Jean-Christophe Feauveau, Institut Préparatoire aux Etudes Scientifiques et Techniques, Route de Sidi Bou Saïd, 2070 La Marsa, Tunisia. email: jean-christophe.feauveau@supelec-rennes.fr

A CHARACTERIZATION OF COMPACT PARTS OF L^p SPACES APPLICATION TO SOBOLEV EMBEDDINGS

Abstract

To characterize compact parts of spaces $L^{p}(\Omega)$, we introduce a concept of equi-integrability based on the approximation of elements of $L^{p}(\Omega)$ by simple functions. The resulting theorem will be used to develop a new methodology to prove and extend results about the compactness of Sobolev embeddings.

Introduction

This paper is divided into two parts. In sections 1 to 4, we develop a characterization of compact subsets of $L^p(\Omega)$. Results and proofs are simple but appear to be unknown until now. More precisely, for a metric locally compact space Ω , we define a notion of equi-integrability which allows us to state an Ascoli theorem for $L^p(\Omega)$. This approach is a continuation of some work in generalized Riemann theory of integration framework [4]. In the second part, we develop a methodology to retrieve and improve standard results about Sobolev embeddings and compact embeddings $W^{1p}(\Omega) \to L^q(\Omega)$. In the classical approach (Cf [1, 2, 3, 7] for instance), the Sobolev-Gagliardo-Nirenberg inequality is proved on \mathbb{R}^N and is extended to some extension domains (i.e. with a bounded extension operator $W^{1p}(\Omega) \to W^{1p}(\mathbb{R}^N)$). This provides the continuity of Sobolev embeddings. Obtaining the Rellich-Kondrachov theorem requires the use of a theorem characterizing the compact parts of $L^p(\Omega)$ using the approximations of functions f by the translated functions

Key Words: Generalized Riemann integrals, L^p spaces, Sobolev embeddings Mathematical Reviews subject classification: 26A39, 46E30,46E35

Received by the editors May 12, 2001

⁶⁸³

 $\tau_h(f)(x) = f(x+h)$. To prove those results, we must extend functions from $W^{1p}(\Omega)$ to $W^{1p}(\mathbb{R}^N)$: this is an "external" approach limited to extension domains. Our approach is "internal". Results on Sobolev spaces will arise from our characterization of compact part of $L^p(\Omega)$ and from the Meyers-Serrin theorem, which is available for every open set Ω . We always stay in Ω and, for this reason, we will be able to extend Sobolev and Rellich-Kondrachov results to more general domains than extension domains. Precisely, the compacity of the embedding $W^{1p} \to L^p(\Omega)$ is proved very easily in section 6 for bounded convex open subsets of \mathbb{R}^N . We need some additional estimation to prove the continuity of embedding $W^{1p} \to L^{p^*}(\Omega)$ with compacity for $W^{1p} \to L^{p^*}(\Omega)$, $1 \leq q < p^*$ (see section 8). Finally, we prove in section 10 that compact embedding $W^{1p} \to L^p(\Omega)$ can be achieved for a wide class of domains which overshoot the Lipschitz condition, the cone condition (see [1]) or the domain extension condition.

1 Definitions and Notations

In section 2 and 3 (Ω, d) denotes a relatively compact part of a metric locally compact space $\tilde{\Omega}$, \mathfrak{M} is a σ -algebra of $\tilde{\Omega}$ including all borelian sets, and μ is a measure over \mathfrak{M} satisfying the following conditions (Cf. [6]):

- (i) $\mu(K) < +\infty$ for every compact subset $K \subset \Omega$.
- (ii) If $E \in \mathfrak{M}$, then $\mu(E) = \inf\{\mu(V), E \subset V \text{ and } V \text{ open }\}$.
- (iii) If E is open with a finite measure, then $\mu(E) = \sup\{\mu(K), K \subset E \text{ and } K \text{ compact }\}.$
- (iv) If $E \in \mathfrak{M}$, $A \subset E$ and $\mu(E) = 0$, then $A \in \mathfrak{M}$.

Briefly, μ is a Radon measure. We also assume that $\mu(\Omega) > 0$.

In section 5, (Ω, d) denotes a metric locally compact space and μ is a Radon measure on Ω .

In particular, in sections 6, 7, 8, 9 and 10 Ω will be a bounded open subset of \mathbb{R}^N and μ will be the usual Lebesgue measure on \mathbb{R}^N . We denote $| \ |$ as the euclidian norm of \mathbb{R}^N .

We write diam(E) for the diameter of $E \subset \Omega$ and E^c for the complement of E in Ω .

For a normed vector space $(X, \| \|)$, we denote by $B_X(y, \alpha)$ the closed ball of center y and radius α .

For $p \in [1, +\infty[$ and every measurable function $f : \Omega \to \mathbf{C}$, we set $||f||_p = (\int_{\Omega} |f|^p)^{1/p}$. We denote $\mathcal{L}^p(\Omega)$ as the set of functions satisfying $||f||_p < \infty$.

As usual, $L^p(\Omega)$ is the quotient of $\mathcal{L}^p(\Omega)$ modulo the negligibility relation and $\| \|_p$ is the usual norm of $L^p(\Omega)$.

A subdivision of Ω is a partition $S = (E_i)_{1 \leq i \leq q}$ of Ω with measurable parts satisfying $\mu(E_i) > 0$ for all $1 \leq i \leq n$ and we set $\tau(S) = \text{Max}_{1 \leq i \leq q} \text{diam}(E_i)$.

A simple function $f: \Omega \to \mathbf{C}$ is a (finite) linear combination of characteristic functions of measurable sets. We say that a subdivision $S = (E_i)_{1 \leq i \leq q}$ of Ω and a simple function f are adapted to each other if f is constant over E_i , for all $1 \leq i \leq q$. We denote $E(\Omega)$ as the classes of simple functions modulo the negligibility relation. We say that a subdivision $S = (E_i)_{1 \leq i \leq q}$ of Ω and $F \in E(\Omega)$ are adapted to each other if there is a simple function $f \in F$ adapted to S.

Let $f: \Omega \to \mathbf{C}$ be an integrable function and a subdivision $S = (E_i)_{1 \leq i \leq q}$ of Ω . We denote T(f, S) the simple function such that

$$\forall i \in \{1, \dots, q\}, \ \forall t \in E_i, \ T(f, S)(t) = \frac{1}{\mu(E_i)} \int_{E_i} f.$$

For every $F \in L^p(\Omega)$, $f \in F$ and S, a subdivision of Ω , we still denote by T(F, S) the class of T(f, S).

2 A Theorem on Approximation by Simple Functions

In this section, $1 \leq p < +\infty$ and Ω is bounded. Let us recall a usual approximation theorem (Cf. [6] for instance).

Theorem 2.1. Let $f \in \mathcal{L}^p(\Omega)$. For every $\varepsilon > 0$, there exists $g \in C_c(\Omega)$ such that $||f - g||_p \leq \varepsilon$.

Lemma 2.1. Let $(f,g) \in \mathcal{L}^p(\Omega)^2$ and S be a subdivision of Ω , we have

$$||T(f,S) - T(g,S)||_p \leq ||f - g||_p.$$

PROOF. Indeed, if $S = (E_i)_{1 \leq i \leq q}$, we have

$$\int_{\Omega} |T(g,S) - T(f,S)|^{p} \leq \sum_{i=1}^{q} \mu(E_{i}) \left[\frac{1}{\mu(E_{i})} \int_{E_{i}} |g - f| \right]^{p} \\ \leq \sum_{i=1}^{q} \mu(E_{i}) \frac{1}{\mu(E_{i})} \int_{E_{i}} |g - f|^{p} \leq \int_{\Omega} |g - f|^{p}.$$

_	_

We can state an approximation theorem of integrable functions by simple functions.

Theorem 2.2. Let $(f_k)_{0 \leq k \leq n}$ be a finite family of $\mathcal{L}^p(\Omega)$. For every $\varepsilon > 0$, there exists $\eta > 0$ such that for every subdivision S of Ω satisfying $\tau(S) < \eta$ we have

$$\forall k \in \{0, \dots, n\}, \quad \|f_k - T(f_k, S)\|_p \leq \varepsilon.$$

PROOF. We first extend the functions to $\overline{\Omega}$ (by 0 for instance). For $\varepsilon > 0$ and $k \in \{0, \ldots, n\}$, there exists $g_k \in C(\Omega)$ such that $\|f_k - g_k\|_p \leq \frac{\varepsilon}{3}$.

