Andrzej Nowik, Institute of Mathematics, Polish Academy of Sciences, Abrahama 18, 81-825 Sopot, Poland. e-mail: nowik@impan.gda.pl Permanent address: University of Gdańsk, Institute of Mathematics, Wita Stwosza 57, 80-952 Gdańsk, Poland. e-mail: matan@julia.univ.gda.pl

ON SOME PROPERTIES OF THE CLASS OF REAL FUNCTIONS WITH λ AND λ^{\prime} GRAPHS

Abstract

We show that (under CH) there exists a CIVP function with a λ^{\prime} graph. We examine some properties of $\mathcal{M}_{a}(\lambda)$ and $\mathcal{M}_{a}\left(\lambda^{\prime}\right)$ class of real valued functions.

1 General Notation

First, let us recall a couple of definitions:

1. A set L is said to be a λ-set if every countable subset of L is G_{δ} relative to L.
2. A subset L of a space X is said to be a $\lambda^{\prime}($ rel $X)$ if for every countable subset D of $X, L \cup D$ has property λ.

We shall need also the following well-known fact, basic in our investigations.
Fact 1.1. If $A \subseteq \mathbb{R}$ has property $\lambda^{\prime}(\mathrm{rel} \mathbb{R})$ and is the one-to-one projection of the subset H of \mathbb{R}^{2} (i.e., H is the graph of an arbitrary real valued function with domain A), then H has property $\lambda^{\prime}\left(\mathrm{rel} \mathbb{R}^{2}\right)$. The corresponding assertion for the λ property instead λ^{\prime} holds.

[^0](See for example [1] or [8]). Note also that property λ^{\prime} is countably additive. On the other hand, property λ is not preserved even under taking finite unions.

For $A \subseteq \mathbb{R}^{2}$ we denote by A_{x} and $A^{(y)}$ the x-section and y-section of A, respectively (i.e., $A_{x}=\{y:\langle x, y\rangle \in A\}, A^{(y)}=\{x:\langle x, y\rangle \in A\}$). Throughout this paper no distinction is made between a function and its graph. Therefore, to shorten notation we write $f \in \lambda\left(\lambda^{\prime}\right.$, resp. $)$ in the case when f has a $\lambda\left(\lambda^{\prime}\right.$, resp.) graph or we say that f is a $\lambda\left(\lambda^{\prime}\right.$, resp.) function. Let \mathcal{C} denote as usual the ternary Cantor set.

We say that a function $f \in \mathbb{R}^{\mathbb{R}}$ has the CIVP property (Cantor Intermediate Value Property) if for all different $x, y \in \mathbb{R}$ such that $f(x) \neq f(y)$ and for every Cantor set P between $f(x)$ and $f(y)$, there exists a Cantor set Q between x and y such that $f(Q) \subseteq P$.

Let Mkb denote the Mokobodzki σ-ideal:

$$
\operatorname{Mkb}=\left\{X \subseteq \mathbb{R}^{2}: \forall_{\epsilon>0} \exists_{U \supseteq X}\left[U \text { open } \wedge \forall_{x} \mu\left(U_{x}\right)<\epsilon\right]\right\}
$$

Let us denote by Mkb^{-1} the "inverse" Mokobodzki σ-ideal, namely:

$$
\mathrm{Mkb}^{-1}=\{i(X): X \in \mathrm{Mkb}\}
$$

where $i(\langle x, y\rangle)=\langle y, x\rangle$. It is well known that the σ-ideals Mkb, Mkb ${ }^{-1}$ are generated by G_{δ} sets; i.e.,

$$
\forall_{X \in \mathcal{I}} \exists_{G \in G_{\delta} \cap \mathcal{I}} X \subseteq G .
$$

where $\mathcal{I}=\mathrm{Mkb}$ or $\mathcal{I}=\mathrm{Mkb}^{-1}$.
In the sequel, $\operatorname{Perf}_{\mathcal{C}}$ denotes the collection of all perfect subsets of \mathbb{R} homeomorphic to 2^{ω}. By Intr we denote the family of all open intervals $(a, b), a<b$. We define $\omega_{1}^{E v}\left(\omega_{1}^{O d}\right)$ to be the set of all even (odd, respectively) ordinals from ω_{1}.

2 Introduction

As it was observed by T. Natkaniec and I. Recław, under CH there exists a function $f \in \lambda^{\prime}$ such that f is almost continuous. Indeed, suppose that $S \subseteq \mathbb{R}$ is a c-dense λ^{\prime} subset of \mathbb{R} (for example, take any c-dense Sierpiński set). There exists a function $f_{1}: S \rightarrow \mathbb{R}$ such that for each $f^{*} \supseteq f_{1}, f^{*}$ is almost continuous. (see for example [6] or [3]). Let $\tilde{f}: \mathbb{R} \rightarrow S$ be any one-to-one function. Note that λ^{\prime} subsets of \mathbb{R}^{2} forms a σ-ideal, thus if we define $f=\tilde{f} \upharpoonright(\mathbb{R} \backslash S) \cup f_{1}$, then the function f will be almost continuous and $f \in \lambda^{\prime}$.

