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A CHARACTERIZATION OF COMPACT
PARTS OF Lp SPACES APPLICATION TO

SOBOLEV EMBEDDINGS

Abstract

To characterize compact parts of spaces Lp(Ω), we introduce a con-
cept of equi-integrability based on the approximation of elements of
Lp(Ω) by simple functions. The resulting theorem will be used to de-
velop a new methodology to prove and extend results about the com-
pactness of Sobolev embeddings.

Introduction

This paper is divided into two parts. In sections 1 to 4, we develop a char-
acterization of compact subsets of Lp(Ω). Results and proofs are simple but
appear to be unknown until now. More precisely, for a metric locally compact
space Ω, we define a notion of equi-integrability which allows us to state an
Ascoli theorem for Lp(Ω). This approach is a continuation of some work in
generalized Riemann theory of integration framework [4]. In the second part,
we develop a methodology to retrieve and improve standard results about
Sobolev embeddings and compact embeddings W 1p(Ω)→ Lq(Ω). In the clas-
sical approach (Cf [1, 2, 3, 7] for instance), the Sobolev-Gagliardo-Nirenberg
inequality is proved on RN and is extended to some extension domains (i.e.
with a bounded extension operator W 1p(Ω) → W 1p(RN )). This provides
the continuity of Sobolev embeddings. Obtaining the Rellich-Kondrachov
theorem requires the use of a theorem characterizing the compact parts of
Lp(Ω) using the approximations of functions f by the translated functions
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τh(f)(x) = f(x + h). To prove those results, we must extend functions from
W 1p(Ω) to W 1p(RN ): this is an “external” approach limited to extension do-
mains. Our approach is “internal”. Results on Sobolev spaces will arise from
our characterization of compact part of Lp(Ω) and from the Meyers-Serrin
theorem, which is available for every open set Ω. We always stay in Ω and, for
this reason, we will be able to extend Sobolev and Rellich-Kondrachov results
to more general domains than extension domains. Precisely, the compacity of
the embedding W 1p → Lp(Ω) is proved very easily in section 6 for bounded
convex open subsets of RN . We need some additional estimation to prove the
continuity of embedding W 1p → Lp

∗
(Ω) with compacity for W 1p → Lp

∗
(Ω),

1 6 q < p∗ (see section 8). Finally, we prove in section 10 that compact
embedding W 1p → Lp(Ω) can be achieved for a wide class of domains which
overshoot the Lipschitz condition, the cone condition (see [1]) or the domain
extention condition.

1 Definitions and Notations

In section 2 and 3 (Ω, d) denotes a relatively compact part of a metric locally
compact space Ω̃, M is a σ-algebra of Ω̃ including all borelian sets, and µ is
a measure over M satisfying the following conditions (Cf. [6]):

(i) µ(K) < +∞ for every compact subset K ⊂ Ω.

(ii) If E ∈M, then µ(E) = inf{µ(V ), E ⊂ V and V open }.

(iii) If E is open with a finite measure, then µ(E) = sup{µ(K),K ⊂ E and
K compact }.

(iv) If E ∈M, A ⊂ E and µ(E) = 0, then A ∈ M.

Briefly, µ is a Radon measure. We also assume that µ(Ω) > 0.
In section 5, (Ω, d) denotes a metric locally compact space and µ is a Radon

measure on Ω.
In particular, in sections 6, 7, 8, 9 and 10 Ω will be a bounded open subset

of RN and µ will be the usual Lebesgue measure on RN . We denote | | as the
euclidian norm of RN .

We write diam(E) for the diameter of E ⊂ Ω and Ec for the complement
of E in Ω.

For a normed vector space (X, ‖ ‖), we denote by BX(y, α) the closed ball
of center y and radius α.

For p ∈ [1,+∞[ and every measurable function f : Ω→ C, we set ‖f‖p =(∫
Ω
|f |p

)1/p. We denote Lp(Ω) as the set of functions satisfying ‖f‖p < ∞.
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As usual, Lp(Ω) is the quotient of Lp(Ω) modulo the negligibility relation and
‖ ‖p is the usual norm of Lp(Ω).

A subdivision of Ω is a partition S = (Ei)16i6q of Ω with measurable parts
satisfying µ(Ei) > 0 for all 1 6 i 6 n and we set τ(S) = Max16i6q diam(Ei).

A simple function f : Ω→ C is a (finite) linear combination of character-
istic functions of measurable sets. We say that a subdivision S = (Ei)16i6q
of Ω and a simple function f are adapted to each other if f is constant over
Ei, for all 1 6 i 6 q. We denote E(Ω) as the classes of simple functions mod-
ulo the negligibility relation. We say that a subdivision S = (Ei)16i6q of Ω
and F ∈ E(Ω) are adapted to each other if there is a simple function f ∈ F
adapted to S.

Let f : Ω→ C be an integrable function and a subdivision S = (Ei)16i6q
of Ω. We denote T (f, S) the simple function such that

∀i ∈ {1, . . . , q}, ∀t ∈ Ei, T (f, S)(t) =
1

µ(Ei)

∫
Ei

f.

For every F ∈ Lp(Ω), f ∈ F and S, a subdivision of Ω, we still denote by
T (F, S) the class of T (f, S).

2 A Theorem on Approximation by Simple Functions

In this section, 1 6 p < +∞ and Ω is bounded. Let us recall a usual approxi-
mation theorem (Cf. [6] for instance).

Theorem 2.1. Let f ∈ Lp(Ω). For every ε > 0, there exists g ∈ Cc(Ω) such
that ‖f − g‖p 6 ε.

Lemma 2.1. Let (f, g) ∈ Lp(Ω)2 and S be a subdivision of Ω, we have

‖T (f, S)− T (g, S)‖p 6 ‖f − g‖p.

Proof. Indeed, if S = (Ei)16i6q, we have∫
Ω

|T (g, S)− T (f, S)|p 6

q∑
i=1

µ(Ei)
[

1
µ(Ei)

∫
Ei

|g − f |
]p

6

q∑
i=1

µ(Ei)
1

µ(Ei)

∫
Ei

|g − f |p 6

∫
Ω

|g − f |p.
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We can state an approximation theorem of integrable functions by simple
functions.

Theorem 2.2. Let (fk)06k6n be a finite family of Lp(Ω). For every ε > 0,
there exists η > 0 such that for every subdivision S of Ω satisfying τ(S) < η
we have

∀k ∈ {0, . . . , n}, ‖fk − T (fk, S)‖p 6 ε.

Proof. We first extend the functions to Ω (by 0 for instance). For ε > 0 and
k ∈ {0, . . . , n}, there exists gk ∈ C(Ω) such that ‖fk − gk‖p 6

ε

3
.

There exists η > 0 such that

∀k ∈ {0, . . . , n}, ∀(u, v) ∈ Ω2, d(u, v) 6 η ⇒ |gk(u)− gk(v)| 6 ε

3µ(Ω)1/p
.

Let S = (Ei)16i6q be a subdivision of Ω such as τ(S) 6 η (note that Ω is
bounded). For every 0 6 k 6 n,∫

Ω

|gk − T (gk, S)|p =
q∑
i=1

∫
Ei

∣∣∣∣gk(u)− 1
µ(Ei)

∫
Ei

gk(v)dv
∣∣∣∣p du

6

q∑
i=1

∫
Ei

[
1

µ(Ei)

∫
Ei

|gk(u)− gk(v)|dv
]p
du

6
εp

3p
.

From Lemma 2.1, we also have ‖T (gk, S)− T (fk, S)‖p 6
ε

3
and we have,

‖fk − T (fk, S)‖p 6 ‖fk − gk‖p+‖gk − T (gk, S)‖p+‖T (gk, S)− T (fk, S)‖p 6 ε.

3 A Characterization of Compact Sets in Lp(Ω)

In this section, 1 6 p < +∞ and Ω is bounded.

Definition 3.1. Let Γ be a subset of Lp(Ω).We say that Γ is uniformly equi-
p-integrable if one of those equivalent properties is satisfied.