There exists $\eta > 0$ such that

$$\forall k \in \{0, \dots, n\}, \ \forall (u, v) \in \Omega^2, \ d(u, v) \leqslant \eta \Rightarrow |g_k(u) - g_k(v)| \leqslant \frac{\varepsilon}{3\mu(\Omega)^{1/p}}.$$

Let $S = (E_i)_{1 \leq i \leq q}$ be a subdivision of Ω such as $\tau(S) \leq \eta$ (note that Ω is bounded). For every $0 \leq k \leq n$,

$$\begin{split} \int_{\Omega} |g_k - T(g_k, S)|^p &= \sum_{i=1}^q \int_{E_i} \left| g_k(u) - \frac{1}{\mu(E_i)} \int_{E_i} g_k(v) dv \right|^p du \\ &\leq \sum_{i=1}^q \int_{E_i} \left[\frac{1}{\mu(E_i)} \int_{E_i} |g_k(u) - g_k(v)| dv \right]^p du \\ &\leq \frac{\varepsilon^p}{3^p}. \end{split}$$

From Lemma 2.1, we also have $||T(g_k, S) - T(f_k, S)||_p \leq \frac{\varepsilon}{3}$ and we have, $||f_k - T(f_k, S)||_p \leq ||f_k - g_k||_p + ||g_k - T(g_k, S)||_p + ||T(g_k, S) - T(f_k, S)||_p \leq \varepsilon.$

3 A Characterization of Compact Sets in $L^p(\Omega)$

In this section, $1 \leq p < +\infty$ and Ω is bounded.

Definition 3.1. Let Γ be a subset of $L^p(\Omega)$. We say that Γ is *uniformly equip-integrable* if one of those equivalent properties is satisfied.

(a) For every $\varepsilon > 0$ there exists $\eta > 0$ such that for every subdivision S of Ω satisfying $\tau(S) \leq \eta$ we have

$$\forall F \in \Gamma, \ \|F - T(F,S)\|_p \leqslant \varepsilon$$

(b) For every $\varepsilon > 0$ there exists $\eta > 0$ such that for every subdivision S of Ω satisfying $\tau(S) \leq \eta$, and for every $F \in \Gamma$, we can find $F_{s\varepsilon} \in E(\Omega)$ adapted to S such that $||F - F_{s\varepsilon}||_p \leq \varepsilon$.

Definition 3.2. Let Γ be a subset of $L^p(\Omega)$. The set Γ is equi-*p*-integrable if and only if one of those equivalent properties is satisfied.

(a) For every $\varepsilon > 0$ there exists a subdivision S of Ω such that

$$\forall F \in \Gamma, \ \|F - T(F, S)\|_n \leq \varepsilon.$$

(b) For every $\varepsilon > 0$ there exists a subdivision S of Ω such that for all $F \in \Gamma$ we can find $F_{s\varepsilon} \in E(\Omega)$ adapted to S and such that $||F - F_{s\varepsilon}||_p \leq \varepsilon$.

Theorem 3.1. In the above definitions the pairs of properties are equivalent

PROOF. The equivalence of those two pairs of properties is easy to show. For the equi-*p*-integrability, one implication is obvious (we choose $F_{s\varepsilon} = T(F, S)$).

Conversely, we suppose that for every $\varepsilon > 0$ there exists a subdivision S of Ω such that for all $F \in \Gamma$ we can find $F_{s\varepsilon} \in E(\Omega)$ adapted to S and such that $\|F - F_{s\varepsilon}\|_p < \varepsilon$. From lemma 2.1,

$$\|F - T(F,S)\|_{p} \leq \|F - F_{s\varepsilon}\|_{p} + \|T(F_{s\varepsilon},S) - T(F,S)\|_{p} \leq 2\|F - F_{s\varepsilon}\|_{p} \leq 2\varepsilon$$

because $F_{s\varepsilon} = T(F_{s\varepsilon}, S)$, and the result follows. The proof for the uniform equi-*p*-integrability is similar.

Remark 3.1. Equi-p-integrability and uniform equi-p-integrability are different notions.

For instance, if we define $f:[0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} -1 & \text{if } 0 \le x \le \frac{1}{2}, \\ 1 & \text{if } \frac{1}{2} < x \le 1, \end{cases}$$

the set of functions $\Gamma = \{\lambda f, \lambda \in \mathbb{R}\} \subset L^p(\Omega)$ is obviously equi-*p*-integrable - consider the subdivision $(0, \frac{1}{2}, 1)$, but Γ is not uniformly equi-*p*-integrable by considering the subdivisions $\left(\frac{k}{2p+1}\right)_{0 \leqslant k \leqslant 2p+1}$, $p \in \mathbb{N}$. Nevertheless, as a consequence of theorem 3.1, those concepts are equivalent for a bounded subset of $\mathcal{L}^p(\Omega)$. **Lemma 3.1.** Let (F_n) be a sequence of $E(\Omega)$ adapted to a same subdivision of Ω . If $(||F_n||_p)$ is bounded, we can extract a subsequence $(F_{\varphi(n)})$ converging in $(E(\Omega), || ||_p)$.

PROOF. Let $S = (E_i)_{1 \leq i \leq q}$ be a subdivision adapted to (F_n) . The subspace of simple functions adapted to S is of finite dimension and the result follows. \Box

We are now able to state a theorem characterizing the compacts subsets of $L^p(\Omega)$.

Theorem 3.2. Let Γ be a subset of $L^p(\Omega)$. The following assertions are equivalent:

- (i) Γ is relatively compact ;
- (ii) Γ is bounded and uniformly equi-p-integrable ;
- (iii) Γ is bounded and equi-p-integrable.

PROOF. We consider three implications.

• $(i) \Rightarrow (ii)$:

A relatively compact subset Γ of $L^p(\Omega)$ is bounded. We have to show that Γ is uniformly equi-*p*-integrable. For $\varepsilon > 0$, there exists G_0, \ldots, G_n in $L^p(\Omega)$ such that $\Gamma \subset \bigcup_{k=0}^n B\left(G_k, \frac{\varepsilon}{3}\right)$. From Theorem 2.2, there exists $\eta > 0$ such that

$$\forall k \in \{0,\ldots,n\}, \ \|G_k - T(G_k,S)\|_p \leq \frac{\varepsilon}{3}$$

for every subdivision $S = (E_i)_{1 \leq i \leq q}$ of Ω satisfying $\tau(S) \leq \eta$. For $F \in \Gamma$, there exists $k \in \{0, \ldots, n\}$ such that $\|F - G_k\|_p \leq \frac{\varepsilon}{3}$. Now, from Lemma 2.1, we have $\|T(G_k, S) - T(F, S)\|_p \leq \|G_k - F\|_p$ and we deduce

$$\|F - T(F,S)\|_{p} \leq \|F - G_{k}\|_{p} + \|G_{k} - T(G_{k},S)\|_{p} + \|T(G_{k},S) - T(F,S)\|_{p} \leq \varepsilon$$

• $(ii) \Rightarrow (iii)$:

For $\varepsilon > 0$, we choose $\eta > 0$ from the equi-*p*-integrability hypothesis. From the compacity of $\overline{\Omega}$, there exists a subdivision S of Ω such that $\tau(S) \leq \eta$, and the result is proved.

• $(iii) \Rightarrow (i)$:

Let Γ be an equi-*p*-integrable bounded part of $L^p(\Omega)$ and $M = \operatorname{Sup}_{F \in \Gamma} ||F||_p$. Let (F_n) be a sequence of Γ . For every $q \in \mathbb{N}$, there exists a subdivision S^q

such that for every $n \in \mathbb{N}$ we have $||F_n - F_n^q||_p \leq 2^{-q}$. Just as in Ascoli's theorem, the end of the proof is an application of the Cantor diagonal process. From lemma 3.1 there exists a strictly increasing application $\varphi_0 : \mathbb{N} \to \mathbb{N}$ such that

$$\forall (n,m) \in \mathbb{N}^2, \ \left\| F^0_{\varphi_0(n)} - F^0_{\varphi_0(m)} \right\|_p \leqslant 1.$$

Then, for every integer q, we build a strictly increasing application $\varphi_q:\mathbb{N}\to\mathbb{N}$ such that

$$\forall (n,m) \in \mathbb{N}^2, \quad \left\| F^q_{\varphi_q(n)} - F^q_{\varphi_q(m)} \right\|_p \leqslant 2^{-q},$$

where indices $(\varphi_q(n))_{n \in \mathbb{N}}$ are selected from the previously selected indices $(\varphi_{q-1}(n))_{n \in \mathbb{N}}$. Let $\varphi : \mathbb{N} \to \mathbb{N}$ be the strictly increasing application defined by $\varphi(r) = \varphi_r(r)$. For r < s, we have

$$\begin{split} \left\| F_{\varphi(r)} - F_{\varphi(s)} \right\|_p &\leq \left\| F_{\varphi(r)} - F_{\varphi(r)}^r \right\|_p + \left\| F_{\varphi(r)}^r - F_{\varphi(s)}^r \right\|_p + \left\| F_{\varphi(s)}^r - F_{\varphi(s)} \right\|_p \\ &\leq 3 \cdot 2^{-r}. \end{split}$$

The sequence $(F_{\varphi(r)})_{r\in\mathbb{N}}$ satisfies the Cauchy property and the compacity of $\overline{\Gamma}$ follows from the completeness of $L^p(\Omega)$.