On the other hand, it is obvious that there is no λ function with the Ext property (for definition of Ext and almost continuous property see for example [7]).

Since $A C \nrightarrow C I V P$, it is a natural question whether (under $C H$) there exists a λ^{\prime} function with the CIVP property. In the sequel we shall answer this question in the affirmative. In fact, we will show something more.
Theorem 2.1. Assume $C H$. There exists a function $f \in \mathbb{R}^{\mathbb{R}}$ such that

1. f is a λ^{\prime} set.
2. for each interval (a, b) and for each $P \in$ Perf there is $Q \subseteq(a, b), Q \in$ Perf such that $Q \subseteq f^{-1}[P]$. (in particular, f has the CIVP property)

We shall use two (folklore?) lemmas some of which might be well known. We give the proofs for completeness.
Lemma 2.2. Suppose that $X \in \mathrm{Mkb}^{-1}$. For each $P \in \operatorname{Perf}_{\mathcal{C}}$ and for each interval $(a, b) \subseteq \mathbb{R}$ there exists $Q, R \in$ Perf such that $Q \subseteq(a, b), R \subseteq P$ and $(Q \times R) \cap X=\emptyset$.
Proof. Since $X \in \mathrm{Mkb}^{-1}$, there exists $G \in G_{\delta}$ such that $G \in \mathrm{Mkb}^{-1}$ and $X \subseteq G$. Then $\forall_{y \in P} G^{(y)} \in \mathcal{N}$, thus $G \cap((a, b) \times P)$ is of measure zero in the space $(a, b) \times P$. (homeomorphic to $\left.(a, b) \times 2^{\omega}\right)$. Next, by the classical Mycielski theorem (see [5]), the conclusion follows.

Throughout this proof, $\left\{C_{\alpha}\right\}_{\alpha \in \omega_{1}^{E v}}$ is a fixed enumeration of all countable subsets of \mathbb{R}^{2}.

Lemma 2.3. Assume $C H$. Let $\left\langle G_{\alpha}: \alpha \in \omega_{1}\right\rangle,\left\langle l_{\alpha}: \alpha \in \omega_{1}\right\rangle$ be a sequences of subsets of \mathbb{R}^{2} such that

1. $\forall_{\alpha \in \omega_{1}} G_{\alpha} \in G_{\delta}$ and $l_{\alpha} \in \lambda^{\prime}$,
2. $\bigcup_{\alpha<\theta} G_{\alpha} \cup l_{\theta} \subseteq G_{\theta}$ and $\bigcup_{\alpha<\theta} G_{\alpha} \cap l_{\theta}=\emptyset$ for each $\theta<\omega_{1}$.
3. For each $\theta \in \omega_{1}^{E v}, C_{\theta} \backslash \bigcup_{\alpha<\theta} G_{\alpha} \neq \emptyset \Rightarrow l_{\theta} \cap C_{\theta} \neq \emptyset$.

Then the set $l=\bigcup_{\alpha<\omega_{1}} l_{\alpha}$ is a λ^{\prime} set.
Proof. Let $D \subseteq l$ be a countable set. There exists $\theta \in \omega_{1}$ such that $D \subseteq$ $\bigcup_{\alpha \leq \theta} l_{\alpha}$. Since sets with a λ^{\prime} property forms a σ-ideal, we have $\bigcup_{\alpha \leq \theta} l_{\alpha} \in \lambda^{\prime}$. Hence there exists a G_{δ} set H such that $H \cap \bigcup_{\alpha \leq \theta} l_{\alpha}=D$. Thus

$$
\left(G_{\theta} \cap H\right) \cap l=\left[\left(G_{\theta} \cap H\right) \cap \bigcup_{\alpha \leq \theta} l_{\alpha}\right] \cup\left[\left(G_{\theta} \cap H\right) \cap \bigcup_{\theta<\alpha<\omega_{1}} l_{\alpha}\right]=D .
$$

Therefore $l \in \lambda$.
Let $D \subseteq \mathbb{R}^{2}$ be a countable set such that $D \cap l=\emptyset$. Then there exists $\theta \in \omega_{1}^{E v}$ such that $D=C_{\theta}$. We have $C_{\theta} \backslash \bigcup_{\alpha<\theta} G_{\alpha}=\emptyset$: if not we would have $l_{\theta} \cap C_{\theta} \neq \emptyset$, a contradiction. This means that $D=C_{\theta} \subseteq \bigcup_{\alpha<\theta} G_{\alpha}$. Since $\bigcup_{\alpha \leq \theta} l_{\alpha} \in \lambda^{\prime}$, there exists $H \in G_{\delta}$ such that $H \cap\left[\bigcup_{\alpha \leq \theta} l_{\alpha} \cup D\right]=D$. Define $H^{*}=G_{\theta} \cap H$, obviously $H^{*} \in G_{\delta}$. Next, we have

$$
\begin{aligned}
H^{*} \cap(l \cup D) & =\left(G_{\theta} \cap H\right) \cap\left[\bigcup_{\alpha \leq \theta} l_{\alpha} \cup \bigcup_{\alpha>\theta} l_{\alpha}\right] \cup D \\
& =\left[H \cap \bigcup_{\alpha \leq \theta} l_{\alpha}\right] \cup D=D .
\end{aligned}
$$

