} \cup \bigcup_{\alpha > \theta} l_{\alpha} \right] \cup D$$
$$= \left[H \cap \bigcup_{\alpha \le \theta} l_{\alpha} \right] \cup D = D.$$

This finally proves $l \in \lambda'$ and finishes the proof of Lemma 2.3.

PROOF OF THEOREM 2.1. Enumerate $Intr \times (Perf_{\mathcal{C}} \cap \mathcal{N})$ as $\{\langle I_{\alpha}; P_{\alpha} \rangle : \alpha \in \omega_1^{Od}\}$. We will construct inductively sequences $\langle G_{\theta} : \theta \in \omega_1 \rangle$ and $\langle l_{\theta} : \theta \in \omega_1 \rangle$ assuming the following induction hypothesis:

- 1. For each $\theta \in \omega_1$, $G_{\theta} \in G_{\delta} \cap \mathrm{Mkb} \cap \mathrm{Mkb}^{-1}$;
- 2. l_{θ} : dom $(l_{\theta}) \to \mathbb{R}$ is a one-to-one function such that dom $(l_{\theta}) \in \mathcal{N}$ and $l_{\theta} \subseteq G_{\theta}$.

Let $\theta \in \omega_1$. Consider two cases:

Case 1: $\theta \in \omega_1^{Od}$.

Define $A_{\theta}^* = \bigcup_{\alpha < \theta} G_{\alpha}$ and $H_{\theta}^* = \left[\bigcup_{\alpha < \theta} \operatorname{dom}(l_{\alpha})\right] \times \mathbb{R}$. One easily checks that $A_{\theta}^* \in \operatorname{Mkb} \cap \operatorname{Mkb}^{-1}$ and $H_{\theta}^* \in \operatorname{Mkb}^{-1}$. It follows that $A_{\theta}^* \cup H_{\theta}^* \in \operatorname{Mkb}^{-1}$, hence by Lemma 2.2 there exists $R_{\theta} \in \operatorname{Perf}(P_{\theta})$ and $Q_{\theta} \in \operatorname{Perf}, Q_{\theta} \subseteq I_{\theta}$ such that $(Q_{\theta} \times R_{\theta}) \cap (A_{\theta}^* \cup H_{\theta}^*) = \emptyset$. Without loss of generality, one can assume that $Q_{\theta} \in \mathcal{N}$. Since $R_{\theta} \in \operatorname{Perf}$, there is a λ' set $S_{\theta} \subseteq R_{\theta}$ of size 2^{ω} . Let l_{θ} be any bijection from Q_{θ} onto S_{θ} . Clearly $l_{\theta} \in \operatorname{Mkb} \cap \operatorname{Mkb}^{-1}$ (since $Q_{\theta} \in \mathcal{N}$ and $P_{\theta} \in \mathcal{N}$). Hence $A_{\theta}^* \cup l_{\theta} \in \operatorname{Mkb} \cap \operatorname{Mkb}^{-1}$; thus, there exists $G_{\theta} \in G_{\delta} \cap \operatorname{Mkb} \cap \operatorname{Mkb}^{-1}$ such that $A_{\theta}^* \cup l_{\theta} \subseteq G_{\theta}$. **Case 2:** $\theta \in \omega_1^{E_{v}}$.

If $C_{\theta} \subseteq \bigcup_{\alpha < \theta} G_{\alpha}$, then let $l_{\theta} = \emptyset$. If $C_{\theta} \setminus \bigcup_{\alpha < \theta} G_{\alpha} \neq \emptyset$, then pick an arbitrary $z_{\theta} \in C_{\theta} \setminus \bigcup_{\alpha < \theta} G_{\alpha}$ and define $l_{\theta} = \{z_{\theta}\}$. Next, choose an arbitrary G_{δ} set G from Mkb \cap Mkb⁻¹ which contains $\bigcup_{\alpha < \theta} G_{\alpha} \cup l_{\theta}$ and define $G_{\theta} = G$. Observe that

 $\forall_{\alpha,\beta\in\omega^{Od}}\alpha\neq\beta\Rightarrow\operatorname{dom}(l_{\alpha})\cap\operatorname{dom}(l_{\beta})=\emptyset.$