We emphasize the simplicity of the above equivalences. Statement and proof are analogous to Ascoli's theorem, with the definition "à la Riemann" for the equi-*p*-integrability of classes of functions.

In the following, the property of equi-*p*-integrability will be used to establish the compacity of some parts of $L^{p}(\Omega)$. In fact, the characterization using T(f, S) gives a precise direction to follow in order to verify the compacity of a given subset of $L^{p}(\Omega)$.

4 The Case $p = +\infty$

In this part, unless otherwise stated, Ω is a metric locally compact space. We are going to study how to modify the previous results in the special case $p = +\infty$. In this context, we extend the definition of subdivision and simple functions to metric locally compact spaces.

Theorem 4.1. Let $(f_k)_{0 \leq k \leq n}$ be a finite family of $\mathcal{L}^{\infty}(\Omega)$. For every $\varepsilon > 0$, there exists a subdivision S of Ω and simple functions $(g_k)_{0 \leq k \leq n}$ adapted to S such that $||f_k - g_k||_{\infty} \leq \varepsilon$. If $\mu(\Omega)$ is finite, for every $\varepsilon > 0$, there exists a subdivision S of Ω such that $||f_k - T(f_k, S)||_{\infty} \leq \varepsilon$ for all $0 \leq k \leq n$. PROOF. Let $f \in L^{\infty}(\Omega)$. For $\varepsilon > 0$, we denote by r the entire part of $2||f||_{\infty}/\varepsilon$. We have $f = \Re(f) + i\Im(f)$, and for every $(k, l) \in \{-r - 1, \dots, r\}^2$, we set

$$E_{kl} = \bigg\{ x \in \Omega \ / \ \frac{k\varepsilon}{2} \leqslant \Re(f)(x) < \frac{(k+1)\varepsilon}{2} \text{ and } \frac{l\varepsilon}{2} \leqslant \Im(f)(x) < \frac{(l+1)\varepsilon}{2} \bigg\}.$$

Let Δ be the subset of indexes such that $\mu(E_{kl}) > 0$. We choose $(k_0, l_0) \in \Delta$ and we add to $E_{k_0 l_0}$ the elements of the negligible set $\Omega - \bigcup_{(k,l) \in \Delta} E_{kl}$. The resulting family $S = (E_{kl})_{(k,l) \in \Delta}$ is a subdivision of Ω and the function g =

 $\sum_{(k,l)\in\Delta} \left(\frac{k\varepsilon}{2} + i\frac{l\varepsilon}{2}\right) \chi_{E_{kl}} \text{ satisfies to } \|f - g\|_{\infty} \leqslant \varepsilon. \text{ Now, for a finite family}$

 $(f_k)_{0 \leq k \leq n}$, we can build such subdivisions $(S_k)_{0 \leq k \leq n}$. The subdivision S obtained by taking the intersection of all elements of those subdivisions answer to the question. If $\mu(\Omega) < +\infty$, for the previous subdivision S, T(f, S) is defined for every $f \in L^{\infty}(\Omega)$ and clearly verifies $||f_k - T(f_k, S)||_{\infty} \leq \varepsilon$. \Box

Definition 4.1. Let Γ be a subset of $L^{\infty}(\Omega)$. We say that Γ is *equi-\infty-integrable* if for every $\varepsilon > 0$ there exists a subdivision S of Ω such that for all $F \in \Gamma$ we can find a simple function $F_{s\varepsilon}$ adapted to S and such that $\|F - F_{s\varepsilon}\|_{\infty} \leq \varepsilon$.

Theorem 4.2. When $\mu(\Omega)$ is finite, Γ is equi- ∞ -integrable if and only if for every $\varepsilon > 0$ there exists a subdivision S of Ω such that for all $F \in \Gamma$, $||F - T(F, S)||_{\infty} \leq \varepsilon$.

PROOF. We suppose $\mu(\Omega) < +\infty$. If Γ is equi- ∞ -integrable, let $S = (E_i)_{0 \leq i \leq n}$ be a subdivision of Ω such that for every $F \in \Gamma$ there exists a simple function $F_{s\varepsilon} = \sum_{0 \leq i \leq n} \alpha_i(F)\chi_{E_i}$ satisfying $||F - F_{s\varepsilon}||_{\infty} \leq \varepsilon/2$. For $i \in \{0, \ldots, n\}$ and for

almost all $x \in E_i$, we have $|F(x) - \alpha_i(F)| \leq \frac{\varepsilon}{2}$. Thus $|T(F, S)(x) - \alpha_i(F)| \leq \frac{\varepsilon}{2}$ and $||F - T(F, S)||_{\infty} \leq \varepsilon$. The converse implication is straightforward. \Box

Theorem 4.3. Let Γ be a subset of $L^{\infty}(\Omega)$. The following assertions are equivalent:

- (i) Γ is relatively compact ;
- (ii) Γ is bounded and equi- ∞ -integrable.

PROOF. $(i) \Rightarrow (ii)$:

We have to show that Γ is uniformly equi- ∞ -integrable. For $\varepsilon > 0$, there exist G_1, \ldots, G_n in $L^p(\Omega)$ such that $\Gamma \subset \bigcup_{k=0}^n B\left(G_k, \frac{\varepsilon}{2}\right)$. From the Theorem

4.1, there exists a subdivision S of Ω and simple functions H_0, \ldots, H_n adapted to S such that

$$\forall k \in \{0, \dots, n\}, \ \left\|G_k - H_k\right\|_{\infty} \leq \frac{\varepsilon}{2}.$$

For $F \in \Gamma$, there exists $k \in \{0, ..., n\}$ such that $||F - G_k||_{\infty} \leq \frac{\varepsilon}{2}$ and we find

$$\|F - H_k\|_{\infty} \leq \|F - G_k\|_p + \|G_k - H_k\|_p \leq \varepsilon.$$

 $(ii) \Rightarrow (i):$

Let Γ be an equi- ∞ -integrable bounded part of $L^{\infty}(\Omega)$ and define $M = \operatorname{Sup}_{F \in \Gamma} ||F||_{\infty}$. Let (F_n) be a sequence of Γ . For every $q \in \mathbb{N}$, there exists a subdivision S^q such that, for every $n \in \mathbb{N}$, $||F_n - F_n^q||_{\infty} \leq 2^{-q}$. Now, just like for lemma 3.1, for every bounded sequence in $L^{\infty}(\Omega)$ of simple functions adapted to a fixed subdivision of Ω , we can extract a subsequence converging in $L^{\infty}(\Omega)$. The end of the proof is similar to the one of Theorem 3.1. \Box

To conclude this section, let us recall the usual characterization of the compact parts of $L^p(\Omega)$ ([1] p. 31 or [2] p. 72). Let Ω be an open subset of \mathbb{R}^N and $1 \leq p < +\infty$. For every $f \in L^p(\Omega)$, we define an extension \tilde{f} of f

$$\tilde{f}(x) = \begin{cases} f(x) & \text{if } x \in \Omega\\ 0 & \text{if } x \in \mathbb{R}^N - \Omega \end{cases}$$

Theorem 4.4. (Fréchet-Kolmogorov Theorem) A bounded part Γ of $L^p(\Omega)$ is relatively compact if and only if we can find, for every $\varepsilon > 0$, a real $\delta > 0$ and a compact part ω of Ω such that $\forall f \in \Gamma$,

$$\forall h \in \mathbb{R}^N \text{ with } |h| < \delta, \quad \int_{\omega} \left| \tilde{f}(u+h) - \tilde{f}(u) \right|^p du \leqslant \varepsilon^p,$$

and

$$\int_{\Omega-\omega} |f(u)|^p \, du \leqslant \varepsilon^p.$$

Remark 4.1. This theorem provides a direct characterization of bounded equip-integrable parts of $L^p(\Omega)$, when Ω is an open subset of \mathbb{R}^N .

Remark 4.2. The Fréchet-Kolmogorov theorem uses the additive structure of \mathbb{R}^N which is not required in our approach.