(a) For every ε > 0 there exists η > 0 such that for every subdivision S of
Ω satisfying τ(S) 6 η we have

∀F ∈ Γ, ‖F − T (F, S)‖p 6 ε.
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(b) For every ε > 0 there exists η > 0 such that for every subdivision S of
Ω satisfying τ(S) 6 η, and for every F ∈ Γ, we can find Fsε ∈ E(Ω)
adapted to S such that ‖F − Fsε‖p 6 ε.

Definition 3.2. Let Γ be a subset of Lp(Ω). The set Γ is equi-p-integrable if
and only if one of those equivalent properties is satisfied.

(a) For every ε > 0 there exists a subdivision S of Ω such that

∀F ∈ Γ, ‖F − T (F, S)‖p 6 ε.

(b) For every ε > 0 there exists a subdivision S of Ω such that for all F ∈ Γ
we can find Fsε ∈ E(Ω) adapted to S and such that ‖F − Fsε‖p 6 ε.

Theorem 3.1. In the above definitions the pairs of properties are equivalent

Proof. The equivalence of those two pairs of properties is easy to show. For
the equi-p-integrability, one implication is obvious (we choose Fsε = T (F, S)).

Conversely, we suppose that for every ε > 0 there exists a subdivision S of
Ω such that for all F ∈ Γ we can find Fsε ∈ E(Ω) adapted to S and such that
‖F − Fsε‖p < ε. From lemma 2.1,

‖F − T (F, S)‖p 6 ‖F − Fsε‖p + ‖T (Fsε, S)− T (F, S)‖p 6 2‖F − Fsε‖p 6 2ε

because Fsε = T (Fsε, S), and the result follows. The proof for the uniform
equi-p-integrability is similar.

Remark 3.1. Equi-p-integrability and uniform equi-p-integrability are differ-
ent notions.

For instance, if we define f : [0, 1]→ R by

f(x) =


−1 if 0 6 x 6

1
2
,

1 if
1
2
< x 6 1,

the set of functions Γ = {λf, λ ∈ R} ⊂ Lp(Ω) is obviously equi-p-integrable

- consider the subdivision (0,
1
2
, 1) , but Γ is not uniformly equi-p-integrable

by considering the subdivisions
(

k

2p+ 1

)
06k62p+1

, p ∈ N. Nevertheless, as

a consequence of theorem 3.1, those concepts are equivalent for a bounded
subset of Lp(Ω).
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Lemma 3.1. Let (Fn) be a sequence of E(Ω) adapted to a same subdivision
of Ω. If (‖Fn‖p) is bounded, we can extract a subsequence (Fϕ(n)) converging
in (E(Ω), ‖ ‖p).

Proof. Let S = (Ei)16i6q be a subdivision adapted to (Fn). The subspace of
simple functions adapted to S is of finite dimension and the result follows.

We are now able to state a theorem characterizing the compacts subsets
of Lp(Ω).

Theorem 3.2. Let Γ be a subset of Lp(Ω). The following assertions are
equivalent:

(i) Γ is relatively compact ;

(ii) Γ is bounded and uniformly equi-p-integrable ;

(iii) Γ is bounded and equi-p-integrable.

Proof. We consider three implications.

• (i)⇒ (ii):
A relatively compact subset Γ of Lp(Ω) is bounded. We have to show that

Γ is uniformly equi-p-integrable. For ε > 0, there exists G0, . . . , Gn in Lp(Ω)

such that Γ ⊂
n⋃
k=0

B
(
Gk,

ε

3

)
. From Theorem 2.2, there exists η > 0 such that

∀k ∈ {0, . . . , n}, ‖Gk − T (Gk, S)‖p 6
ε

3

for every subdivision S = (Ei)16i6q of Ω satisfying τ(S) 6 η. For F ∈ Γ,

there exists k ∈ {0, . . . , n} such that ‖F −Gk‖p 6
ε

3
. Now, from Lemma 2.1,

we have ‖T (Gk, S)− T (F, S)‖p 6 ‖Gk − F‖p and we deduce

‖F − T (F, S)‖p 6 ‖F −Gk‖p+‖Gk − T (Gk, S)‖p+‖T (Gk, S)− T (F, S)‖p 6 ε.

• (ii)⇒ (iii):
For ε > 0, we choose η > 0 from the equi-p-integrability hypothesis. From

the compacity of Ω, there exists a subdivision S of Ω such that τ(S) 6 η, and
the result is proved.

• (iii)⇒ (i):
Let Γ be an equi-p-integrable bounded part of Lp(Ω) andM = SupF∈Γ ‖F‖p.

Let (Fn) be a sequence of Γ. For every q ∈ N, there exists a subdivision Sq
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such that for every n ∈ N we have ‖Fn − F qn‖p 6 2−q. Just as in Ascoli’s
theorem, the end of the proof is an application of the Cantor diagonal process.
From lemma 3.1 there exists a strictly increasing application ϕ0 : N→ N such
that

∀(n,m) ∈ N2,
∥∥∥F 0

ϕ0(n) − F
0
ϕ0(m)

∥∥∥
p

6 1.

Then, for every integer q, we build a strictly increasing application ϕq : N→ N
such that

∀(n,m) ∈ N2,
∥∥∥F qϕq(n) − F

q
ϕq(m)

∥∥∥
p

6 2−q,

where indices (ϕq(n))n∈N are selected from the previously selected indices
(ϕq−1(n))n∈N. Let ϕ : N→ N be the strictly increasing application defined by
ϕ(r) = ϕr(r). For r < s, we have∥∥Fϕ(r) − Fϕ(s)

∥∥
p

6

∥∥∥Fϕ(r) − F rϕ(r)

∥∥∥
p

+
∥∥∥F rϕ(r) − F

r
ϕ(s)

∥∥∥
p

+
∥∥∥F rϕ(s) − Fϕ(s)

∥∥∥
p

63 · 2−r.

The sequence (Fϕ(r))r∈N satisfies the Cauchy property and the compacity of
Γ follows from the completeness of Lp(Ω).

We emphasize the simplicity of the above equivalences. Statement and
proof are analogous to Ascoli’s theorem, with the definition “à la Riemann”
for the equi-p-integrability of classes of functions.

In the following, the property of equi-p-integrability will be used to estab-
lish the compacity of some parts of Lp(Ω). In fact, the characterization using
T (f, S) gives a precise direction to follow in order to verify the compacity of
a given subset of Lp(Ω).

4 The Case p = +∞

In this part,unless otherwise stated, Ω is a metric locally compact space. We
are going to study how to modify the previous results in the special case
p = +∞. In this context, we extend the definition of subdivision and simple
functions to metric locally compact spaces.

Theorem 4.1. Let (fk)06k6n be a finite family of L∞(Ω). For every ε > 0,
there exists a subdivision S of Ω and simple functions (gk)06k6n adapted to
S such that ‖fk − gk‖∞ 6 ε. If µ(Ω) is finite, for every ε > 0, there exists a
subdivision S of Ω such that ‖fk − T (fk, S)‖∞ 6 ε for all 0 6 k 6 n.
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Proof. Let f ∈ L∞(Ω). For ε > 0, we denote by r the entire part of 2‖f‖∞/ε.
We have f = <(f) + i=(f), and for every (k, l) ∈ {−r − 1, . . . , r}2, we set

Ekl =
{
x ∈ Ω /

kε

2
6 <(f)(x) <

(k + 1)ε
2

and
lε

2
6 =(f)(x) <

(l + 1)ε
2

}
.

Let ∆ be the subset of indexes such that µ(Ekl) > 0. We choose (k0, l0) ∈ ∆
and we add to Ek0l0 the elements of the negligible set Ω − ∪(k,l)∈∆Ekl. The
resulting family S = (Ekl)(k,l)∈∆ is a subdivision of Ω and the function g =∑
(k,l)∈∆

(
kε

2
+ i

lε

2

)
χEkl

satisfies to ‖f − g‖∞ 6 ε. Now, for a finite family

(fk)06k6n, we can build such subdivisions (Sk)06k6n. The subdivision S
obtained by taking the intersection of all elements of those subdivisions answer
to the question. If µ(Ω) < +∞, for the previous subdivision S, T (f, S) is
defined for every f ∈ L∞(Ω) and clearly verifies ‖fk − T (fk, S)‖∞ 6 ε.