714

Indeed, suppose that $\alpha < \beta$. Since $(Q_{\beta} \times R_{\beta}) \cap (A_{\beta}^* \cup H_{\beta}^*) = \emptyset$, we have $Q_{\beta} \cap \bigcup_{\mu < \beta} \operatorname{dom}(l_{\mu}) = \emptyset$, thus $\operatorname{dom}(l_{\alpha}) \cap \operatorname{dom}(l_{\beta}) = \emptyset$. Let us define $k = \bigcup_{\theta \in \omega_1^{Od}} l_{\theta}$. It is easy to see that k is a real function a domain of which is a subset of \mathbb{R} . Since the sequences $\langle G_{\theta} : \theta \in \omega_1 \rangle$ and $\langle l_{\theta} : \theta \in \omega_1 \rangle$ fulfill the conditions (1)-(3) of Lemma 2.3, we conclude that $\bigcup_{\alpha \in \omega_1} l_{\alpha} \in \lambda'$, thus $k \in \lambda'$.

Suppose that $I \in Intr$, $P \in Perf_{\mathcal{C}}$. We will show that there exists a perfect set Q such that $Q \subseteq k^{-1}(P) \cap I$. Choose $\theta \in \omega_1^{Od}$ such that $I = I_{\theta}$ and $P = P_{\theta}$. Then we have

$$Q_{\theta} \subseteq l_{\theta}^{-1}(P_{\theta}) \subseteq k^{-1}(P_{\theta}).$$

Moreover, $Q_{\theta} \subseteq I_{\theta} = I$. Therefore if we extend k arbitrarily to $l \in \lambda'$ defined on whole real line we obtain the conclusion of Theorem 2.1.

3 Compositions

Theorem 3.1. Assume that there exists a set $X \in \lambda'$ of size 2^{ω} . Then every real function $h \in \mathbb{R}^{\mathbb{R}}$ can be expressed as the composition of two λ' functions.

PROOF. Let $\Lambda \subseteq \mathbb{R}$ be a λ' set of size 2^{ω} . Let $h \in \mathbb{R}^{\mathbb{R}}$ be arbitrary. Let $f : \mathbb{R} \to \Lambda$ be an arbitrary bijection. Let us define $g : \mathbb{R} \to \mathbb{R}$ as follows:

$$g(x) = \begin{cases} h(f^{-1}(x)) & \text{if } x \in \Lambda \\ f(x) & \text{if } x \notin \Lambda \end{cases}$$

Since $g \upharpoonright \Lambda \in \lambda'$ and $f \upharpoonright (\mathbb{R} \setminus \Lambda) \in \lambda'$ we infer that $g \in \lambda'$. It is evident that $g \circ f = h$.

We end this chapter by an example which is useful later in this article. We use it in Example 4.4, Theorem 4.5 and Theorem 5.1.

Example 3.2.

Assume CH. Let P be a perfect set and A its countable, dense subset. Let $S \subseteq [\omega]^{\omega}$ be a scale of size ω_1 . Let us denote: $D = [\omega]^{<\omega}$. It is well known (see for example Theorem 5.6 of [4]) that S is a λ -set and for each $H \in G_{\delta}$ such that $D \subseteq H$ we have $H \cap S \neq \emptyset$. We may assume that $D \subseteq C$, $\overline{D} = C$ and $S \subseteq C$. Let $f_D: A \to D$ be a function such that $|S \setminus S_1| = \omega_1$ and for each $H \in G_{\delta}$ such that $D \subseteq H$ we have $H \cap S_1 \neq \emptyset$. Set S_1 can be easy constructed by transfinite induction. Let R_1 be any subset of $P \setminus A$ of size ω_1 such that $f_D \subseteq H$ are numeration of all G_{δ} subsets H of \mathbb{R}^2 such that $f_D \subseteq H$. We will construct a sequence $\{\langle x_{\theta}, y_{\theta} \rangle\}_{\theta \in \omega_1}$ such that $x_{\theta} \in R_1$ and $y_{\theta} \in S_1$ by transfinite induction. Suppose that we have