5 The Embedding $W^{1p}(\Omega) \to L^p(\Omega)$ is Compact for every Convex Bounded Subset of \mathbb{R}^N

Let Ω be an open subset of \mathbb{R}^N and μ the Lebesgue measure on \mathbb{R}^N . For every $p \in [1, +\infty]$, let $W^{1p}(\Omega)$ be the usual Sobolev Spaces normed by

$$\forall f \in W^{1p}(\Omega), \ \|f\|_{W^{1p}} = \|f\|_p + \||\nabla f|\|_p$$

with

$$\nabla f = (\partial_1 f, \dots, \partial_N f)$$
 and $|\nabla f| = \left(\sum_{i=1}^N |\partial_i f|^2\right)^{1/2}$.

We recall a well-known density theorem (Cf. [1] or [7]).

Theorem 5.1. (Meyers-Serrin Theorem). For every open subset Ω of \mathbb{R}^N and every $1 \leq p < +\infty$, $C^{\infty}(\Omega) \cap W^{1p}(\Omega)$ is a dense subset of $W^{1p}(\Omega)$.

Lemma 5.1. (Poincaré-Wirtinger Theorem). Let E be a bounded convex part of \mathbb{R}^N and $1 \leq p < +\infty$. Then, there exists $\lambda_N \in \mathbb{R}^*_+$, such that for all $f \in W^{1p}(E)$,

$$\int_{v \in E} \left| f(v) - \frac{1}{\mu(E)} \int_{u \in E} f(u) \, du \right|^p dv \leq \lambda_N \operatorname{diam}(E)^p \int_{u \in E} \left| \nabla f(u) \right|^p du$$
$$2^N - 2$$

with $\lambda_1 = 2\ln(2)$ and $\lambda_N = \frac{2N-2}{N-1}$ for $N \ge 2$.

PROOF. Using Meyers-Serrin's theorem, we have only to prove the result for $f \in C^{\infty}(\Omega) \cap W^{1p}(\Omega)$. Let $D = \mu(E)^{p-1} \operatorname{diam}(E)^p$

$$\begin{split} &\int_{v \in E} \left| \int_{u \in E} (f(v) - f(u)) \, du \right|^p dv \leqslant \mu(E)^{p-1} \int_{v \in E} \int_{u \in E} \left| f(u) - f(v) \right|^p du \, dv \\ &\leqslant \mu(E)^{p-1} \int_{v \in E} \int_{u \in E} \int_{t \in [0,1]} \left| \nabla f(u + t(v - u)) \right|^p |v - u|^p \, dt \, du \, dv \\ &\leqslant D \int_{v \in E} \int_{u \in E} \int_{t \in [1/2,1]} \left(\left| \nabla f(u + t(v - u)) \right|^p + \left| \nabla f(v + t(u - v)) \right|^p \right) dt \, du \, dv \\ &\leqslant 2D \int_{u \in E} \int_{t \in [\frac{1}{2},1]} t^{-N} \int_{h \in u + t(-u + E)} \left| \nabla f(h) \right|^p dt dh \, du \\ &\leqslant 2D \int_{u \in E} \int_{t \in [\frac{1}{2},1]} t^{-N} \int_{h \in E} \left| \nabla f(h) \right|^p dt dh \, du \\ &\leqslant \lambda_N D \int_{h \in E} \left| \nabla f(h) \right|^p dh. \end{split}$$

Theorem 5.2. (Rellich-Kondrachov Theorem) Let Ω be a bounded convex open subset of \mathbb{R}^N . For every $p \in [1, +\infty]$, the canonical embedding of $W^{1p}(\Omega)$ into $L^p(\Omega)$ is compact.

PROOF. • FIRST CASE: $1 \leq p < +\infty$.

We will show that the unit ball $B_{W^{1p}}(0,1)$ of $W^{1p}(\Omega)$ is a relatively compact subset of $L^p(\Omega)$. This is a bounded subset and we have to prove that $B_{W^{1p}}(0,1)$ is an equi-*p*-Integrable subset of $L^p(\Omega)$.

Let $S = (E_i)_{1 \leq i \leq q}$ a subdivision of Ω composed of convex parts (the intersection of Ω with a regular lattice, for instance). We deduce from lemma 5.1

$$\begin{split} \int_{\Omega} |f - T(f, S)|^p &= \sum_{i=1}^n \int_{E_i} \left| f(v) - \frac{1}{\mu(E_i)} \int_{E_i} f(u) \, du \right|^p dv \\ &\leqslant \sum_{i=1}^n \frac{1}{\mu(E_i)^p} \int_{E_i} \left[\int_{E_i} |f(v) - f(u)| \, du \right]^p dv \\ &\leqslant \lambda_N \sum_{i=1}^n \operatorname{diam}(E_i)^p \int_{u \in E_i} |\nabla f(u)|^p \, du \\ &\leqslant \lambda_N \tau(S)^p \sum_{i=1}^n \int_{u \in E_i} |\nabla f(u)|^p \, du \\ &\leqslant \lambda_N \tau(S)^p \int_{u \in \Omega} |\nabla f(u)|^p \, du \\ &\leqslant \lambda_N \tau(S)^p. \end{split}$$

At last, for every $\eta > 0$, there exists such a subdivision S of Ω satisfying $\tau(S) < \eta$. We apply the previous inequality to conclude with theorem 3.2.

• Second Case: $p = +\infty$.

Let $f \in W^{1\infty}(\Omega)$. For every $p \in [1, +\infty[, f \in W^{1p}(\Omega) \text{ and }$

$$\lim_{p \to +\infty} \|f\|_p = \|f\|_{\infty} \ \, \text{and} \ \ \, \lim_{p \to +\infty} \|f\|_{W^{1p}} = \|f\|_{W^{1\infty}}.$$

From the first case, we know that for every subdivision S of Ω composed of convex parts, we have

$$\|f - T(f, S)\|_p \leq \lambda_N^{1/p} \tau(S) \|f\|_{W^{1p}}$$

and we deduce

$$\forall f \in W^{1\infty}(\Omega), \quad \left\| f - T(f,S) \right\|_{\infty} \leqslant \tau(S) \|f\|_{W^{1\infty}}.$$

The unit ball $B_{W^{1\infty}}(0,1)$ of $W^{1\infty}(\Omega)$ is a bounded and equi- ∞ -Integrable by theorem 4.2: it is a compact subset of $L^{\infty}(\Omega)$.

Extension of theorem 5.2. The aim of this section and those following is to show how to deal with equi-Integrability and theorems 3.1, and 4.2. The Rellich-Kondrachov theorem presented above can be extended classically in two directions: compact embeddings between $W^{mp}(\Omega)$ spaces and compact embedding $W^{1p}(\Omega) \to L^q(\Omega)$ for $q \in [1, p^*[$, where p^* is the Sobolev conjugate exponent of p. The first extension can be done, as is usual, by the iteration of $W^{1p}(\Omega) \to L^q(\Omega)$ compact embeddings. The second one is more difficult.

Usually, we must prove the Sobolev-Gagliardo-Nirenberg inequality with $\Omega = \mathbb{R}^N$, and this result is extended to every extension domain. To conclude, we can prove that convex bounded open subsets of \mathbb{R}^N are extension domains, but this "external" proof is not very satisfying in our "internal" approach. In fact, we shall prove a Sobolev-Gagliardo-Nirenberg inequality for convex bounded open subsets Ω of \mathbb{R}^N . First, we give two results allowing one to extend compact embedding results.

6 Compact Embedding Theorems for Other Domains

From a "puzzle" point of view, the following theorem will be useful later.

Theorem 6.1. Let Ω be an open subset of \mathbb{R}^N such that there exists a family $(\Omega_i)_{0 \leq i \leq m}$ of subsets of Ω satisfying $\Omega = \bigcup_{i=0}^m \Omega_i$ and, for all $0 \leq i \leq m$, $\mu(\partial \Omega_i) = 0$.

We assume that the embeddings $W^{1p}(\stackrel{\circ}{\Omega}_i) \to L^q(\stackrel{\circ}{\Omega}_i)$ are compact for some $(p,q) \in [1,+\infty]^2$. Then the embedding $W^{1p}(\Omega) \to L^q(\Omega)$ is compact.

PROOF. Let (f_n) be a sequence of $B_{W^{1p}(\Omega)}(0,1)$. From the hypothesis, we can extract a sequence (g_n) such that, for every $0 \leq i \leq m$, the restriction of g_n to $\overset{\circ}{\Omega}_i$ converges to a limit G_i in $L^q(\overset{\circ}{\Omega}_i)$. If $\overset{\circ}{\Omega}_i \cap \overset{\circ}{\Omega}_j \neq \emptyset$, the restriction of G_i and G_j define the same class of functions.