Definition 4.1. Let Γ be a subset of L∞(Ω). We say that Γ is equi-∞-
integrable if for every ε > 0 there exists a subdivision S of Ω such that for
all F ∈ Γ we can find a simple function Fsε adapted to S and such that
‖F − Fsε‖∞ 6 ε.

Theorem 4.2. When µ(Ω) is finite, Γ is equi-∞-integrable if and only if
for every ε > 0 there exists a subdivision S of Ω such that for all F ∈ Γ,
‖F − T (F, S)‖∞ 6 ε.

Proof. We suppose µ(Ω) < +∞. If Γ is equi-∞-integrable, let S = (Ei)06i6n
be a subdivision of Ω such that for every F ∈ Γ there exists a simple function
Fsε =

∑
06i6n

αi(F )χEi satisfying ‖F − Fsε‖∞ 6 ε/2. For i ∈ {0, . . . , n} and for

almost all x ∈ Ei, we have |F (x)− αi(F )| 6 ε
2 . Thus |T (F, S)(x)− αi(F )| 6 ε

2
and ‖F − T (F, S)‖∞ 6 ε. The converse implication is straightforward.

Theorem 4.3. Let Γ be a subset of L∞(Ω). The following assertions are
equivalent:

(i) Γ is relatively compact ;

(ii) Γ is bounded and equi-∞-integrable.

Proof. (i)⇒ (ii):
We have to show that Γ is uniformly equi-∞-integrable. For ε > 0, there

exist G1, . . . , Gn in Lp(Ω) such that Γ ⊂
n⋃
k=0

B
(
Gk,

ε

2

)
. From the Theorem
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4.1, there exists a subdivision S of Ω and simple functions H0, . . . ,Hn adapted
to S such that

∀k ∈ {0, . . . , n}, ‖Gk −Hk‖∞ 6
ε

2
.

For F ∈ Γ, there exists k ∈ {0, . . . , n} such that ‖F −Gk‖∞ 6
ε

2
and we find

‖F −Hk‖∞ 6 ‖F −Gk‖p + ‖Gk −Hk‖p 6 ε.

(ii)⇒ (i):
Let Γ be an equi-∞-integrable bounded part of L∞(Ω) and define M =

SupF∈Γ ‖F‖∞. Let (Fn) be a sequence of Γ. For every q ∈ N, there exists
a subdivision Sq such that, for every n ∈ N, ‖Fn − F qn‖∞ 6 2−q. Now, just
like for lemma 3.1, for every bounded sequence in L∞(Ω) of simple functions
adapted to a fixed subdivision of Ω, we can extract a subsequence converging
in L∞(Ω). The end of the proof is similar to the one of Theorem 3.1.

To conclude this section, let us recall the usual characterization of the
compact parts of Lp(Ω) ([1] p. 31 or [2] p. 72). Let Ω be an open subset of
RN and 1 6 p < +∞. For every f ∈ Lp(Ω), we define an extension f̃ of f

f̃(x) =

{
f(x) if x ∈ Ω
0 if x ∈ RN − Ω.

Theorem 4.4. (Fréchet-Kolmogorov Theorem) A bounded part Γ of Lp(Ω) is
relatively compact if and only if we can find, for every ε > 0, a real δ > 0 and
a compact part ω of Ω such that ∀f ∈ Γ,

∀h ∈ RN with |h| < δ,

∫
ω

∣∣∣f̃(u+ h)− f̃(u)
∣∣∣p du 6 εp,

and ∫
Ω−ω
|f(u)|p du 6 εp.

Remark 4.1. This theorem provides a direct characterization of bounded equi-
p-integrable parts of Lp(Ω), when Ω is an open subset of RN .

Remark 4.2. The Fréchet-Kolmogorov theorem uses the additive structure of
RN which is not required in our approach.
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5 The Embedding W 1p(Ω) → Lp(Ω) is Compact for every
Convex Bounded Subset of RN

Let Ω be an open subset of RN and µ the Lebesgue measure on RN . For every
p ∈ [1,+∞], let W 1p(Ω) be the usual Sobolev Spaces normed by

∀f ∈W 1p(Ω), ‖f‖W 1p = ‖f‖p + ‖|∇f |‖p
with

∇f = (∂1f, . . . , ∂Nf) and |∇f | =

(
N∑
i=1

|∂if |2
)1/2

.

We recall a well-known density theorem (Cf. [1] or [7]).

Theorem 5.1. (Meyers-Serrin Theorem). For every open subset Ω of RN
and every 1 6 p < +∞, C∞(Ω) ∩W 1p(Ω) is a dense subset of W 1p(Ω).

Lemma 5.1. (Poincaré-Wirtinger Theorem). Let E be a bounded convex
part of RN and 1 6 p < +∞. Then, there exists λN ∈ R∗+, such that for all
f ∈W 1p(E),∫

v∈E

∣∣∣∣f(v)− 1
µ(E)

∫
u∈E

f(u) du
∣∣∣∣p dv 6 λNdiam(E)p

∫
u∈E
|∇f(u)|p du

with λ1 = 2 ln(2) and λN =
2N − 2
N − 1

for N > 2.

Proof. Using Meyers-Serrin’s theorem, we have only to prove the result for
f ∈ C∞(Ω) ∩W 1p(Ω). Let D = µ(E)p−1 diam(E)p

∫
v∈E

∣∣∣∣∫
u∈E

(f(v)− f(u)) du
∣∣∣∣p dv 6 µ(E)p−1

∫
v∈E

∫
u∈E
|f(u)− f(v)|p du dv

6 µ(E)p−1

∫
v∈E

∫
u∈E

∫
t∈[0,1]

|∇f(u+ t(v − u))|p|v − u|p dt du dv

6 D

∫
v∈E

∫
u∈E

∫
t∈[1/2,1]

(|∇f(u+ t(v − u))|p + |∇f(v + t(u− v))|p) dt du dv

6 2D
∫
u∈E

∫
t∈[ 12 ,1]

t−N
∫
h∈u+t(−u+E)

|∇f(h)|p dtdh du

6 2D
∫
u∈E

∫
t∈[ 12 ,1]

t−N
∫
h∈E
|∇f(h)|p dtdh du

6 λND

∫
h∈E
|∇f(h)|pdh.
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Theorem 5.2. (Rellich-Kondrachov Theorem) Let Ω be a bounded convex
open subset of RN . For every p ∈ [1,+∞], the canonical embedding of W 1p(Ω)
into Lp(Ω) is compact.

Proof. • First Case: 1 6 p < +∞.
We will show that the unit ball BW 1p(0, 1) of W 1p(Ω) is a relatively com-

pact subset of Lp(Ω). This is a bounded subset and we have to prove that
BW 1p(0, 1) is an equi-p-Integrable subset of Lp(Ω).

Let S = (Ei)16i6q a subdivision of Ω composed of convex parts (the in-
tersection of Ω with a regular lattice, for instance). We deduce from lemma
5.1 ∫

Ω

|f − T (f, S)|p =
n∑
i=1

∫
Ei

∣∣∣∣f(v)− 1
µ(Ei)

∫
Ei

f(u) du
∣∣∣∣p dv

6

n∑
i=1

1
µ(Ei)p

∫
Ei

[∫
Ei

|f(v)− f(u)| du
]p
dv

6λN

n∑
i=1

diam(Ei)p
∫
u∈Ei

|∇f(u)|p du

6λNτ(S)p
n∑
i=1

∫
u∈Ei

|∇f(u)|p du

6λNτ(S)p
∫
u∈Ω

|∇f(u)|p du

6λNτ(S)p.