This finally proves $l \in \lambda^{\prime}$ and finishes the proof of Lemma 2.3.
Proof of Theorem 2.1. Enumerate $\operatorname{Intr} \times\left(\operatorname{Perf}_{\mathcal{C}} \cap \mathcal{N}\right)$ as $\left\{\left\langle I_{\alpha} ; P_{\alpha}\right\rangle: \alpha \in\right.$ $\left.\omega_{1}^{O d}\right\}$. We will construct inductively sequences $\left\langle G_{\theta}: \theta \in \omega_{1}\right\rangle$ and $\left\langle l_{\theta}: \theta \in \omega_{1}\right\rangle$ assuming the following induction hypothesis:

1. For each $\theta \in \omega_{1}, G_{\theta} \in G_{\delta} \cap \mathrm{Mkb} \cap \mathrm{Mkb}^{-1}$;
2. $l_{\theta}: \operatorname{dom}\left(l_{\theta}\right) \rightarrow \mathbb{R}$ is a one-to-one function such that $\operatorname{dom}\left(l_{\theta}\right) \in \mathcal{N}$ and $l_{\theta} \subseteq G_{\theta}$.

Let $\theta \in \omega_{1}$. Consider two cases:
Case 1: $\theta \in \omega_{1}^{O d}$.
Define $A_{\theta}^{*}=\bigcup_{\alpha<\theta} G_{\alpha}$ and $H_{\theta}^{*}=\left[\bigcup_{\alpha<\theta} \operatorname{dom}\left(l_{\alpha}\right)\right] \times \mathbb{R}$. One easily checks that $A_{\theta}^{*} \in \mathrm{Mkb} \cap \mathrm{Mkb}^{-1}$ and $H_{\theta}^{*} \in \mathrm{Mkb}^{-1}$. It follows that $A_{\theta}^{*} \cup H_{\theta}^{*} \in \mathrm{Mkb}^{-1}$, hence by Lemma 2.2 there exists $R_{\theta} \in \operatorname{Perf}\left(P_{\theta}\right)$ and $Q_{\theta} \in \operatorname{Perf}, Q_{\theta} \subseteq I_{\theta}$ such that $\left(Q_{\theta} \times R_{\theta}\right) \cap\left(A_{\theta}^{*} \cup H_{\theta}^{*}\right)=\emptyset$. Without loss of generality, one can assume that $Q_{\theta} \in \mathcal{N}$. Since $R_{\theta} \in \operatorname{Perf}$, there is a λ^{\prime} set $S_{\theta} \subseteq R_{\theta}$ of size 2^{ω}. Let l_{θ} be any bijection from Q_{θ} onto S_{θ}. Clearly $l_{\theta} \in \mathrm{Mkb}^{\circ} \cap \mathrm{Mkb}^{-1}$ (since $Q_{\theta} \in \mathcal{N}$ and $\left.P_{\theta} \in \mathcal{N}\right)$. Hence $A_{\theta}^{*} \cup l_{\theta} \in \mathrm{Mkb} \cap \mathrm{Mkb}^{-1}$; thus, there exists $G_{\theta} \in G_{\delta} \cap \mathrm{Mkb} \cap \mathrm{Mkb}^{-1}$ such that $A_{\theta}^{*} \cup l_{\theta} \subseteq G_{\theta}$.
Case 2: $\theta \in \omega_{1}^{E v}$.
If $C_{\theta} \subseteq \bigcup_{\alpha<\theta} G_{\alpha}$, then let $l_{\theta}=\emptyset$. If $C_{\theta} \backslash \bigcup_{\alpha<\theta} G_{\alpha} \neq \emptyset$, then pick an arbitrary $z_{\theta} \in C_{\theta} \backslash \bigcup_{\alpha<\theta} G_{\alpha}$ and define $l_{\theta}=\left\{z_{\theta}\right\}$. Next, choose an arbitrary G_{δ} set G from $\mathrm{Mkb} \cap \mathrm{Mkb}^{-1}$ which contains $\bigcup_{\alpha<\theta} G_{\alpha} \cup l_{\theta}$ and define $G_{\theta}=G$. Observe that

$$
\forall_{\alpha, \beta \in \omega_{1}^{\text {Od }}} \alpha \neq \beta \Rightarrow \operatorname{dom}\left(l_{\alpha}\right) \cap \operatorname{dom}\left(l_{\beta}\right)=\emptyset
$$