already constructed $\{\langle x_{\alpha}, y_{\alpha} \rangle\}_{\alpha < \theta}$. It is folklore that if H is a G_{δ} set, then the set $\{y : H^{(y)} \cap P \in co - \mathcal{MGR}(P)\}$ is a G_{δ} set. Since $f_D \subseteq H_{\theta}$ and $\forall_{d \in D} \overline{f_D^{-1}}(\{d\}) = P$, the set $H_{\theta}^* = \{y \in \mathcal{C} : H_{\theta}^{(y)} \cap P \in co - \mathcal{MGR}(P)\}$ is a G_{δ} and comeager subset of \mathcal{C} . Moreover $D \subseteq H_{\theta}^*$ hence $H_{\theta}^* \cap S_1 \setminus \{y_{\alpha} : \alpha < \theta\} \neq \emptyset$. Let y_{θ} be an arbitrary element of $H_{\theta}^* \cap S_1 \setminus \{y_{\alpha} : \alpha < \theta\}$. Next, choose an arbitrary x_{θ} from the set $R_1 \setminus \{x_{\alpha} : \alpha < \theta\} \cap H_{\theta}^{(y_{\theta})}$. Extend $\{\langle x_{\theta}, y_{\theta} \rangle : \theta \in \omega_1\}$ to a one-to-one function $f^* : (\mathbb{R} \setminus A) \to S$ and then define: $f^{(P,A)} = f^* \cup f_D$.

Suppose that H is a G_{δ} set such that $f_D \subseteq H$. Then there exists $\theta \in \omega_1$ such that $H = H_{\theta}$. On the other hand, $\langle x_{\theta}, y_{\theta} \rangle \in H_{\theta}$. Thus $H_{\theta} \cap (f^{(P,A)} \setminus f_D) \neq \emptyset$. This witnesses $f^{(P,A)} \notin \lambda$. Furthermore, suppose that $\gamma \in \mathbb{R}, |\gamma| \geq 1$. Define

$$f_{\gamma}^{(P,A)}(x) = \begin{cases} f^{(P,A)}(x) & \text{if } x \in A\\ f^{(P,A)}(x) + \gamma & \text{if } x \notin A \end{cases}$$

If $\gamma \geq 1$, then $f_{\gamma}^{(P,A)} = (f^{(P,A)} \upharpoonright A) \cap [\mathbb{R} \times (-\infty; 1\rangle] \cup (f^{(P,A)} \upharpoonright (\mathbb{R} \setminus A) + \gamma) \cap [\mathbb{R} \times \langle 1; \infty \rangle]$. Since $f^{(P,A)} \upharpoonright A$ is countable, $f^{(P,A)} \upharpoonright A$ is a λ set. Moreover, $f^{(P,A)} \upharpoonright (\mathbb{R} \setminus A) : (\mathbb{R} \setminus A) \to S$ is one-to-one, hence $f^{(P,A)} \upharpoonright (\mathbb{R} \setminus A) + \gamma \in \lambda$. As $\mathbb{R} \times (-\infty; 1\rangle$ and $\mathbb{R} \times \langle 1; \infty \rangle$ are G_{δ} sets we obtain that $f_{\gamma}^{(P,A)} \in \lambda$. In a similar fashion we can prove that $f_{\gamma}^{(P,A)}$ is a λ set for $\gamma \leq -1$.

4 Additive Families

Let $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$ be a family of real functions. The following notion was first defined and examined by T. Natkaniec in [6].

Definiton 4.1 (T. Natkaniec).

$$\mathcal{M}_{a}(\mathcal{F}) = \{ f \in \mathbb{R}^{\mathbb{R}} : \forall_{h \in \mathcal{F}} f + h \in \mathcal{F} \}$$
$$\mathcal{M}_{m}(\mathcal{F}) = \{ f \in \mathbb{R}^{\mathbb{R}} : \forall_{h \in \mathcal{F}} f \cdot h \in \mathcal{F} \}$$

The goal of this section is to provide a detailed investigation of the families $\mathcal{M}_a(\lambda), \mathcal{M}_a(\lambda')$. We start with a straightforward observation:

Theorem 4.2. Every continuous function belongs to $\mathcal{M}_a(\lambda)$ and to $\mathcal{M}_a(\lambda')$.

PROOF. Suppose that f is a continuous real function. Define a function $\Phi_f \colon \mathbb{R}^2 \to \mathbb{R}^2$ as follows:

$$\Phi_f(x,y) = \langle x, y + f(x) \rangle.$$

The following lists some easy properties of the function defined above:

- 1. Φ_f is a bijection.
- 2. If f is a continuous function, then Φ_f is an automorphism of \mathbb{R}^2 .
- 3. For each $g \in \mathbb{R}^{\mathbb{R}}$, $\Phi_f[g] = f + g$.