At last, for every η > 0, there exists such a subdivision S of Ω satisfying
τ(S) < η. We apply the previous inequality to conclude with theorem 3.2.
• Second Case: p = +∞.
Let f ∈W 1∞(Ω). For every p ∈ [1,+∞[, f ∈W 1p(Ω) and

lim
p→+∞

‖f‖p = ‖f‖∞ and lim
p→+∞

‖f‖W 1p = ‖f‖W 1∞ .

From the first case, we know that for every subdivision S of Ω composed
of convex parts, we have

‖f − T (f, S)‖p 6 λ
1/p
N τ(S)‖f‖W 1p

and we deduce

∀f ∈W 1∞(Ω), ‖f − T (f, S)‖∞ 6 τ(S)‖f‖W 1∞ .
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The unit ball BW 1∞(0, 1) of W 1∞(Ω) is a bounded and equi-∞-Integrable by
theorem 4.2: it is a compact subset of L∞(Ω).

Extension of theorem 5.2. The aim of this section and those following is to
show how to deal with equi-Integrability and theorems 3.1, and 4.2. The
Rellich-Kondrachov theorem presented above can be extended classically in
two directions: compact embeddings between Wmp(Ω) spaces and compact
embedding W 1p(Ω)→ Lq(Ω) for q ∈ [1, p∗[, where p∗ is the Sobolev conjugate
exponent of p. The first extension can be done, as is usual, by the iteration of
W 1p(Ω)→ Lq(Ω) compact embeddings. The second one is more difficult.

Usually, we must prove the Sobolev-Gagliardo-Nirenberg inequality with
Ω = RN , and this result is extended to every extension domain. To conclude,
we can prove that convex bounded open subsets of RN are extension domains,
but this “external” proof is not very satisfying in our “internal” approach.
In fact, we shall prove a Sobolev-Gagliardo-Nirenberg inequality for convex
bounded open subsets Ω of RN . First, we give two results allowing one to
extend compact embedding results.

6 Compact Embedding Theorems for Other Domains

From a “puzzle” point of view, the following theorem will be useful later.

Theorem 6.1. Let Ω be an open subset of RN such that there exists a family

(Ωi)06i6m of subsets of Ω satisfying Ω =
m⋃
i=0

Ωi and, for all 0 6 i 6 m,

µ(∂Ωi) = 0.

We assume that the embeddings W 1p(
◦
Ωi)→ Lq(

◦
Ωi) are compact for some

(p, q) ∈ [1,+∞]2. Then the embedding W 1p(Ω)→ Lq(Ω) is compact.

Proof. Let (fn) be a sequence of BW 1p(Ω)(0, 1). From the hypothesis, we
can extract a sequence (gn) such that, for every 0 6 i 6 m, the restriction of

gn to
◦
Ωi converges to a limit Gi in Lq(

◦
Ωi). If

◦
Ωi ∩

◦
Ωj /= ∅, the restriction of

Gi and Gj define the same class of functions.

Thus, we can define a unique class G over
m⋃
i=0

◦
Ωi, which can be extended

to Ω because µ

(
Ω−

m⋃
i=1

◦
Ωi

)
6

m∑
i=0

µ(∂Ωi) = 0. It is easy to verify the con-

vergence of (gn) toward G in Lq(Ω).
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We shall also need a result concerning a change of variable on Sobolev
functions.

A one-to-one mapping T : Ω → Ω′ is bi-Lipschitzian if T and T−1 are
Lipschitzian maps. As an application of Rademacher’s theorem, we find in [7]
p. 52 the following result.

Lemma 6.1. Let T : RN → RN be a bi-Lipschitzian mapping. If f ∈W 1p(Ω),
p ∈ [1,+∞], then g = f ◦ T ∈ W 1p(T−1(Ω)), and ∇f(T (x)).dTx = ∇g(x) for
a.e. x ∈ Ω, where dTx is the differential of T at point x.

We deduce easily the following theorem.

Theorem 6.2. Let (p, q) ∈ [1,+∞]2, T : RN → RN be a bi-Lipschitzian map-
ping, Ω1 an open subset of RN and Ω2 = T (Ω1). If the canonical embedding
W 1p(Ω1) → Lq(Ω1) is compact, then the embedding W 1p(Ω2) → Lq(Ω2) is
compact.

Proof. The applications Φq : Lq(Ω1) → Lq(Ω2) and Ψp : W 1p(Ω2) →
W 1p(Ω1) defined by Φp(f) = f ◦ T−1 and Ψp(g) = g ◦ T are linear and
continuous. The result follows by chain rule since W 1p(Ω1)→ Lq(Ω1) is com-
pact.

7 A Sobolev-Gagliardo-Nirenberg Inequality

Let us recall a well-known result (See [2] for instance).

Lemma 7.1. Let N > 2 and f1, . . . , fN ∈ LN−1(RN−1). For x ∈ RN we set

x̃k = (x1, . . . , xk−1, xk+1, . . . , xN ) ∈ RN−1.

Then, the function f(x) = f1(x̃1) . . . f(x̃N ) is in L1(RN ) and

‖f‖L1(RN ) 6

N∏
k=1

‖fk‖LN−1(RN−1).

Lemma 7.2. Let Ω be a convex bounded open subset of RN . For every f ∈
W 1,1(Ω) we have

‖f − T (f,Ω)‖
L

N
N−1 (Ω)

6 N
diam(Ω)N

µ(Ω)

∫
Ω

|∇f |

where T (f,Ω) is the average of f over Ω.
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Proof. The proof is a simple adaptation of the corresponding estimation in
the usual Sobolev-Gagliardo-Nirenberg inequality.

We have to prove the result for f ∈ C∞(Ω). We first remark that we can
find a box E = I1 × . . . × IN , Ω ⊂ E, where every Ik are non empty open
intervals of R with l(I1) = diam(Ω) and l(Ik) 6 diam(Ω) for 2 6 k 6 N (we
denote by l(I) the length of I). We extend f and ∇f by null functions over
E − Ω and we set Ĩk = I1 × . . . Ik−1 × Ik+1 × . . .× IN .

Thanks to the convexity, for (u, v) ∈ Ω2 we have

|f(v1, . . . , vN )− f(u1, . . . , uN )|

6

N∑
k=1

∫
Ik

|∇f(u1, . . . , uk−1, tk, vk+1, . . . , vN )| dtk

and we deduce for v ∈ E,

|f(v)− T (f,Ω)|

6
1

µ(Ω)

N∑
k=1

N∏
i=k

l(Ii)
∫
I1×...×Ik

|∇f(t1, . . . , tk, vk+1, . . . , vN )| dt1 . . . dtk

= f1(ṽ1).

By a permutation of indexes, we also have |f(v)− T (f,Ω)| 6 fk(ṽk) for every
1 6 k 6 N .

A simple computation gives

‖fk‖L1(Ĩk) 6 N
diam(Ω)N

µ(Ω)

∫
Ω

|∇f |.

Now, since |f(v)− T (f,Ω)|N 6

N∏
k=1

fk(ṽk), we deduce from Lemma 7.1 the

inequality

‖f − T (f,Ω)‖
L

N
N−1 (Ω)

6

N∏
k=1

‖fk‖1/NL1(Ĩk)
6 N

diam(Ω)N

µ(Ω)

∫
Ω

|∇f |.
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We recall that the Sobolev conjugate of p ∈ [1, N [ is defined by
1
p∗

=
1
p
− 1
N

.

Theorem 7.1. Let N > 2 and Ω be a convex bounded open subset of RN . For
every p ∈ [1, N [ we have W 1p(Ω) ⊂ Lp

∗
(Ω) with continuous embedding and

∀f ∈W 1p(Ω),

‖f − T (f,Ω)‖p∗ 6

(
(N − 1)p∗

diam(Ω)N

µ(Ω)
+ λ

1/p
N

diam(Ω)
µ(Ω)1/N

)
‖|∇f |‖p.