Indeed, suppose that $\alpha<\beta$. Since $\left(Q_{\beta} \times R_{\beta}\right) \cap\left(A_{\beta}^{*} \cup H_{\beta}^{*}\right)=\emptyset$, we have $Q_{\beta} \cap \bigcup_{\mu<\beta} \operatorname{dom}\left(l_{\mu}\right)=\emptyset$, thus $\operatorname{dom}\left(l_{\alpha}\right) \cap \operatorname{dom}\left(l_{\beta}\right)=\emptyset$. Let us define $k=$ $\bigcup_{\theta \in \omega_{1}^{O d}} l_{\theta}$. It is easy to see that k is a real function a domain of which is a subset of \mathbb{R}. Since the sequences $\left\langle G_{\theta}: \theta \in \omega_{1}\right\rangle$ and $\left\langle l_{\theta}: \theta \in \omega_{1}\right\rangle$ fulfill the conditions (1)-(3) of Lemma 2.3, we conclude that $\bigcup_{\alpha \in \omega_{1}} l_{\alpha} \in \lambda^{\prime}$, thus $k \in \lambda^{\prime}$.

Suppose that $I \in \operatorname{Intr}, P \in \operatorname{Perf}_{\mathcal{C}}$. We will show that there exists a perfect set Q such that $Q \subseteq k^{-1}(P) \cap I$. Choose $\theta \in \omega_{1}^{O d}$ such that $I=I_{\theta}$ and $P=P_{\theta}$. Then we have

$$
Q_{\theta} \subseteq l_{\theta}^{-1}\left(P_{\theta}\right) \subseteq k^{-1}\left(P_{\theta}\right)
$$

Moreover, $Q_{\theta} \subseteq I_{\theta}=I$. Therefore if we extend k arbitrarily to $l \in \lambda^{\prime}$ defined on whole real line we obtain the conclusion of Theorem 2.1.

3 Compositions

Theorem 3.1. Assume that there exists a set $X \in \lambda^{\prime}$ of size 2^{ω}. Then every real function $h \in \mathbb{R}^{\mathbb{R}}$ can be expressed as the composition of two λ^{\prime} functions.

Proof. Let $\Lambda \subseteq \mathbb{R}$ be a λ^{\prime} set of size 2^{ω}. Let $h \in \mathbb{R}^{\mathbb{R}}$ be arbitrary. Let $f: \mathbb{R} \rightarrow \Lambda$ be an arbitrary bijection. Let us define $g: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
g(x)=\left\{\begin{array}{cl}
h\left(f^{-1}(x)\right) & \text { if } x \in \Lambda \\
f(x) & \text { if } x \notin \Lambda
\end{array}\right.
$$

Since $g \upharpoonright \Lambda \in \lambda^{\prime}$ and $f \upharpoonright(\mathbb{R} \backslash \Lambda) \in \lambda^{\prime}$ we infer that $g \in \lambda^{\prime}$. It is evident that $g \circ f=h$.

We end this chapter by an example which is useful later in this article. We use it in Example 4.4, Theorem 4.5 and Theorem 5.1.

Example 3.2.

Assume $C H$. Let P be a perfect set and A its countable, dense subset. Let $S \subseteq[\omega]^{\omega}$ be a scale of size ω_{1}. Let us denote: $D=[\omega]^{<\omega}$. It is well known (see for example Theorem 5.6 of [4]) that S is a λ-set and for each $H \in G_{\delta}$ such that $D \subseteq H$ we have $H \cap S \neq \emptyset$. We may assume that $D \subseteq \mathcal{C}, \bar{D}=\mathcal{C}$ and $S \subseteq \mathcal{C}$. Let $f_{D}: A \rightarrow D$ be a function such that $\forall_{d \in D} \overline{f_{D}^{-1}(\{d\})}=P$. Let $S_{1} \subseteq S$ be any subset of S of size ω_{1} such that $\left|S \backslash S_{1}\right|=\omega_{1}$ and for each $H \in G_{\delta}$ such that $D \subseteq H$ we have $H \cap S_{1} \neq \emptyset$. Set S_{1} can be easy constructed by transfinite induction. Let R_{1} be any subset of $P \backslash A$ of size ω_{1} such that R_{1} is a comeager subset or P and $\left|P \backslash R_{1}\right|=\omega_{1}$. Let $\left\{H_{\theta}\right\}_{\theta \in \omega_{1}}$ be an enumeration of all G_{δ} subsets H of \mathbb{R}^{2} such that $f_{D} \subseteq H$. We will construct a sequence $\left\{\left\langle x_{\theta}, y_{\theta}\right\rangle\right\}_{\theta \in \omega_{1}}$ such that $x_{\theta} \in R_{1}$ and $y_{\theta} \in S_{1}$ by transfinite induction. Suppose that we have
already constructed $\left\{\left\langle x_{\alpha}, y_{\alpha}\right\rangle\right\}_{\alpha<\theta}$. It is folklore that if H is a G_{δ} set, then the set $\left\{y: H^{(y)} \cap P \in \operatorname{co}-\mathcal{M G \mathcal { R }}(P)\right\}$ is a G_{δ} set. Since $f_{D} \subseteq H_{\theta}$ and $\forall_{d \in D} \overline{f_{D}^{-1}(\{d\})}=P$, the set $H_{\theta}^{*}=\left\{y \in \mathcal{C}: H_{\theta}^{(y)} \cap P \in \operatorname{co}-\mathcal{M \mathcal { G }}(P)\right\}$ is a G_{δ} and comeager subset of \mathcal{C}. Moreover $D \subseteq H_{\theta}^{*}$ hence $H_{\theta}^{*} \cap S_{1} \backslash\left\{y_{\alpha}: \alpha<\theta\right\} \neq \emptyset$. Let y_{θ} be an arbitrary element of $H_{\theta}^{*} \cap S_{1} \backslash\left\{y_{\alpha}: \alpha<\theta\right\}$. Next, choose an arbitrary x_{θ} from the set $R_{1} \backslash\left\{x_{\alpha}: \alpha<\theta\right\} \cap H_{\theta}^{\left(y_{\theta}\right)}$. Extend $\left\{\left\langle x_{\theta}, y_{\theta}\right\rangle: \theta \in \omega_{1}\right\}$ to a one-to-one function $f^{*}:(\mathbb{R} \backslash A) \rightarrow S$ and then define: $f^{(P, A)}=f^{*} \cup f_{D}$.