Thus, we can define a unique class G over $\bigcup_{i=0}^{m} \overset{\circ}{\Omega}_{i}^{i}$, which can be extended to Ω because $\mu \left(\Omega - \bigcup_{i=1}^{m} \overset{\circ}{\Omega}_{i}^{i} \right) \leqslant \sum_{i=0}^{m} \mu(\partial \Omega_{i}) = 0$. It is easy to verify the convergence of (g_{n}) toward G in $L^{q}(\Omega)$. \Box We shall also need a result concerning a change of variable on Sobolev functions.

A one-to-one mapping $T : \Omega \to \Omega'$ is bi-Lipschitzian if T and T^{-1} are Lipschitzian maps. As an application of Rademacher's theorem, we find in [7] p. 52 the following result.

Lemma 6.1. Let $T : \mathbb{R}^N \to \mathbb{R}^N$ be a bi-Lipschitzian mapping. If $f \in W^{1p}(\Omega)$, $p \in [1, +\infty]$, then $g = f \circ T \in W^{1p}(T^{-1}(\Omega))$, and $\nabla f(T(x)).dT_x = \nabla g(x)$ for a.e. $x \in \Omega$, where dT_x is the differential of T at point x.

We deduce easily the following theorem.

Theorem 6.2. Let $(p,q) \in [1, +\infty]^2$, $T : \mathbb{R}^N \to \mathbb{R}^N$ be a bi-Lipschitzian mapping, Ω_1 an open subset of \mathbb{R}^N and $\Omega_2 = T(\Omega_1)$. If the canonical embedding $W^{1p}(\Omega_1) \to L^q(\Omega_1)$ is compact, then the embedding $W^{1p}(\Omega_2) \to L^q(\Omega_2)$ is compact.

PROOF. The applications $\Phi_q : L^q(\Omega_1) \to L^q(\Omega_2)$ and $\Psi_p : W^{1p}(\Omega_2) \to W^{1p}(\Omega_1)$ defined by $\Phi_p(f) = f \circ T^{-1}$ and $\Psi_p(g) = g \circ T$ are linear and continuous. The result follows by chain rule since $W^{1p}(\Omega_1) \to L^q(\Omega_1)$ is compact.

7 A Sobolev-Gagliardo-Nirenberg Inequality

Let us recall a well-known result (See [2] for instance).

Lemma 7.1. Let $N \ge 2$ and $f_1, \ldots, f_N \in L^{N-1}(\mathbb{R}^{N-1})$. For $x \in \mathbb{R}^N$ we set

 $\tilde{x}_k = (x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_N) \in \mathbb{R}^{N-1}.$

Then, the function $f(x) = f_1(\tilde{x}_1) \dots f(\tilde{x}_N)$ is in $L^1(\mathbb{R}^N)$ and

$$||f||_{L^1(\mathbb{R}^N)} \leqslant \prod_{k=1}^N ||f_k||_{L^{N-1}(\mathbb{R}^{N-1})}.$$

Lemma 7.2. Let Ω be a convex bounded open subset of \mathbb{R}^N . For every $f \in W^{1,1}(\Omega)$ we have

$$\left\|f-T(f,\Omega)\right\|_{L^{\frac{N}{N-1}}(\Omega)} \leqslant N \frac{\operatorname{diam}(\Omega)^{N}}{\mu(\Omega)} \int_{\Omega} |\nabla f|$$

where $T(f, \Omega)$ is the average of f over Ω .

PROOF. The proof is a simple adaptation of the corresponding estimation in the usual Sobolev-Gagliardo-Nirenberg inequality.

We have to prove the result for $f \in C^{\infty}(\Omega)$. We first remark that we can find a box $E = I_1 \times \ldots \times I_N$, $\Omega \subset E$, where every I_k are non empty open intervals of \mathbb{R} with $l(I_1) = \operatorname{diam}(\Omega)$ and $l(I_k) \leq \operatorname{diam}(\Omega)$ for $2 \leq k \leq N$ (we denote by l(I) the length of I). We extend f and ∇f by null functions over $E - \Omega$ and we set $\tilde{I}_k = I_1 \times \ldots \times I_{k-1} \times I_{k+1} \times \ldots \times I_N$.

Thanks to the convexity, for $(u, v) \in \Omega^2$ we have

$$|f(v_1, \dots, v_N) - f(u_1, \dots, u_N)| \\ \leqslant \sum_{k=1}^N \int_{I_k} |\nabla f(u_1, \dots, u_{k-1}, t_k, v_{k+1}, \dots, v_N)| dt_k$$

and we deduce for $v \in E$,

$$|f(v) - T(f, \Omega)|$$

$$\leq \frac{1}{\mu(\Omega)} \sum_{k=1}^{N} \prod_{i=k}^{N} l(I_i) \int_{I_1 \times \ldots \times I_k} |\nabla f(t_1, \ldots, t_k, v_{k+1}, \ldots, v_N)| dt_1 \ldots dt_k$$

$$= f_1(\tilde{v}_1).$$

By a permutation of indexes, we also have $|f(v) - T(f, \Omega)| \leq f_k(\tilde{v}_k)$ for every $1 \leq k \leq N$.

A simple computation gives

$$\|f_k\|_{L^1(\tilde{I}_k)} \leq N \frac{\operatorname{diam}(\Omega)^N}{\mu(\Omega)} \int_{\Omega} |\nabla f|.$$

Now, since $|f(v) - T(f, \Omega)|^N \leq \prod_{k=1}^N f_k(\tilde{v}_k)$, we deduce from Lemma 7.1 the

inequality

$$\|f - T(f,\Omega)\|_{L^{\frac{N}{N-1}}(\Omega)} \leqslant \prod_{k=1}^{N} \|f_k\|_{L^1(\tilde{I}_k)}^{1/N} \leqslant N \frac{\operatorname{diam}(\Omega)^N}{\mu(\Omega)} \int_{\Omega} |\nabla f|.$$

We recall that the Sobolev conjugate of $p \in [1, N[$ is defined by $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{N}$.

Theorem 7.1. Let $N \ge 2$ and Ω be a convex bounded open subset of \mathbb{R}^N . For every $p \in [1, N[$ we have $W^{1p}(\Omega) \subset L^{p^*}(\Omega)$ with continuous embedding and $\forall f \in W^{1p}(\Omega)$,

$$\|f - T(f,\Omega)\|_{p^*} \leqslant \left((N-1)p^* \frac{\operatorname{diam}(\Omega)^N}{\mu(\Omega)} + \lambda_N^{1/p} \frac{\operatorname{diam}(\Omega)}{\mu(\Omega)^{1/N}} \right) \||\nabla f|\|_p.$$

PROOF. It is enough to prove this inequality for $f \in C^1(\Omega)$ that satisfy $T(f, \Omega) = 0$. For t > 1,

$$\begin{split} \|f\|_{\frac{tN}{N-1}}^{t} &= \left\|f|f|^{t-1}\right\|_{\frac{N}{N-1}} \\ &\leq \left\|f|f|^{t-1} - T(f|f|^{t-1},\Omega)\right\|_{\frac{N}{N-1}} + \left\|T(f|f|^{t-1},\Omega)\right\|_{\frac{N}{N-1}} \\ &\leq tN\frac{\operatorname{diam}(\Omega)^{N}}{\mu(\Omega)}\left\||f|^{t-1}|\nabla f|\right\|_{1} + \frac{1}{\mu(\Omega)^{1/N}}\|f\|_{t}^{t}. \end{split}$$

We have

$$\left\| \left| f \right|^{t-1} |\nabla f| \right\|_{1} \leq \| f \|_{p'(t-1)}^{t-1} \| |\nabla f| \|_{p}$$

and, thanks to the Poincaré-Wirtinger inequality,

$$\|f\|_{t}^{t} \leq \|f\|_{p} \|f\|_{p'(t-1)}^{t-1} \leq \lambda_{N}^{1/p} \operatorname{diam}(\Omega) \|f\|_{p'(t-1)}^{t-1} \||\nabla f|\|_{p}.$$

Choosing t such that $\frac{tN}{N-1}=p'(t-1)$ we have $p^*=\frac{tN}{N-1}$ and previous inequalities give

$$\|f\|_{p^*} \leqslant \left((N-1)p^* \frac{\operatorname{diam}(\Omega)^N}{\mu(\Omega)} + \lambda_N^{1/p} \frac{\operatorname{diam}(\Omega)}{\mu(\Omega)^{1/N}} \right) \||\nabla f|\|_p$$

Now, for every $f \in C^1(\Omega)$, we have

$$\begin{split} \|f\|_{p^*} &\leqslant \left((N-1)p^* \frac{\operatorname{diam}(\Omega)^N}{\mu(\Omega)} + \lambda_N^{1/p} \frac{\operatorname{diam}(\Omega)}{\mu(\Omega)^{1/N}} \right) \||\nabla f|\|_p + \|T(f,\Omega)\|_{p^*} \\ &\leqslant \left((N-1)p^* \frac{\operatorname{diam}(\Omega)^N}{\mu(\Omega)} + \lambda_N^{1/p} \frac{\operatorname{diam}(\Omega)}{\mu(\Omega)^{1/N}} \right) \||\nabla f|\|_p + \mu(\Omega)^{1/p^* - 1/p} \|f\|_p \end{split}$$

which proves the continuity of the embedding $W^{1p}(\Omega) \to L^{p^*}(\Omega)$.