Proof. It is enough to prove this inequality for f ∈ C1(Ω) that satisfy
T (f,Ω) = 0. For t > 1,

‖f‖t tN
N−1

=
∥∥∥f |f |t−1

∥∥∥
N

N−1

6

∥∥∥f |f |t−1 − T (f |f |t−1
,Ω)
∥∥∥

N
N−1

+
∥∥∥T (f |f |t−1

,Ω)
∥∥∥

N
N−1

6 tN
diam(Ω)N

µ(Ω)

∥∥∥|f |t−1|∇f |
∥∥∥

1
+

1
µ(Ω)1/N

‖f‖tt.

We have ∥∥∥|f |t−1|∇f |
∥∥∥

1
6 ‖f‖t−1

p′(t−1)‖|∇f |‖p

and, thanks to the Poincaré-Wirtinger inequality,

‖f‖tt 6 ‖f‖p‖f‖
t−1
p′(t−1) 6 λ

1/p
N diam(Ω)‖f‖t−1

p′(t−1)‖|∇f |‖p.

Choosing t such that
tN

N − 1
= p′(t − 1) we have p∗ = tN

N−1 and previous

inequalities give

‖f‖p∗ 6

(
(N − 1)p∗

diam(Ω)N

µ(Ω)
+ λ

1/p
N

diam(Ω)
µ(Ω)1/N

)
‖|∇f |‖p.

Now, for every f ∈ C1(Ω), we have

‖f‖p∗ 6

(
(N − 1)p∗

diam(Ω)N

µ(Ω)
+ λ

1/p
N

diam(Ω)
µ(Ω)1/N

)
‖|∇f |‖p + ‖T (f,Ω)‖p∗

6

(
(N − 1)p∗

diam(Ω)N

µ(Ω)
+ λ

1/p
N

diam(Ω)
µ(Ω)1/N

)
‖|∇f |‖p + µ(Ω)1/p∗−1/p‖f‖p
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which proves the continuity of the embedding W 1p(Ω)→ Lp
∗
(Ω).

Now, we can extend theorem 5.2.

Theorem 7.2. Let Ω be a bounded convex open subset of RN , N > 2. For
every p ∈ [1,+∞], the canonical embedding of W 1p(Ω) into Lq(Ω) is compact
for 1 6 q < p∗.

Proof. These embeddings are continuous. Without loss of generality, we
can assume that 0 ∈ Ω. There exists h ∈ C0(SN−1,R∗+) such that Ω =
{th(y)y, y ∈ SN−1, t ∈ [0, 1[}. The application h is Lipschitzian and the
application defined by Φh(0) = 0 and Φh(x) = h( x

|x| )x for x ∈ RN − {0} is
bi-Lipschitzian (a proof is given in appendix B). Obviously, Φh sends the unit
open ball BN onto Ω.

The hypercube C =]−1, 1[N also satisfies this condition for an application
Φh0 . Then Φ = Φh ◦ Φ−1

h0
is a bi-Lipschitzian application sending C onto

Ω. Considering theorem 6.2., we have merely to prove the compacity of the
embeddings W 1p(C)→ Lq(C) for 1 6 q < p∗.

For every n ∈ N∗, we consider a subdivision Sn = (Cin)i∈∆n
of C by half-

Open hypercubes with sides of size 1/n. From theorem 7.1, there exists a
constant α = α(N, p) such that for every Cin,

∀f ∈W 1p(C),
∫
Cin

∣∣∣∣f(u)− 1
µ(Cin)

∫
Cin

f

∣∣∣∣p∗ 6 α

(∫
Cin

|∇f |p
)p∗/p

.

We deduce, for all f ∈W 1p(C),∫
C

|f(u)− T (f, Sn)(u)|p
∗

6α
∑
i∈∆n

(∫
Cin

|∇f |p
)p∗/p

6α

(∫
C

|∇f |p
)p∗/p

since p 6 p∗ and ‖f − T (f, Sn)‖p∗ 6 α1/p∗‖|∇f |‖p.
The end of the proof is classical: for every 1 6 q < p∗, we can write

1
q

=
η

1
+

1− η
p∗

with 0 < η 6 1.
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Using Hölder’s interpolation inequality, we find

‖f − T (f, Sn)‖q 6 ‖f − T (f, Sn)‖η1‖f − T (f, Sn)‖1−ηp∗

6 α(1−η)/p∗‖|∇f |‖1−ηp ‖f − T (f, Sn)‖η1
6 α(1−η)/p∗µ(C)η(p−1)/p‖|∇f |‖1−ηp ‖f − T (f, Sn)‖ηp
6 τ(Sn)ηα(1−η)/p∗µ(C)η(p−1)/pλ

η/p
N ‖|∇f |‖p.

thanks to the final estimation in the proof of theorem 5.2. Now, the conclusion
follows from theorem 3.2.

Remark 7.1. In the special case N = 2, we need not to use Lipschitzian
and bi-Lipschjitzian mappings. Indeed, the reader will easily see that for every
ε > 0, there exists a subdivision Sε of Ω such that diam(E)2 6 2µ(E) for every
part of this subdivision, and τ(Sε) 6 ε. The end of the proof is straightforward.

8 Extension domain and the Rellich-Kondrachov theo-
rem

Let us recall that a bounded open subset Ω ⊂ RN is a Lipschitz domain if
each point on ∂Ω has a neighborhood Ux such that ∂Ω ∩ Ux is the graph of
a Lipschitz function. For a general definition of Lipschitz domains, see [1] or
[3].

It is well known that embeddings W 1p(Ω) → Lp(Ω) are compact for Lip-
schitz domains because they are extension domains [3]. In this way, P. W.
Jones characterized all finitely connected extension domains in the plane (for
the Sobolev embedding) and proved that it is exactly the (ε, δ)-Domains [5].
Using this characterization, we will show that a very simple subset Ω of R2

which is not an extension domain can satisfy the conclusion of the Rellich-
Kondrachov theorem.

An open subset Ω of RN is an extension domain if for every (k, p) ∈ N ×
[1,+∞] there exists a bounded linear operator Λkp : W kp(Ω) → W kp(RN )
such that Λkp(f)|Ω = f for all f ∈W kp(Ω).

An open subset Ω of RN is an (ε, δ)-Domain if, ∀(x, y) ∈ Ω2 such that
|x− y| < δ, there exists a rectifiable arc γ ⊂ Ω joining x to y and satisfying

l(γ) 6
1
ε
|x− y| and d(z,Ωc) >

ε|x− z||y − z|
|x− y|

, ∀z ∈ γ,

where l(γ) is the length of γ.
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Jones proved the following theorem: Let Ω ⊂ R2 be an open finitely con-
nected set. Then Ω is an extension domain if and only if it is an (ε, δ)-Domain
for some values of ε, δ > 0.

Let us consider the open set of the plane Ω = {(x, y), x ∈]− 1, 1[, 0 < y <
1 +

√
|x|}. The set Ω can be split in two convex subsets by the line x = 0.

We can apply theorems 5.2 and 6.1 to deduce that the canonical embeddings
W 1p(Ω) → Lp(Ω) are compact for p ∈ [1,+∞]. Nevertheless, Ω is not an
extension domain.

Indeed, for n ∈ N∗, n > 2, we consider Xn =

(
− 1
n
, 1 +

√
1

2n

)
and

Yn =

(
1
n
, 1 +

√
1

2n

)
. We easily verify that every path γ ⊂ Ω joining Xn and

Yn is such that l(γ) > 2
(

1
n2

+
1

2n

) 1
2

∼
√

2
n

.

But we have |Xn − Yn| =
2
n

and the (ε, δ) condition cannot be verified for
any ε and δ in R∗+.

9 Compact embedding theorem for non Lipschitz do-
mains

In this section, we will extend the Lipschitz boundary condition to provide
more general domains satisfying the conclusion of the Rellich-Kondrachov the-
orem. The reader will easily verify that those domains are not (ε, δ)-Domains
in general. In fact, if a boundary of an (ε, δ)-Domain must be rather smooth,
we will show that the boundary of domains satisfying the conclusion of the
Rellich-Kondrachov theorem can be wilder.