Suppose that H is a G_{δ} set such that $f_{D} \subseteq H$. Then there exists $\theta \in \omega_{1}$ such that $H=H_{\theta}$. On the other hand, $\left\langle x_{\theta}, y_{\theta}\right\rangle \in H_{\theta}$. Thus $H_{\theta} \cap\left(f^{(P, A)} \backslash f_{D}\right) \neq$ \emptyset. This witnesses $f^{(P, A)} \notin \lambda$. Furthermore, suppose that $\gamma \in \mathbb{R},|\gamma| \geq 1$. Define

$$
f_{\gamma}^{(P, A)}(x)=\left\{\begin{array}{cl}
f^{(P, A)}(x) & \text { if } x \in A \\
f^{(P, A)}(x)+\gamma & \text { if } x \notin A
\end{array}\right.
$$

If $\gamma \geq 1$, then $f_{\gamma}^{(P, A)}=\left(f^{(P, A)} \upharpoonright A\right) \cap[\mathbb{R} \times(-\infty ; 1\rangle] \cup\left(f^{(P, A)} \upharpoonright(\mathbb{R} \backslash A)+\gamma\right) \cap$ $[\mathbb{R} \times\langle 1 ; \infty)]$. Since $f^{(P, A)} \upharpoonright A$ is countable, $f^{(P, A)} \upharpoonright A$ is a λ set. Moreover, $f^{(P, A)} \upharpoonright(\mathbb{R} \backslash A):(\mathbb{R} \backslash A) \rightarrow S$ is one-to-one, hence $f^{(P, A)} \upharpoonright(\mathbb{R} \backslash A)+\gamma \in \lambda$. As $\mathbb{R} \times(-\infty ; 1\rangle$ and $\mathbb{R} \times\langle 1 ; \infty)$ are G_{δ} sets we obtain that $f_{\gamma}^{(P, A)} \in \lambda$. In a similar fashion we can prove that $f_{\gamma}^{(P, A)}$ is a λ set for $\gamma \leq-1$.

4 Additive Families

Let $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$ be a family of real functions. The following notion was first defined and examined by T. Natkaniec in [6].

Definiton 4.1 (T. Natkaniec).

$$
\begin{aligned}
\mathcal{M}_{a}(\mathcal{F}) & =\left\{f \in \mathbb{R}^{\mathbb{R}}: \forall_{h \in \mathcal{F}} f+h \in \mathcal{F}\right\} \\
\mathcal{M}_{m}(\mathcal{F}) & =\left\{f \in \mathbb{R}^{\mathbb{R}}: \forall_{h \in \mathcal{F}} f \cdot h \in \mathcal{F}\right\}
\end{aligned}
$$

The goal of this section is to provide a detailed investigation of the families $\mathcal{M}_{a}(\lambda), \mathcal{M}_{a}\left(\lambda^{\prime}\right)$. We start with a straightforward observation:

Theorem 4.2. Every continuous function belongs to $\mathcal{M}_{a}(\lambda)$ and to $\mathcal{M}_{a}\left(\lambda^{\prime}\right)$.
Proof. Suppose that f is a continuous real function. Define a function $\Phi_{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as follows:

$$
\Phi_{f}(x, y)=\langle x, y+f(x)\rangle
$$

The following lists some easy properties of the function defined above:

1. Φ_{f} is a bijection.
2. If f is a continuous function, then Φ_{f} is an automorphism of R^{2}.
3. For each $g \in \mathbb{R}^{\mathbb{R}}, \Phi_{f}[g]=f+g$.