Now, we can extend theorem 5.2.

Theorem 7.2. Let Ω be a bounded convex open subset of \mathbb{R}^N , $N \ge 2$. For every $p \in [1, +\infty]$, the canonical embedding of $W^{1p}(\Omega)$ into $L^q(\Omega)$ is compact for $1 \le q < p^*$.

PROOF. These embeddings are continuous. Without loss of generality, we can assume that $0 \in \Omega$. There exists $h \in C^0(S_{N-1}, \mathbb{R}^*_+)$ such that $\Omega = \{th(y)y, y \in S_{N-1}, t \in [0,1[\}\}$. The application h is Lipschitzian and the application defined by $\Phi_h(0) = 0$ and $\Phi_h(x) = h(\frac{x}{|x|})x$ for $x \in \mathbb{R}^N - \{0\}$ is bi-Lipschitzian (a proof is given in appendix B). Obviously, Φ_h sends the unit open ball B_N onto Ω .

The hypercube $C =]-1, 1[^N$ also satisfies this condition for an application Φ_{h_0} . Then $\Phi = \Phi_h \circ \Phi_{h_0}^{-1}$ is a bi-Lipschitzian application sending C onto Ω . Considering theorem 6.2., we have merely to prove the compacity of the embeddings $W^{1p}(C) \to L^q(C)$ for $1 \leq q < p^*$.

For every $n \in \mathbb{N}^*$, we consider a subdivision $S_n = (C_{in})_{i \in \Delta_n}$ of C by half-Open hypercubes with sides of size 1/n. From theorem 7.1, there exists a constant $\alpha = \alpha(N, p)$ such that for every C_{in} ,

$$\forall f \in W^{1p}(C), \quad \int_{C_{in}} \left| f(u) - \frac{1}{\mu(C_{in})} \int_{C_{in}} f \right|^{p^*} \leq \alpha \left(\int_{C_{in}} \left| \nabla f \right|^p \right)^{p^*/p}.$$

We deduce, for all $f \in W^{1p}(C)$,

$$\int_{C} |f(u) - T(f, S_{n})(u)|^{p^{*}} \leq \alpha \sum_{i \in \Delta_{n}} \left(\int_{C_{in}} |\nabla f|^{p} \right)^{p^{*}/p}$$
$$\leq \alpha \left(\int_{C} |\nabla f|^{p} \right)^{p^{*}/p}$$

since $p \leq p^*$ and $||f - T(f, S_n)||_{p^*} \leq \alpha^{1/p^*} |||\nabla f|||_p$. The end of the proof is classical: for every $1 \leq q \leq n$

The end of the proof is classical: for every $1 \leq q < p^*$, we can write

$$\frac{1}{q} = \frac{\eta}{1} + \frac{1-\eta}{p^*} \quad \text{with } 0 < \eta \le 1.$$

698

Using Hölder's interpolation inequality, we find

$$\begin{split} \|f - T(f, S_n)\|_q &\leq \|f - T(f, S_n)\|_1^{\eta} \|f - T(f, S_n)\|_{p^*}^{1-\eta} \\ &\leq \alpha^{(1-\eta)/p^*} \||\nabla f|\|_p^{1-\eta} \|f - T(f, S_n)\|_1^{\eta} \\ &\leq \alpha^{(1-\eta)/p^*} \mu(C)^{\eta(p-1)/p} \||\nabla f|\|_p^{1-\eta} \|f - T(f, S_n)\|_p^{\eta} \\ &\leq \tau(S_n)^{\eta} \alpha^{(1-\eta)/p^*} \mu(C)^{\eta(p-1)/p} \lambda_N^{\eta/p} \||\nabla f|\|_p. \end{split}$$

thanks to the final estimation in the proof of theorem 5.2. Now, the conclusion follows from theorem 3.2. $\hfill \Box$

Remark 7.1. In the special case N = 2, we need not to use Lipschitzian and bi-Lipschjitzian mappings. Indeed, the reader will easily see that for every $\varepsilon > 0$, there exists a subdivision S_{ε} of Ω such that diam $(E)^2 \leq 2\mu(E)$ for every part of this subdivision, and $\tau(S_{\varepsilon}) \leq \varepsilon$. The end of the proof is straightforward.

8 Extension domain and the Rellich-Kondrachov theorem

Let us recall that a bounded open subset $\Omega \subset \mathbb{R}^N$ is a Lipschitz domain if each point on $\partial\Omega$ has a neighborhood U_x such that $\partial\Omega \cap U_x$ is the graph of a Lipschitz function. For a general definition of Lipschitz domains, see [1] or [3].

It is well known that embeddings $W^{1p}(\Omega) \to L^p(\Omega)$ are compact for Lipschitz domains because they are extension domains [3]. In this way, P. W. Jones characterized all finitely connected extension domains in the plane (for the Sobolev embedding) and proved that it is exactly the (ε, δ) -Domains [5]. Using this characterization, we will show that a very simple subset Ω of \mathbb{R}^2 which is not an extension domain can satisfy the conclusion of the Rellich-Kondrachov theorem.

An open subset Ω of \mathbb{R}^N is an extension domain if for every $(k, p) \in \mathbb{N} \times [1, +\infty]$ there exists a bounded linear operator $\Lambda_{kp} : W^{kp}(\Omega) \to W^{kp}(\mathbb{R}^N)$ such that $\Lambda_{kp}(f)|_{\Omega} = f$ for all $f \in W^{kp}(\Omega)$.

An open subset Ω of \mathbb{R}^N is an (ε, δ) -Domain if, $\forall (x, y) \in \Omega^2$ such that $|x - y| < \delta$, there exists a rectifiable arc $\gamma \subset \Omega$ joining x to y and satisfying

$$l(\gamma) \leqslant \frac{1}{\varepsilon} |x - y| \text{ and } d(z, \Omega^c) \geqslant \frac{\varepsilon |x - z| |y - z|}{|x - y|}, \quad \forall z \in \gamma,$$

where $l(\gamma)$ is the length of γ .

Jones proved the following theorem: Let $\Omega \subset \mathbb{R}^2$ be an open finitely connected set. Then Ω is an extension domain if and only if it is an (ε, δ) -Domain for some values of $\varepsilon, \delta > 0$.

Let us consider the open set of the plane $\Omega = \{(x, y), x \in]-1, 1[, 0 < y < \}$ $1 + \sqrt{|x|}$. The set Ω can be split in two convex subsets by the line x = 0. We can apply theorems 5.2 and 6.1 to deduce that the canonical embeddings $W^{1p}(\Omega) \to L^p(\Omega)$ are compact for $p \in [1, +\infty]$. Nevertheless, Ω is not an extension domain.

Indeed, for $n \in \mathbb{N}^*$, $n \ge 2$, we consider $X_n = \left(-\frac{1}{n}, 1 + \sqrt{\frac{1}{2n}}\right)$ and

 $Y_n = \left(\frac{1}{n}, 1 + \sqrt{\frac{1}{2n}}\right)$. We easily verify that every path $\gamma \subset \Omega$ joining X_n and Y_n is such that $l(\gamma) \ge 2\left(\frac{1}{n^2} + \frac{1}{2n}\right)^{\frac{1}{2}} \sim \sqrt{\frac{2}{n}}$. But we have $|X_n - Y_n| = \frac{2}{n}$ and the (ε, δ) condition cannot be verified for

any ε and δ in \mathbb{R}^*_+ .

9 Compact embedding theorem for non Lipschitz domains

In this section, we will extend the Lipschitz boundary condition to provide more general domains satisfying the conclusion of the Rellich-Kondrachov theorem. The reader will easily verify that those domains are not (ε, δ) -Domains in general. In fact, if a boundary of an (ε, δ) -Domain must be rather smooth. we will show that the boundary of domains satisfying the conclusion of the Rellich-Kondrachov theorem can be wilder.