For every p ∈ [1,+∞], we denote by p′ the conjugate exponent of p. For
r > 0, we set Qr =]− r, r[N−1 and Qr = [−r, r]N−1.

For every h ∈ C0(Qr,R∗+), we set

E(h) = {(y1, . . . , yN ), (y1, . . . , yN−1) ∈ Qr, and 0 < yN < h(y1, . . . , yN−1)}

and
F (h) = {(y, h(y)), y ∈ Qr}.

Definition 9.1. Let q ∈ [1,∞], Ω be an open subset of RN and x ∈ ∂Ω.
We say that Ω has a q-Rectifiable boundary at point x if there exists r > 0,
h ∈ C0(Qr,R∗+) ∩W 1q(Qr), an affine rotation L and an open neighborhood
U of x such that L(F (h)) ⊂ U , Ω ∩ U = L(E(h)) and
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(a) For q = +∞: There exists α > 0 such that for all 1 6 k 6 N − 1, and
almost all (y1, . . . , yk−1, yk+1, . . . , yN−1) ∈] − r, r[N−2, the application
z → h(y1, . . . , yk−1, z, yk+1, . . . , yN−1) is in W 1∞(]− r, r[) with

ess. supR {|∇h(y1, . . . , yk−1, z, yk+1, . . . , yN−1)|, z ∈]− r, r[} 6 α.

(b) For 1 < q < +∞: There exists α > 0 such that for all 1 6 k 6 N−1, and
almost all (y1, . . . , yk−1, yk+1, . . . , yN−1) ∈] − r, r[N−2, the application
z → h(y1, . . . , yk−1, z, yk+1, . . . , yN−1) is in W 1q(]− r, r[) with[∫ r

−r
|∂kh(y1, . . . , yk−1, z, yk+1, . . . , yN−1)|qdz

]1/q

6 α

(c) For q = 1: ∀α > 0, ∃η > 0 such that for every 1 6 k 6 N − 1, and for
almost all (y1, . . . , yk−1, yk+1, . . . , yN−1) ∈] − r, r[N−2, the application
z → h(y1, . . . , yk−1, z, yk+1, . . . , yN−1) is in W 1q(]− r, r[) with∫ b

a

|∂kh(y1, . . . , yk−1, z, yk+1, . . . , yN−1)|dz 6 α

as soon as −r < a 6 b < r with b− a 6 η.

Remark 9.1. If N = 2, the conditions become h ∈ C0([−r, r],R∗+)∩W 1q(]−
r, r[).

Remark 9.2. In the general case, the hypothesis on functions h impose a
condition on the length of paths drawn on the surface F (h) staying on the
parallels to the coordinate axes.

Lemma 9.1. Let p ∈ [1,+∞], r > 0 and h ∈W 1p′(Qr) satisfying the hypoth-
esis of definition 9.1 for q = p′. Then the canonical embedding W 1p(E(h))→
Lp(E(h)) is compact.

Proof. Without loss of generality, we can assume r = 1.
• First Case: 1 < p < +∞.
For every 0 < t < 1 and x ∈ Q, we set γ(t, x) = (x, th(x)). We denote

m = min
x∈Q

h(x) > 0 and M = max
x∈Q

h(x) > 0.

From the hypothesis, there exists α > 0 such that for all 0 6 k 6 N − 1,
almost every y ∈]− 1, 1[N−2

[∫ 1

−1

(
1 + |∂kh(y1, . . . , yk−1, z, yk+1, . . . , yN−1)|2

)p′/2
dz

]1/p′

6 α.



702 Jean-Christophe Feauveau

For every n ∈ N∗, we denote (Cnλ )λ∈Λn a subdivision of Q by half-Open
hypercubes of size 1/n. In the following, for the sake of simplicity, we denote
(Ci)06i6r for the partition (Cnλ )λ∈Λn

.
We consider a sequence 0 = t0 < t1 < . . . < tq = 1, and for 0 6 i 6 r

and 1 6 j < q, we set Ωij = {γ(t, x), x ∈ Ci, tj 6 t < tj+1} and Ωi0 =
{γ(t, x), x ∈ Ci, 0 < t < t1}. Thus, Sn,t0,...,tq = (Ωij)0≤i≤r

0≤j<q
is a subdivision

of Ω = E(h).
Let us fix 0 6 i 6 r and 0 6 j < q. For g ∈ L1(Ωij) ∩ C1(Ωij), we have∫

Ωij

g(u) du =
∫
x∈Ci

∫ tj+1

tj

g(γ(t, x))h(x) dtdx.

For f ∈W 1p(Ω) ∩ C1(Ω), 0 6 i 6 r and 0 6 j < q, we set

∆i,j =
∫

Ωij

∣∣∣∣∣f(v)− 1
µ(Ωij)

∫
Ωij

f(u) du

∣∣∣∣∣
p

dv

6
1

µ(Ωij)

∫ tj+1

tj

∫
Ci

∫ tj+1

tj

∫
Ci

|f(γ(t, x))− f(γ(t′, x′))|ph(x)h(x′)dx′ dt′dx dt.

Now, we must join the points γ(t, x) and γ(t′, x′) with a path staying in Ωij .
We have

|f(γ(t, x))− f(γ(t′, x′))|
6 |f(γ(t, x))− f(γ(t′, x))|+ |f(γ(t′, x))− f(γ(t′, x′))|

and

|f(γ(t, x))− f(γ(t′, x′))|p

6 2p−1(|f(γ(t, x))− f(γ(t′, x))|p + |f(γ(t′, x))− f(γ(t′, x′))|p).

On one hand

|f(γ(t, x))− f(γ(t′, x))|p 6

∣∣∣∣∣
∫ t′

a=t

|∇f(γ(a, x))|h(x)da

∣∣∣∣∣
p

6 (tj+1 − tj)p−1Mp

∫ tj+1

a=tj

|∇f(γ(a, x))|pda.

Then,

∆i,j
1 =

1
µ(Ωij)

∫ tj+1

tj

∫
Ci

∫ tj+1

tj

∫
Ci

|f(γ(t, x))− f(γ(t′, x))|ph(x)h(x′)dx′ dt′dx dt
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6 (tj+1 − tj)pMp

∫
x∈Ci

∫ tj+1

a=tj

|∇f(γ(a, x)|ph(x)dadx

6 (tj+1 − tj)pMp

∫
Ωij

|∇f |p

On the other hand, if we set Ci = Ii1 × . . .× IiN−1, then for 1 6 k 6 N − 1,∣∣f(γ(t′, (x1, . . . , xk−1, x
′
k, . . . , x

′
N−1)))− f(γ(t′, (x1, . . . , xk, x

′
k+1, . . . , x

′
N−1)))

∣∣
6

[∫
Iik

∣∣∇f(γ(t′, (x1, . . . , xk−1, z, x
′
k+1, . . . , x

′
N−1)))

∣∣pdz]1/p

×
[∫

Iik

(
1 +

∣∣∂kh(x1, . . . , xk−1, z, x
′
k+1, . . . , x

′
N−1)

∣∣2)p′/2dz]1/p′

6 α

[∫
Iik

∣∣∇f(γ(t′, (x1, . . . , xk−1, z, x
′
k+1, . . . , x

′
N−1)))

∣∣pdz]1/p

.