From this the theorem follows.

Theorem 4.3. Suppose that a function $f \in \mathbb{R}^{\mathbb{R}}$ is such that there exist a sequence of functions $\{f_n\}_{n\in\omega}$ from $\mathcal{M}_a(\lambda')$ and a partition $\{X_n\}_{n\in\omega}$ of \mathbb{R} such that $f = \bigcup_{n\in\omega} f_n^* \upharpoonright X_n$. Then f belongs to $\mathcal{M}_a(\lambda')$.

PROOF. Suppose that $l \in \mathbb{R}^{\mathbb{R}}$ has the λ' property. Then for each $n \in \omega$ we have $f_n^* + l \in \lambda'$, therefore $f + l = \bigcup_{n \in \omega} (f_n^* + l) \upharpoonright X_n \in \lambda'$, since λ' is a σ -ideal.

The next example shows that our previous theorem is no longer valid for the functions with a λ graph.

Example 4.4. Assume CH. The function $2D \colon \mathbb{R} \to \mathbb{R}$ defined by

$$2D(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \\ 2 & \text{if } x \in \mathbb{Q} \end{cases}$$

does not belong to $\mathcal{M}_a(\lambda)$.

PROOF. We will use the function $f_{\gamma}^{\mathbb{R},\mathbb{Q})}$ from Example 3.2. We have

$$f_2^{(\mathbb{R},\mathbb{Q})}(x) + 2D(x) = f^{(\mathbb{R},\mathbb{Q})}(x) + 2 \text{ for } x \in \mathbb{Q}, \text{ and} \\ f_2^{(\mathbb{R},\mathbb{Q})}(x) + 2D(x) = f^{(\mathbb{R},\mathbb{Q})}(x) + 2 \text{ for } x \in \mathbb{R} \setminus \mathbb{Q}.$$

Therefore $(f_2^{\mathbb{R},\mathbb{Q})} + 2D) = f^{(\mathbb{R},\mathbb{Q})} + 2 \notin \lambda$. Since $f_2^{(\mathbb{R},\mathbb{Q})} \in \lambda$ we obtain that $2D \notin \mathcal{M}_a(\lambda)$.

This example can be generalized to the following theorem.

Theorem 4.5. Assume CH. Suppose that $A \subseteq \mathbb{R}$ is a countable set.

- 1. If $|\overline{A}| \leq \omega$, then $\chi_A \in \mathcal{M}_a(\lambda)$.
- 2. If \overline{A} is a perfect set, then $\chi_A \notin \mathcal{M}_a(\lambda)$.

PROOF. 1. Let $l \in \mathbb{R}^{\mathbb{R}}$ be a function such that $l \in \lambda$ and suppose that $D \subseteq \mathbb{R}$ is a countable set. Without loss of generality we may assume that $\overline{A} \subseteq D$. Since l is a λ set, there exists a G_{δ} set $G \subseteq \mathbb{R}^2$ such that $G \cap l = l \upharpoonright D$. Then we have

$$(\chi_A + l) \upharpoonright D = (\chi_A + l) \upharpoonright \overline{A} \cup (\chi_A + l) \upharpoonright (D \setminus \overline{A})$$
$$= (\chi_A + l) \upharpoonright \overline{A} \cup l \upharpoonright D \setminus \overline{A}$$
$$= [(\overline{A} \times \mathbb{R}) \cup [G \cap (\overline{A}^c \times \mathbb{R})]] \cap (\chi_A + l).$$

Since $(\overline{A} \times \mathbb{R})$ and $(\overline{A}^c \times \mathbb{R})$ are G_{δ} sets we conclude that $\chi_A + l$ is a λ -set.