From this the theorem follows.
Theorem 4.3. Suppose that a function $f \in \mathbb{R}^{\mathbb{R}}$ is such that there exist a sequence of functions $\left\{f_{n}\right\}_{n \in \omega}$ from $\mathcal{M}_{a}\left(\lambda^{\prime}\right)$ and a partition $\left\{X_{n}\right\}_{n \in \omega}$ of \mathbb{R} such that $f=\bigcup_{n \in \omega} f_{n}^{*} \upharpoonright X_{n}$. Then f belongs to $\mathcal{M}_{a}\left(\lambda^{\prime}\right)$.

Proof. Suppose that $l \in \mathbb{R}^{\mathbb{R}}$ has the λ^{\prime} property. Then for each $n \in \omega$ we have $f_{n}^{*}+l \in \lambda^{\prime}$, therefore $f+l=\bigcup_{n \in \omega}\left(f_{n}^{*}+l\right) \upharpoonright X_{n} \in \lambda^{\prime}$, since λ^{\prime} is a σ-ideal.

The next example shows that our previous theorem is no longer valid for the functions with a λ graph.

Example 4.4. Assume $C H$. The function $2 D: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
2 D(x)=\left\{\begin{array}{lc}
0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \\
2 & \text { if } x \in \mathbb{Q}
\end{array}\right.
$$

does not belong to $\mathcal{M}_{a}(\lambda)$.
Proof. We will use the function $f_{\gamma}^{\mathbb{R}, \mathbb{Q})}$ from Example 3.2. We have

$$
\begin{aligned}
& f_{2}^{(\mathbb{R}, \mathbb{Q})}(x)+2 D(x)=f^{(\mathbb{R}, \mathbb{Q})}(x)+2 \text { for } x \in \mathbb{Q}, \text { and } \\
& f_{2}^{(\mathbb{R}, \mathbb{Q})}(x)+2 D(x)=f^{(\mathbb{R}, \mathbb{Q})}(x)+2 \text { for } x \in \mathbb{R} \backslash \mathbb{Q} .
\end{aligned}
$$

Therefore $\left(f_{2}^{\mathbb{R}, \mathbb{Q})}+2 D\right)=f^{(\mathbb{R}, \mathbb{Q})}+2 \notin \lambda$. Since $f_{2}^{(\mathbb{R}, \mathbb{Q})} \in \lambda$ we obtain that $2 D \notin \mathcal{M}_{a}(\lambda)$.

This example can be generalized to the following theorem.
Theorem 4.5. Assume CH. Suppose that $A \subseteq \mathbb{R}$ is a countable set.

1. If $|\bar{A}| \leq \omega$, then $\chi_{A} \in \mathcal{M}_{a}(\lambda)$.
2. If \bar{A} is a perfect set, then $\chi_{A} \notin \mathcal{M}_{a}(\lambda)$.

Proof. 1. Let $l \in \mathbb{R}^{\mathbb{R}}$ be a function such that $l \in \lambda$ and suppose that $D \subseteq \mathbb{R}$ is a countable set. Without loss of generality we may assume that $\bar{A} \subseteq D$. Since l is a λ set, there exists a G_{δ} set $G \subseteq \mathbb{R}^{2}$ such that $G \cap l=l \upharpoonright D$. Then we have

$$
\begin{aligned}
\left(\chi_{A}+l\right) \upharpoonright D & =\left(\chi_{A}+l\right) \upharpoonright \bar{A} \cup\left(\chi_{A}+l\right) \upharpoonright(D \backslash \bar{A}) \\
& =\left(\chi_{A}+l\right) \upharpoonright \bar{A} \cup l \upharpoonright D \backslash \bar{A} \\
& =\left[(\bar{A} \times \mathbb{R}) \cup\left[G \cap\left(\bar{A}^{c} \times \mathbb{R}\right)\right]\right] \cap\left(\chi_{A}+l\right)
\end{aligned}
$$

Since $(\bar{A} \times \mathbb{R})$ and $\left(\bar{A}^{c} \times \mathbb{R}\right)$ are G_{δ} sets we conclude that $\chi_{A}+l$ is a λ-set.
2. Let us assume that $|A| \leq \omega$ and \bar{A} is a perfect set. We will use the function $f_{\gamma}^{(\bar{A}, A)}$ from Example 3.2. We have

$$
\begin{aligned}
& f_{2}^{(\bar{A}, A)}(x)+2 \chi_{A}(x)=f^{(\bar{A}, A)}(x)+2 \text { for } x \in A, \text { and } \\
& f_{2}^{(\bar{A}, A)}(x)+2 \chi_{A}(x)=f^{(\bar{A}, A)}(x)+2 \text { for } x \in \mathbb{R} \backslash A .
\end{aligned}
$$

Therefore $\left(f_{2}^{(\bar{A}, A)}+2 \chi_{A}\right)=f^{(\bar{A}, A)}+2 \notin \lambda$. Since $f_{2}^{(\bar{A}, A)} \in \lambda$ we obtain that $2 \chi_{A} \notin \mathcal{M}_{a}(\lambda)$, hence $\chi_{A} \notin \mathcal{M}_{a}(\lambda)$.