We obtain

|f(γ(t′, x))− f(γ(t′, x′))|p

6

[
N−1∑
k=1

∣∣∣∣f(γ(t′, (x1, . . . , xk−1, x
′
k, . . . , x

′
N−1)))

− f(γ(t′, (x1, . . . , xk, x
′
k+1, . . . , x

′
N−1)))

∣∣∣∣
]p

6 αpNp−1
N−1∑
k=1

∫
Iik

∣∣∇f(γ(t′, (x1, . . . , xk−1, z, x
′
k+1, . . . , x

′
N−1)))

∣∣pdz
and, if ∆fγ = f(γ(t′, x))− f(γ(t′, x′)), then

∆i,j
2 =

1
µ(Ωij)

∫ tj+1

t=tj

∫
x∈Ci

∫ tj+1

t′=tj

∫
x′∈Ci

∣∣∣∣∆fγ∣∣∣∣ph(x)h(x′)dx′ dt′dx dt

6
αpM2Np−1

nm

N−1∑
k=1

∫ tj+1

t′=tj

∫
Ci

∣∣∣∣Θ(f, γ)
∣∣∣∣pdx1 . . . dxk−1dzdx

′
k+1dxN−1 dt

′

6
αpM2Np

nm2

∫
Ωij

|∇f |p.
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where Θ(f, γ) = ∇f(γ(t′, (x1, . . . , xk−1, z, x
′
k+1, . . . , x

′
N−1))). Now, ∆i,j 6

2p−1(∆i,j
1 + ∆i,j

2 ), and

∥∥f − T (f, Sn,t0,...,tq )
∥∥p
p

=
∑

0≤i≤r
0≤j<q

∆ij

6 2p−1
∑

0≤i≤r
0≤j<q

[
(tj+1 − tj)pMp +

αpM2Np+1

nm

] ∫
Ωij

|∇f |p.

We choose (tj)06j6q such that Max06j<q(tj+1− tj) 6
ε

2M
and n > 1 such

that n >
2pαpM2Np

m2εp
. The subdivision Sn,t0,...,tq satisfies

‖f − T (S, f)‖p 6 ε

(∫
Ω

|∇f(u)|p du
)1/p

for every f ∈W 1p(Ω) (with the usual density argument). Thus, the embedding
W 1p(Ω)→ Lp(Ω) is compact, and the proof is complete.
• Second Case: p = 1.
The proof is very similar. Indeed,

∆i,j
1 6 (tj+1 − tj)M

∫
Ωij

|∇f(u)| du, and

∆i,j
2 6

M2N(1 + ‖h‖W 1∞)
nm2

µ(Ωij)
∫

Ωij

|∇f |.

• Third Case: p = +∞.
Let f ∈ W 1∞(Ω) ∩ C1(Ω). For (t, t′) ∈ [tj , tj+1]2, t 6 t′ and (x, x′) ∈ C2

i ,
the estimations become

|f(γ(t, x)− f(γ(t′, x))| 6
∫ t′

a=t

|∇f(γ(a, x))|h(x)da 6 (tj+1 − tj)M‖f‖W 1∞

and

|f(γ(t′, x)− fγ(t′, x′))|

6 ‖f‖W 1∞

N∑
k=1

∫
Iik

(
1 +

∣∣∂kh(x1, . . . , xk−1, z, x
′
k+1, . . . , x

′
N−1)

∣∣2)1/2

dz.
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Now, for ε > 0, we can choose (tj)06j6q satisfying Max06j<q(tj+1 − tj) 6
ε

2M
and n > 1 such that for every 1 6 k 6 N − 1, and for almost all

(y1, . . . , yk−1, yk+1, . . . , yN−1) ∈ [−1, 1]N−2

∫ b

a

(
1 +

∣∣∂kh(x1, . . . , xk−1, z, x
′
k+1, . . . , x

′
N−1)

∣∣2)1/2

6
ε

2N

as soon as −1 < a 6 b < 1 with b− a 6 1
n . And we have

f ∈W 1∞(Ω) ∩ C1(Ω),
∥∥f − T (f, Sn,t0,...,tq )

∥∥
∞ 6 ε‖f‖W 1∞ .

Using an usual application of regularization, for every f ∈ W 1∞(Ω), there
exists a sequence (fr)r∈N of W 1∞(Ω) ∩ C1(Ω) such that

lim
r→+∞

‖fr − f‖∞ = 0 and ∀r ∈ N, ‖fr‖W 1∞ 6 ‖f‖W 1∞ .

We obtain

f ∈W 1∞(Ω),
∥∥f − T (f, Sn,t0,...,tq )

∥∥
∞ 6 ε‖f‖W 1∞

and the result follows.

Definition 9.2. We say that an open set Ω has a q-Rectifiable boundary if
there exists a finite family (xk)06k6m of ∂Ω such that Ω is q-Rectifiable at

every point xk with ∂Ω =
m⋃
k=0

Lxk
(F (hxk

)).

Theorem 9.1. Let p ∈ [1,+∞]. If Ω is a bounded open subset of RN with a
q-Rectifiable boundary, then the embedding W 1p(Ω)→ Lp(Ω) is compact.

Proof. Let Ω be a bounded open subset of RN with a q-Rectifiable boundary

and a family (xi)06i6m of points of ∂Ω such that ∂Ω =
m⋃
k=0

Lxk
(F (hxk

)).

The reader may wish to convince himself that Ω′ = Ω −
m⋃
i=0

Lxi(E(hxi))

is a an open polytope of RN which can be split (up to a neglideable set) in
a finite partition of convex polytopes (Ωk)06k6r. A proof of this result can
be found in appendix B. Then, from theorems 5.2 and 6.1, the embedding
W 1p(Ω′)→ Lp(Ω′) is compact.
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We have a partition of Ω in m + 2 parts. From lemma 9.1 and theorem
6.2, the embeddings W 1p(Lxi(E(hxi))) → Lp(Lxi(E(hxi))) are compact, and
since µ(∂E(hxi

)) = 0 for 0 6 i 6 m, we conclude from theorem 6.1 that the
embedding W 1p(Ω)→ Lp(Ω) is compact.

We can give a nice formulation of this result in the case N = 2.

Corollary 9.1. Let p ∈ [1,+∞[. If Ω is a bounded open subset of R2 for
whom the boundary is locally a graph of continuous applications in W 1p′ , then
the embedding W 1p(Ω)→ Lp(Ω) is compact.

10 APPENDIX A Extension to Locally Compact Met-
ric Spaces

In this appendix, we give without proof the straightforward extension of
compactness theorem when Ω is a general metric locally compact set and
1 6 p < +∞.

To extend the result of section 3, we must specify notions of subdivision
and simple function.

- A restricted subdivision of Ω is a couple (Ω0, S), where Ω0 ∈ M is
relatively compact, and S is a subdivision of Ω0.

- A function f : Ω → C is a restricted simple function if there is a re-
stricted subdivision (Ω0, S) of Ω such that the restriction of f to Ω0 is
simple, and f is the null function over Ωc0. In this case, we will say that
f and (Ω0, S) are adapted to each other. We denote by E(Ω) the classes
of restricted simple functions modulo the negligibility relation. We will
say that F ∈ E(Ω) and a restricted subdivision (Ω0, S) are adapted to
each other if there is f ∈ F adapted to (Ω0, S).

- Let f : Ω → X be a measurable function and (Ω0, S) a restricted sub-
division such that f is integrable on Ω0. We denote by T (f,Ω0, S) the
restricted simple function null outside of Ω0 and such that the restriction
to Ω0 is T (f, S). For every F ∈ Lp(Ω), f ∈ F and (Ω0, S) a restricted
subdivision of Ω, we still denote by T (F,Ω0, S) the class of T (f, S).

Remark 10.1. If Ω is relatively compact, for every subdivision S of Ω, (Ω, S)
is a restricted subdivision of Ω. Moreover, simple functions and restricted
simple functions are the same.

Theorem 10.1. Let Γ be a subset of Lp(Ω). We say that Γ is equi-p-Integrable
if one of those equivalent properties is satisfied.
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- For every ε > 0 there exists a restricted subdivision (Ω0, S) of Ω such
that

∀F ∈ Γ, ‖F − T (F,Ω0, S)‖p 6 ε.

- For every ε > 0 there exists a restricted subdivision (Ω0, S) of Ω such
that for all F ∈ Γ we can find Fsε ∈ E(Ω) adapted to (Ω0, S) and such
that ‖F − Fsε‖p 6 ε.

We say that Γ is weakly uniformly equi-p-Integrable if one of those equivalent
properties is satisfied.