2. Let us assume that $|A| \leq \omega$ and \overline{A} is a perfect set. We will use the function $f_{\gamma}^{(\overline{A},A)}$ from Example 3.2. We have

$$f_2^{(\overline{A},A)}(x) + 2\chi_A(x) = f^{(\overline{A},A)}(x) + 2 \text{ for } x \in A, \text{ and}$$
$$f_2^{(\overline{A},A)}(x) + 2\chi_A(x) = f^{(\overline{A},A)}(x) + 2 \text{ for } x \in \mathbb{R} \setminus A.$$

Therefore $(f_2^{(\overline{A},A)} + 2\chi_A) = f^{(\overline{A},A)} + 2 \notin \lambda$. Since $f_2^{(\overline{A},A)} \in \lambda$ we obtain that $2\chi_A \notin \mathcal{M}_a(\lambda)$, hence $\chi_A \notin \mathcal{M}_a(\lambda)$.

Theorem 4.6. Assume CH. Suppose that \mathcal{I} is a σ -ideal generated by G_{δ} sets containing all singletons. Let $f \in \mathbb{R}^{\mathbb{R}}$ be a function from $\mathcal{M}_{a}(\lambda')$. Then f has the following property:

$$\forall_{P \in Perf} \exists_{P \supseteq P_1 \in Perf} \exists_{E \in co -\mathcal{I}} f(P_1) + E \in \mathcal{MGR}.$$

PROOF. By way of contradiction, assume that there exists a perfect set P such that for every perfect $P_1 \subseteq P$ and for every $E \in \text{ co} - \mathcal{I}$ we have $f(P_1) + E \notin \mathcal{MGR}$. Let Q_P be any countable, dense subset of P. Let $\langle G_{\theta} \colon \theta \in \omega_1^{Od} \rangle$ be an enumeration of all G_{δ} sets containing $Q_P \times \mathbb{Q}$. Let $\langle C_{\theta} \colon \theta \in \omega_1^{Ev} \rangle$ be an enumeration of all countable subsets of \mathbb{R} . We will use the following result:

Fact 4.7 ([2], Exercise 19.3). If $R \subseteq 2^{\omega} \times \mathbb{R}$ is a comeager subset, then there exist a perfect set Q and a dense G_{δ} set $G \subseteq \mathbb{R}$ such that $Q \times G \subseteq \mathbb{R}$.

We will construct by induction on $\theta \in \omega_1$ a sequences $\{\langle x_{\theta}, y_{\theta} \rangle : \theta \in \omega_1\}$ and $\{H_{\theta} : \theta \in \omega_1\}$ such that H_{θ} are G_{δ} sets from \mathcal{I} . Assume that $\langle x_{\mu}, y_{\mu} \rangle$ and H_{μ} have been chosen for $\mu < \theta$. Let us consider two cases.

Case 1. $\theta \in \omega_1^{Ev}$ Choose $x_{\theta} \in P \setminus [\{x_{\mu} : \mu < \theta\} \cup Q_P]$. There are two possible cases. If $C_{\theta} \setminus \bigcup_{\mu < \theta} H_{\mu} \neq \emptyset$, then we pick any $y_{\theta} \in C_{\theta} \setminus \bigcup_{\mu < \theta} H_{\mu}$. In the other case choose an arbitrary $y_{\theta} \in \mathbb{R} \setminus \bigcup_{\mu < \theta} H_{\mu}$.

Case 2. $\theta \in \omega_1^{Od}$

Since $G_{\theta} \cap (P \times \mathbb{R})$ is a comeager set in $P \times \mathbb{R}$, by Fact 4.7 there exists a perfect set $Q_{\theta} \subseteq P$ and a comeager set K_{θ} such that $Q_{\theta} \times K_{\theta} \subseteq G_{\theta}$. Without loss of generality we may assume that $Q_{\theta} \cap [Q_P \cup \{x_{\mu} : \mu < \theta\}] = \emptyset$. By the assumption, $f(Q_{\theta}) + [\bigcup_{\mu < \theta} H_{\mu}]^c$ is not meager. Hence $(f(Q_{\theta}) + [\bigcup_{\mu < \theta} H_{\mu}]^c) \cap K_{\theta} \neq \emptyset$. Choose $x_{\theta} \in Q_{\theta}$ and $y_{\theta} \in \mathbb{R} \setminus \bigcup_{\mu < \theta} H_{\mu}$ such that $f(x_{\theta}) + y_{\theta} \in K_{\theta}$. In both those cases we define H_{θ} in the following way. Since $\bigcup_{\mu < \theta} H_{\mu} \cup \{y_{\theta}\} \in \mathcal{I}$, so we can choose a G_{δ} set $H_{\theta} \in \mathcal{I}$ such that $\bigcup_{\mu < \theta} H_{\mu} \cup \{y_{\theta}\} \subseteq H_{\theta}$. The construction is complete. Let Y be defined by $Y = \{y_{\theta} : \theta \in \omega_1\}$. It is easy to see that such defined set Y is a λ' -set. Thus the set l^* defined by $l^* = \{\langle x_{\theta}, y_{\theta} \rangle : \theta \in \omega_1\}$ is a λ' -set, too.