For every $p \in [1, +\infty]$, we denote by p' the conjugate exponent of p. For r > 0, we set $Q_r =] - r, r[^{N-1} \text{ and } \overline{Q_r} = [-r, r]^{N-1}$. For every $h \in C^0(\overline{Q_r}, \mathbb{R}^+_+)$, we set

$$E(h) = \{(y_1, \dots, y_N), (y_1, \dots, y_{N-1}) \in Q_r, \text{ and } 0 < y_N < h(y_1, \dots, y_{N-1})\}$$

and

$$F(h) = \{(y, h(y)), y \in Q_r\}.$$

Definition 9.1. Let $q \in [1, \infty]$, Ω be an open subset of \mathbb{R}^N and $x \in \partial \Omega$. We say that Ω has a q-Rectifiable boundary at point x if there exists r > 0. $h \in C^0(\overline{Q_r}, \mathbb{R}^*_+) \cap W^{1q}(Q_r)$, an affine rotation L and an open neighborhood U of x such that $L(F(h)) \subset U$, $\Omega \cap U = L(E(h))$ and

(a) For $q = +\infty$: There exists $\alpha > 0$ such that for all $1 \leq k \leq N-1$, and almost all $(y_1, \ldots, y_{k-1}, y_{k+1}, \ldots, y_{N-1}) \in]-r, r[^{N-2},$ the application $z \to h(y_1, \ldots, y_{k-1}, z, y_{k+1}, \ldots, y_{N-1})$ is in $W^{1\infty}(]-r, r[)$ with

ess.
$$\sup_{\mathbb{R}} \{ |\nabla h(y_1, \dots, y_{k-1}, z, y_{k+1}, \dots, y_{N-1})|, z \in] - r, r[\} \leq \alpha$$

(b) For $1 < q < +\infty$: There exists $\alpha > 0$ such that for all $1 \leq k \leq N-1$, and almost all $(y_1, \ldots, y_{k-1}, y_{k+1}, \ldots, y_{N-1}) \in]-r, r[^{N-2},$ the application $z \to h(y_1, \ldots, y_{k-1}, z, y_{k+1}, \ldots, y_{N-1})$ is in $W^{1q}(]-r, r[)$ with

$$\left[\int_{-r}^{r} |\partial_k h(y_1, \dots, y_{k-1}, z, y_{k+1}, \dots, y_{N-1})|^q dz\right]^{1/q} \leq \alpha$$

(c) For q = 1: $\forall \alpha > 0$, $\exists \eta > 0$ such that for every $1 \leq k \leq N-1$, and for almost all $(y_1, \ldots, y_{k-1}, y_{k+1}, \ldots, y_{N-1}) \in]-r, r[^{N-2}$, the application $z \to h(y_1, \ldots, y_{k-1}, z, y_{k+1}, \ldots, y_{N-1})$ is in $W^{1q}(]-r, r[)$ with

$$\int_{a}^{b} |\partial_k h(y_1, \dots, y_{k-1}, z, y_{k+1}, \dots, y_{N-1})| dz \leqslant \alpha$$

as soon as $-r < a \leq b < r$ with $b - a \leq \eta$.

Remark 9.1. If N = 2, the conditions become $h \in C^0([-r, r], \mathbb{R}^*_+) \cap W^{1q}(] - r, r[)$.

Remark 9.2. In the general case, the hypothesis on functions h impose a condition on the length of paths drawn on the surface F(h) staying on the parallels to the coordinate axes.

Lemma 9.1. Let $p \in [1, +\infty]$, r > 0 and $h \in W^{1p'}(Q_r)$ satisfying the hypothesis of definition 9.1 for q = p'. Then the canonical embedding $W^{1p}(E(h)) \rightarrow L^p(E(h))$ is compact.

PROOF. Without loss of generality, we can assume r = 1.

• FIRST CASE: 1 .

For every 0 < t < 1 and $x \in \overline{Q}$, we set $\gamma(t, x) = (x, th(x))$. We denote $m = \min_{x \in \overline{Q}} h(x) > 0$ and $M = \max_{x \in \overline{Q}} h(x) > 0$.

From the hypothesis, there exists $\alpha > 0$ such that for all $0 \leq k \leq N-1$, almost every $y \in]-1, 1[^{N-2}]$

$$\left[\int_{-1}^{1} \left(1 + \left|\partial_{k}h(y_{1}, \dots, y_{k-1}, z, y_{k+1}, \dots, y_{N-1})\right|^{2}\right)^{p'/2} dz\right]^{1/p'} \leq \alpha.$$

For every $n \in \mathbb{N}^*$, we denote $(C^n_{\lambda})_{\lambda \in \Lambda_n}$ a subdivision of Q by half-Open hypercubes of size 1/n. In the following, for the sake of simplicity, we denote $(C_i)_{0 \leq i \leq r}$ for the partition $(C^n_{\lambda})_{\lambda \in \Lambda_n}$.

We consider a sequence $0 = t_0 < t_1 < \ldots < t_q = 1$, and for $0 \leq i \leq r$ and $1 \leq j < q$, we set $\Omega_{ij} = \{\gamma(t, x), x \in C_i, t_j \leq t < t_{j+1}\}$ and $\Omega_{i0} = \{\gamma(t, x), x \in C_i, 0 < t < t_1\}$. Thus, $S_{n,t_0,\ldots,t_q} = (\Omega_{ij})_{\substack{0 \leq i \leq r \\ 0 \leq j < q}}$ is a subdivision of $\Omega = E(h)$.

Let us fix $0 \leq i \leq r$ and $0 \leq j < q$. For $g \in L^1(\Omega_{ij}) \cap C^1(\Omega_{ij})$, we have

$$\int_{\Omega_{ij}} g(u) \, du = \int_{x \in C_i} \int_{t_j}^{t_{j+1}} g(\gamma(t, x)) h(x) \, dt dx.$$

For $f \in W^{1p}(\Omega) \cap C^1(\Omega)$, $0 \leq i \leq r$ and $0 \leq j < q$, we set

$$\Delta^{i,j} = \int_{\Omega_{ij}} \left| f(v) - \frac{1}{\mu(\Omega_{ij})} \int_{\Omega_{ij}} f(u) \, du \right|^p dv$$

$$\leq \frac{1}{\mu(\Omega_{ij})} \int_{t_j}^{t_{j+1}} \int_{C_i} \int_{t_j}^{t_{j+1}} \int_{C_i} \left| f(\gamma(t,x)) - f(\gamma(t',x')) \right|^p h(x) h(x') \, dx' \, dt' \, dx \, dt.$$

Now, we must join the points $\gamma(t, x)$ and $\gamma(t', x')$ with a path staying in Ω_{ij} . We have

$$\begin{aligned} & |f(\gamma(t,x)) - f(\gamma(t',x'))| \\ \leqslant |f(\gamma(t,x)) - f(\gamma(t',x))| + |f(\gamma(t',x)) - f(\gamma(t',x'))| \end{aligned}$$

and

$$|f(\gamma(t,x)) - f(\gamma(t',x'))|^{p} \\ \leqslant 2^{p-1} (|f(\gamma(t,x)) - f(\gamma(t',x))|^{p} + |f(\gamma(t',x)) - f(\gamma(t',x'))|^{p}).$$

On one hand

$$\left|f(\gamma(t,x)) - f(\gamma(t',x))\right|^{p} \leq \left|\int_{a=t}^{t'} |\nabla f(\gamma(a,x))|h(x)da\right|^{p}$$
$$\leq (t_{j+1} - t_{j})^{p-1}M^{p} \int_{a=t_{j}}^{t_{j+1}} |\nabla f(\gamma(a,x))|^{p} da$$

Then,

$$\Delta_1^{i,j} = \frac{1}{\mu(\Omega_{ij})} \int_{t_j}^{t_{j+1}} \int_{C_i} \int_{t_j}^{t_{j+1}} \int_{C_i} \left| f(\gamma(t,x)) - f(\gamma(t',x)) \right|^p h(x) h(x') dx' \, dt' dx \,$$

$$\leq (t_{j+1} - t_j)^p M^p \int_{x \in C_i} \int_{a=t_j}^{t_{j+1}} |\nabla f(\gamma(a, x)|^p h(x) dadx)$$

$$\leq (t_{j+1} - t_j)^p M^p \int_{\Omega_{ij}} |\nabla f|^p$$

On the other hand, if we set $C_i = I_{i1} \times \ldots \times I_{iN-1}$, then for $1 \leq k \leq N-1$,

$$\begin{split} \left| f(\gamma(t', (x_1, \dots, x_{k-1}, x'_k, \dots, x'_{N-1}))) - f(\gamma(t', (x_1, \dots, x_k, x'_{k+1}, \dots, x'_{N-1}))) \right| \\ & \leq \left[\int_{I_{ik}} \left| \nabla f(\gamma(t', (x_1, \dots, x_{k-1}, z, x'_{k+1}, \dots, x'_{N-1}))) \right|^p dz \right]^{1/p} \\ & \times \left[\int_{I_{ik}} \left(1 + \left| \partial_k h(x_1, \dots, x_{k-1}, z, x'_{k+1}, \dots, x'_{N-1}) \right|^2 \right)^{p'/2} dz \right]^{1/p'} \\ & \leq \alpha \left[\int_{I_{ik}} \left| \nabla f(\gamma(t', (x_1, \dots, x_{k-1}, z, x'_{k+1}, \dots, x'_{N-1}))) \right|^p dz \right]^{1/p}. \end{split}$$