- For every ε > 0 there exists η > 0 and Ω0 ∈ M such that for every
restricted subdivision (Ω0, S) of Ω satisfying τ(S) 6 η we have

∀F ∈ Γ, ‖F − T (F,Ω0, S)‖p 6 ε.

- For every ε > 0 there exists η > 0 and Ω0 ∈ M such that for every
restricted subdivision (Ω0, S) of Ω satisfying τ(S) 6 η, and for every F ∈
Γ, we can find Fsε ∈ E(Ω) adapted to (Ω0, S) such that ‖F − Fsε‖p 6 ε.

Remark 10.2. The equivalence of the two definitions of equi-p-Integrability
is obvious for a relatively compact subset Ω, but uniform equi-p-Integrability
and weak uniform equi-p-Integrability are not exactly the same notion.

Clearly, uniform equi-p-Integrability implies weak uniform equi-p-Integrability
but the converse is false. For instance, if f : [0, 1] → R with f(x) = 0 for
0 6 x 6 1

2 and f(x) = 1 for 1
2 < x 6 1, the set of functions Γ = {λf, λ ∈ R} ⊂

Lp(Ω) is weakly uniformly equi-p-Integrable (we set Ω0 = [ 1
2 , 1] . . .), but it is

not uniformly equi-p-Integrable.
Nevertheless, as a consequence of theorem 10.3, those concepts are equiv-

alent for a bounded subset of Lp(Ω).
The proofs of the following results are straightforward adaptations of pre-

vious theorems and will be omitted.

Theorem 10.2. Let (fk)06k6n be a finite family of Lp(Ω). For every ε > 0,
there exits a relatively compact part Ω0 in M and η > 0 such that for every
restricted subdivision (Ω0, S) of Ω satisfying τ(S) < η we have

∀k ∈ {0, . . . , n}, ‖fk − T (fk,Ω0, S)‖p 6 ε.

Lemma 10.1. Let (Fn) be a sequence of E(Ω) adapted to a same restricted
subdivision of Ω. If (‖Fn‖p) is bounded, we can extract a subsequence (Fϕ(n))
converging in (E(Ω), ‖ ‖p).
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Theorem 10.3. Let Γ be a subset of Lp(Ω). The following assertions are
equivalent:

(i) Γ is relatively compact ;

(ii) Γ is bounded and weakly uniformly equi-p-Integrable ;

(iii) Γ is bounded and equi-p-Integrable.

11 APPENDIX B Topological Results

Theorem 11.1. Let Ω be an open subset of RN with a q-Rectifiable boundary,
and let a finite family (xk)06k6m of ∂Ω be such that Ω is q-Rectifiable at
every point xk with ∂Ω = ∪mk=0Lxk

(F (hxk
)). Then the open set Ω′ = Ω −

∪mk=0Lxk
(E(hxk

)) is the union of a finite family of convex polytopes, with a
negligible set lying on boundaries of those convex polytopes.

Proof. For 0 6 i 6 m we set Ωi = Lxi(E(hxi)) and denote by (Gik)16k62N−1

the hyperplanes limiting the boundary of Ωi. We set Gik = {x ∈ RN , gik(x) =
0}, where gik are non null linear forms, and G+

ik = {x ∈ RN , gik(x) > 0},
G−ik = {x ∈ RN , gik(x) < 0}.

We first prove that ∂Ω′ ⊂ ∪i,kGik.
Indeed, since Ω′c = Ωc ∪ (∪06i6mΩi) we deduce that for every x ∈ ∂Ω′,

there exists an index i such that x ∈ Ωi∩Ω′, and more precisely, x ∈ ∂Ωi∩Ω′.
For every index i, we have ∂Ωi ⊂ (∪kGik) ∪ Lxi(F (hxi)). But Uxi ⊂ Ω′

c

and Lxi
(F (hxi

)) ⊂ Uxi
. We deduce x ∈ ∪kGik ⊂ ∪j,kGjk and the result

follows.
For ε = (εik) ∈ {+,−}(m+1)(2N−1), we set Vε = ∩i,kGεik

ik . We want to
prove the following alternative: Vε ∩ Ω′ = ∅ or Vε ⊂ Ω′.

If there exist x0 ∈ Vε∩Ω′ and x1 ∈ Vε∩Ω′c, we can find x2 ∈ [x0, x1]∩∂Ω′.
Then, there exists an index (i, k) such that x2 ∈ Gik which is a contradiction
with x2 ∈ Vε.

Now, let ∆ be the set of indexes ε such that Vε ⊂ Ω′. From the partition
RN = (∪εVε) ∪ (∪i,kGi,k), we deduce Ω′ = (∪ε∈∆Vε) ∪ (Ω′ ∩ (∪i,kGi,k)).

Lemma 11.1. Let Ω be a bounded convex open subset of RN with 0 ∈ Ω. The
function h : SN−1 → R∗+ defined by h(u)u ∈ ∂Ω is Lipschitzian.

Proof. Let α > 0 be such that B(0, α) ⊂ Ω. If h is not a Lipschitzian
application, we can find two sequences (un) and (vn) of SN−1 with the same
limit u, such that

∀n ∈ N, un 6= vn, un 6= −vn and h(un)− h(vn) > n|un − vn|.
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Let wn ∈ SN−1 be such that (vn, wn) is an orthonormal basis of vect(un, wn)
satisfying un = cos(θn)vn + sin(θn)wn with θn ∈]0, π[ and lim

n→+∞
θn = 0. We

have θn < π/2 for n > n0. We are going to show that h(vn)vn falls into the
triangle (O, h(un)un,−αwn) for some n. This will be in contradiction with
h(vn)un ∈ ∂Ω.

For n > n0, h(vn)vn =
h(vn)

cos(θn)h(un)
h(un)un +

sin(θn)h(vn)
α cos(θn)

(−αvn).

We have
h(vn)

cos(θn)h(un)
> 0 and

sin(θn)h(vn)
α cos(θn)

> 0;

we have to prove

h(vn)
cos(θn)h(un)

+
sin(θn)h(vn)
α cos(θn)

< 1 for large n.

From the hypothesis,

h(vn)
cos(θn)h(un)

+
sin(θn)h(vn)
α cos(θn)

6
1

cos(θn)

(
1− 2n sin(θn/2)

h(un)
+

sin(θn)
α

h(vn)
)

6 1− nθn
h(u)

+ o(nθn)

which concludes the proof.

Theorem 11.2. Let Ω be a bounded convex open subset of RN with 0 ∈ Ω
and h as in lemma 11.1. The function Φ : RN → RN defined by Φ(0) = 0
and, for x ∈ RN − {0}, Φ(x) = h

( x
|x|
)
x is bi-Lipschitzian.

Proof. M denotes a Lipschitz ratio for h. For x and x′ in RN − {0},

|Φ(x)− Φ(x′)| =
∣∣∣∣h(

x

|x|
)x− h(

x′

|x′|
)x′
∣∣∣∣

6 ‖h‖∞|x− x
′|+ |x′|

∣∣∣∣h(
x

|x|
)− h(

x′

|x′|
)
∣∣∣∣

6 ‖h‖∞|x− x
′|+M |x′|

∣∣∣∣ x|x| − x′

|x′|

∣∣∣∣
6 ‖h‖∞|x− x

′|+ M

|x|
|x|x′| − x′|x||
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6 ‖h‖∞|x− x
′|+ M

|x|
(|x|||x′| − |x||+ |x||x− x′|)

6 (‖h‖∞ + 2M)|x− x′|

which is still valid when x = 0 or x′ = 0.

Now, Φ−1(x) =
[
h(

x

|x|
)
]−1

x for x ∈ R−{0} and the previous calculus still

stands for Φ−1 because

∀(u, v) ∈ S2
N−1,

∣∣∣∣ 1
h(u)

− 1
h(v)

∣∣∣∣ 6
M

m2
|u− v|

where m = min{h(u), u ∈ SN−1} > 0.
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