Theorem 4.6. Assume $C H$. Suppose that \mathcal{I} is a σ-ideal generated by G_{δ} sets containing all singletons. Let $f \in \mathbb{R}^{\mathbb{R}}$ be a function from $\mathcal{M}_{a}\left(\lambda^{\prime}\right)$. Then f has the following property:

$$
\forall_{P \in \text { Perf }} \exists_{P \supseteq P_{1} \in \text { Perf }} \exists_{E \in c o-\mathcal{I}} f\left(P_{1}\right)+E \in \mathcal{M \mathcal { G } \mathcal { R }} .
$$

Proof. By way of contradiction, assume that there exists a perfect set P such that for every perfect $P_{1} \subseteq P$ and for every $E \in$ co $-\mathcal{I}$ we have $f\left(P_{1}\right)+E \notin \mathcal{M G \mathcal { R }}$. Let Q_{P} be any countable, dense subset of P. Let $\left\langle G_{\theta}: \theta \in \omega_{1}^{O d}\right\rangle$ be an enumeration of all G_{δ} sets containing $Q_{P} \times \mathbb{Q}$. Let $\left\langle C_{\theta}: \theta \in \omega_{1}^{E v}\right\rangle$ be an enumeration of all countable subsets of \mathbb{R}. We will use the following result:

Fact 4.7 ([2], Exercise 19.3). If $R \subseteq 2^{\omega} \times \mathbb{R}$ is a comeager subset, then there exist a perfect set Q and a dense G_{δ} set $G \subseteq \mathbb{R}$ such that $Q \times G \subseteq \mathbb{R}$.

We will construct by induction on $\theta \in \omega_{1}$ a sequences $\left\{\left\langle x_{\theta}, y_{\theta}\right\rangle: \theta \in \omega_{1}\right\}$ and $\left\{H_{\theta}: \theta \in \omega_{1}\right\}$ such that H_{θ} are G_{δ} sets from \mathcal{I}. Assume that $\left\langle x_{\mu}, y_{\mu}\right\rangle$ and H_{μ} have been chosen for $\mu<\theta$. Let us consider two cases.
Case 1. $\theta \in \omega_{1}^{E v}$
Choose $x_{\theta} \in P \backslash\left[\left\{x_{\mu}: \mu<\theta\right\} \cup Q_{P}\right]$. There are two possible cases. If $C_{\theta} \backslash \bigcup_{\mu<\theta} H_{\mu} \neq \emptyset$, then we pick any $y_{\theta} \in C_{\theta} \backslash \bigcup_{\mu<\theta} H_{\mu}$. In the other case choose an arbitrary $y_{\theta} \in \mathbb{R} \backslash \bigcup_{\mu<\theta} H_{\mu}$.

Case 2. $\theta \in \omega_{1}^{O d}$
Since $G_{\theta} \cap(P \times \mathbb{R})$ is a comeager set in $P \times \mathbb{R}$, by Fact 4.7 there exists a perfect set $Q_{\theta} \subseteq P$ and a comeager set K_{θ} such that $Q_{\theta} \times K_{\theta} \subseteq G_{\theta}$.
Without loss of generality we may assume that $Q_{\theta} \cap\left[Q_{P} \cup\left\{x_{\mu}: \mu<\theta\right\}\right]=\emptyset$.
By the assumption, $f\left(Q_{\theta}\right)+\left[\bigcup_{\mu<\theta} H_{\mu}\right]^{c}$ is not meager. Hence
$\left(f\left(Q_{\theta}\right)+\left[\bigcup_{\mu<\theta} H_{\mu}\right]^{c}\right) \cap K_{\theta} \neq \emptyset$. Choose $x_{\theta} \in Q_{\theta}$ and $y_{\theta} \in \mathbb{R} \backslash \bigcup_{\mu<\theta} H_{\mu}$ such that $f\left(x_{\theta}\right)+y_{\theta} \in K_{\theta}$.
In both those cases we define H_{θ} in the following way. Since
$\bigcup_{\mu<\theta} H_{\mu} \cup\left\{y_{\theta}\right\} \in \mathcal{I}$, so we can choose a G_{δ} set $H_{\theta} \in \mathcal{I}$ such that $\bigcup_{\mu<\theta} H_{\mu} \cup\left\{y_{\theta}\right\} \subseteq H_{\theta}$. The construction is complete.
Let Y be defined by $Y=\left\{y_{\theta}: \theta \in \omega_{1}\right\}$. It is easy to see that such defined set Y is a λ^{\prime}-set. Thus the set l^{*} defined by $l^{*}=\left\{\left\langle x_{\theta}, y_{\theta}\right\rangle: \theta \in \omega_{1}\right\}$ is a λ^{\prime}-set, too.
Next, let l be any λ^{\prime} extension of the function l^{*} onto \mathbb{R}. We have