Next, let l be any λ' extension of the function l^* onto \mathbb{R} . We have

$$f + l = \{ \langle x, f(x) + l(x) \rangle \colon x \in \mathbb{R} \} \supseteq$$
$$\supseteq \{ \langle x_{\theta}, f(x_{\theta}) + y_{\theta} \rangle \colon \theta \in \omega_{1}^{Od} \}.$$

For each $\theta \in \omega_1^{Od}$ we have: $f(x_\theta) + y_\theta \in K_\theta$, thus $\langle x_\theta, f(x_\theta) + y_\theta \rangle \in Q_\theta \times K_\theta \subseteq G_\theta$. Therefore $[(f+l) \cap G_\theta] \setminus [Q_P \times Q] \neq \emptyset$. This proves that $f + l \notin \lambda'$, which is a contradiction. This ends the proof of Theorem 4.6.

Problem 4.8. Characterize the classes

$$\mathcal{M}_a(\lambda)$$
 and $\mathcal{M}_a(\lambda')$.

5 Minima and Maxima

It is obvious that for every two functions f_1, f_2 with a λ' graph we have $\min\{f_1, f_2\} \in \lambda'$. The next example shows that the analogous result does not hold for functions with a λ graph.

Theorem 5.1. Assume CH. There exist two functions $g_1, g_2 : \mathbb{R} \to \mathbb{R}$ such that $g_1, g_2 \in \lambda$, but $\min\{g_1, g_2\} \notin \lambda$.

PROOF. We will use the function $f_{\gamma}^{(\mathbb{R},\mathbb{Q})}$ from Example 3.2. Define $g_1 = f_{-2}^{(\mathbb{R},\mathbb{Q})} + 2$ and $g_2 = f_2^{(\mathbb{R},\mathbb{Q})}$. Note that

$$g_1(x) = \begin{cases} f^{(\mathbb{R},\mathbb{Q})}(x) + 2 & \text{if } x \in \mathbb{Q} \\ f^{(\mathbb{R},\mathbb{Q})}(x) & \text{if } x \notin \mathbb{Q} \end{cases}$$

and

$$g_2(x) = \begin{cases} f^{(\mathbb{R},\mathbb{Q})}(x) & \text{if } x \in \mathbb{Q} \\ f^{(\mathbb{R},\mathbb{Q})}(x) + 2 & \text{if } x \notin \mathbb{Q} \end{cases}$$

It is easy to see that $\min\{g_1, g_2\}(x) = f^{(\mathbb{R}, \mathbb{Q})}(x)$. Hence, $\min\{g_1, g_2\} \notin \lambda$. \Box

References

- J. B. Brown and G. V. Cox, Classical Theory of Totally Imperfect Spaces, Real Anal. Exchange, 7(1) (1981–1982), 185–232.
- [2] A. S. Kechris, *Classical Descriptive Set Theory*, Springer Verlag, Berlin, 1995.
- [3] K. R. Kellum, Sums and Limits of Almost Continuous Functions, Coll. Math., 31 (1974), 125–128.
- [4] Arnold W. Miller, Special Subsets of the Real Line, Handbook of Set Theoretic Topology (Amsterdam) (K. Kunen and J. E. Vaughan, eds.), North– Holland, Amsterdam, 1984, 201–235.
- [5] J. Mycielski, Algebraic Independence and Measure, Fund. Math., 61 (1967), 165–169.
- [6] T. Natkaniec, Almost Continuity, (habilitation thesis), Bydgoszcz WSP Press, Bydgoszcz, 1992.
- [7] T. Natkaniec, Some Cardinal Invariants in Real Analysis, Tatra Mt. Math. Publ., 14 (1998), 39–45.
- [8] W. Sierpiński, Sur la non-invariance topologique de la propriete λ', Fund. Math., 33 (1945), 264.