$$
\begin{aligned}
f & +l=\{\langle x, f(x)+l(x)\rangle: x \in \mathbb{R}\} \supseteq \\
& \supseteq\left\{\left\langle x_{\theta}, f\left(x_{\theta}\right)+y_{\theta}\right\rangle: \theta \in \omega_{1}^{O d}\right\} .
\end{aligned}
$$

For each $\theta \in \omega_{1}^{O d}$ we have: $f\left(x_{\theta}\right)+y_{\theta} \in K_{\theta}$, thus
$\left\langle x_{\theta}, f\left(x_{\theta}\right)+y_{\theta}\right\rangle \in Q_{\theta} \times K_{\theta} \subseteq G_{\theta}$. Therefore $\left[(f+l) \cap G_{\theta}\right] \backslash\left[Q_{P} \times Q\right] \neq \emptyset$.
This proves that $f+l \notin \lambda^{\prime}$, which is a contradiction. This ends the proof of Theorem 4.6.

Problem 4.8. Characterize the classes

$$
\mathcal{M}_{a}(\lambda) \text { and } \mathcal{M}_{a}\left(\lambda^{\prime}\right)
$$

5 Minima and Maxima

It is obvious that for every two functions f_{1}, f_{2} with a λ^{\prime} graph we have $\min \left\{f_{1}, f_{2}\right\} \in \lambda^{\prime}$. The next example shows that the analogous result does not hold for functions with a λ graph.

Theorem 5.1. Assume $C H$. There exist two functions $g_{1}, g_{2}: \mathbb{R} \rightarrow \mathbb{R}$ such that $g_{1}, g_{2} \in \lambda$, but $\min \left\{g_{1}, g_{2}\right\} \notin \lambda$.

Proof. We will use the function $f_{\gamma}^{(\mathbb{R}, \mathbb{Q})}$ from Example 3.2. Define $g_{1}=$ $f_{-2}^{(\mathbb{R}, \mathbb{Q})}+2$ and $g_{2}=f_{2}^{(\mathbb{R}, \mathbb{Q})}$. Note that

$$
g_{1}(x)=\left\{\begin{array}{cc}
f^{(\mathbb{R}, \mathbb{Q})}(x)+2 & \text { if } x \in \mathbb{Q} \\
f^{(\mathbb{R}, \mathbb{Q})}(x) & \text { if } x \notin \mathbb{Q}
\end{array}\right.
$$

and

$$
g_{2}(x)=\left\{\begin{array}{cl}
f^{(\mathbb{R}, \mathbb{Q})}(x) & \text { if } x \in \mathbb{Q} \\
f^{(\mathbb{R}, \mathbb{Q})}(x)+2 & \text { if } x \notin \mathbb{Q}
\end{array}\right.
$$

It is easy to see that $\min \left\{g_{1}, g_{2}\right\}(x)=f^{(\mathbb{R}, \mathbb{Q})}(x)$. Hence, $\min \left\{g_{1}, g_{2}\right\} \notin \lambda$.

References

[1] J. B. Brown and G. V. Cox, Classical Theory of Totally Imperfect Spaces, Real Anal. Exchange, 7(1) (1981-1982), 185-232.
[2] A. S. Kechris, Classical Descriptive Set Theory, Springer Verlag, Berlin, 1995.
[3] K. R. Kellum, Sums and Limits of Almost Continuous Functions, Coll. Math., 31 (1974), 125-128.
[4] Arnold W. Miller, Special Subsets of the Real Line, Handbook of Set Theoretic Topology (Amsterdam) (K. Kunen and J. E. Vaughan, eds.), NorthHolland, Amsterdam, 1984, 201-235.
[5] J. Mycielski, Algebraic Independence and Measure, Fund. Math., 61 (1967), 165-169.
[6] T. Natkaniec, Almost Continuity, (habilitation thesis), Bydgoszcz WSP Press, Bydgoszcz, 1992.
[7] T. Natkaniec, Some Cardinal Invariants in Real Analysis, Tatra Mt. Math. Publ., 14 (1998), 39-45.
[8] W. Sierpiński, Sur la non-invariance topologique de la propriete λ^{\prime}, Fund. Math., 33 (1945), 264.

[^0]: Key Words: λ set, λ^{\prime} set, $\mathcal{M}_{a}(\cdot), \mathcal{M}_{m}(\cdot)$ families.
 Mathematical Reviews subject classification: Primary 03E15; Secondary 03E20, 28E15
 Received by the editors June 7, 2001