We obtain

$$\left|f(\gamma(t',x))-f(\gamma(t',x'))\right|^p$$

$$\leq \left[\sum_{k=1}^{N-1} \left| f(\gamma(t', (x_1, \dots, x_{k-1}, x'_k, \dots, x'_{N-1}))) - f(\gamma(t', (x_1, \dots, x_k, x'_{k+1}, \dots, x'_{N-1}))) \right| \right]^p$$

$$\leq \alpha^p N^{p-1} \sum_{k=1}^{N-1} \int_{I_{ik}} \left| \nabla f(\gamma(t', (x_1, \dots, x_{k-1}, z, x'_{k+1}, \dots, x'_{N-1}))) \right|^p dz$$

and, if $\Delta f \gamma = f(\gamma(t', x)) - f(\gamma(t', x'))$, then

$$\begin{split} \Delta_{2}^{i,j} &= \frac{1}{\mu(\Omega_{ij})} \int_{t=t_{j}}^{t_{j+1}} \int_{x \in C_{i}} \int_{t'=t_{j}}^{t_{j+1}} \int_{x' \in C_{i}} \left| \Delta f \gamma \right|^{p} h(x) h(x') dx' \, dt' dx \, dt \\ &\leqslant \frac{\alpha^{p} M^{2} N^{p-1}}{nm} \sum_{k=1}^{N-1} \int_{t'=t_{j}}^{t_{j+1}} \int_{C_{i}} \left| \Theta(f,\gamma) \right|^{p} dx_{1} \dots dx_{k-1} dz dx'_{k+1} dx_{N-1} \, dt' \\ &\leqslant \frac{\alpha^{p} M^{2} N^{p}}{nm^{2}} \int_{\Omega_{ij}} |\nabla f|^{p}. \end{split}$$

where $\Theta(f,\gamma) = \nabla f(\gamma(t',(x_1,\ldots,x_{k-1},z,x'_{k+1},\ldots,x'_{N-1})))$. Now, $\Delta^{i,j} \leq 2^{p-1}(\Delta_1^{i,j} + \Delta_2^{i,j})$, and

$$\begin{split} \left\| f - T(f, S_{n, t_0, \dots, t_q}) \right\|_p^p &= \sum_{\substack{0 \le i \le r \\ 0 \le j < q}} \Delta^{ij} \\ \leqslant 2^{p-1} \sum_{\substack{0 \le i \le r \\ 0 \le j < q}} \left[(t_{j+1} - t_j)^p M^p + \frac{\alpha^p M^2 N^{p+1}}{nm} \right] \int_{\Omega_{ij}} |\nabla f|^p. \end{split}$$

We choose $(t_j)_{0 \leq j \leq q}$ such that $\operatorname{Max}_{0 \leq j < q}(t_{j+1} - t_j) \leq \frac{\varepsilon}{2M}$ and $n \geq 1$ such that $n \geq \frac{2^p \alpha^p M^2 N^p}{m^2 \varepsilon^p}$. The subdivision S_{n,t_0,\dots,t_q} satisfies

$$\|f - T(S, f)\|_{p} \leq \varepsilon \left(\int_{\Omega} |\nabla f(u)|^{p} du\right)^{1/p}$$

for every $f \in W^{1p}(\Omega)$ (with the usual density argument). Thus, the embedding $W^{1p}(\Omega) \to L^p(\Omega)$ is compact, and the proof is complete.

• Second Case: p = 1.

The proof is very similar. Indeed,

$$\Delta_1^{i,j} \leqslant (t_{j+1} - t_j) M \int_{\Omega_{ij}} |\nabla f(u)| \, du, \quad \text{and}$$
$$\Delta_2^{i,j} \leqslant \frac{M^2 N (1 + \|h\|_{W^{1\infty}})}{nm^2} \mu(\Omega_{ij}) \int_{\Omega_{ij}} |\nabla f|.$$

• THIRD CASE: $p = +\infty$.

Let $f \in W^{1\infty}(\Omega) \cap C^1(\Omega)$. For $(t,t') \in [t_j,t_{j+1}]^2$, $t \leq t'$ and $(x,x') \in C_i^2$, the estimations become

$$|f(\gamma(t,x) - f(\gamma(t',x))| \leq \int_{a=t}^{t'} |\nabla f(\gamma(a,x))|h(x)da \leq (t_{j+1} - t_j)M||f||_{W^{1\infty}}$$

and

$$|f(\gamma(t',x) - f\gamma(t',x'))| \leq ||f||_{W^{1\infty}} \sum_{k=1}^{N} \int_{I_{ik}} \left(1 + \left|\partial_k h(x_1,\ldots,x_{k-1},z,x'_{k+1},\ldots,x'_{N-1})\right|^2\right)^{1/2} dz$$

Now, for $\varepsilon > 0$, we can choose $(t_j)_{0 \leq j \leq q}$ satisfying $\operatorname{Max}_{0 \leq j < q}(t_{j+1} - t_j) \leq \frac{\varepsilon}{2M}$ and $n \geq 1$ such that for every $1 \leq k \leq N - 1$, and for almost all $(y_1, \ldots, y_{k-1}, y_{k+1}, \ldots, y_{N-1}) \in [-1, 1]^{N-2}$

$$\int_{a}^{b} \left(1 + \left| \partial_{k} h(x_{1}, \dots, x_{k-1}, z, x'_{k+1}, \dots, x'_{N-1}) \right|^{2} \right)^{1/2} \leq \frac{\varepsilon}{2N}$$

as soon as $-1 < a \leq b < 1$ with $b - a \leq \frac{1}{n}$. And we have

$$f \in W^{1\infty}(\Omega) \cap C^1(\Omega), \quad \left\| f - T(f, S_{n, t_0, \dots, t_q}) \right\|_{\infty} \leqslant \varepsilon \|f\|_{W^{1\infty}}.$$

Using an usual application of regularization, for every $f \in W^{1\infty}(\Omega)$, there exists a sequence $(f_r)_{r\in\mathbb{N}}$ of $W^{1\infty}(\Omega)\cap C^1(\Omega)$ such that

$$\lim_{r \to +\infty} \|f_r - f\|_{\infty} = 0 \text{ and } \forall r \in \mathbb{N}, \ \|f_r\|_{W^{1\infty}} \leq \|f\|_{W^{1\infty}}.$$

We obtain

$$f \in W^{1\infty}(\Omega), \quad \left\| f - T(f, S_{n,t_0,\dots,t_q}) \right\|_{\infty} \leq \varepsilon \|f\|_{W^{1\infty}}$$

and the result follows.

Definition 9.2. We say that an open set Ω has a *q*-Rectifiable boundary if there exists a finite family $(x_k)_{0\leqslant k\leqslant m}$ of $\partial\Omega$ such that Ω is q-Rectifiable atevery point x_k with $\partial \Omega = \bigcup_{k=0}^m \overline{L_{x_k}(F(h_{x_k}))}.$

Theorem 9.1. Let $p \in [1, +\infty]$. If Ω is a bounded open subset of \mathbb{R}^N with a q-Rectifiable boundary, then the embedding $W^{1p}(\Omega) \to L^p(\Omega)$ is compact.

PROOF. Let Ω be a bounded open subset of \mathbb{R}^N with a q-Rectifiable boundary and a family $(x_i)_{0 \leq i \leq m}$ of points of $\partial \Omega$ such that $\partial \Omega = \bigcup_{k=0}^{m} \overline{L_{x_k}(F(h_{x_k}))}$. The reader may wish to convince himself that $\Omega' = \Omega - \bigcup_{i=0}^{m} \overline{L_{x_i}(E(h_{x_i}))}$

is a an open polytope of \mathbb{R}^N which can be split (up to a neglideable set) in a finite partition of convex polytopes $(\Omega_k)_{0 \le k \le r}$. A proof of this result can be found in appendix B. Then, from theorems 5.2 and 6.1, the embedding $W^{1p}(\Omega') \to L^p(\Omega')$ is compact.

We have a partition of Ω in m + 2 parts. From lemma 9.1 and theorem 6.2, the embeddings $W^{1p}(L_{x_i}(E(h_{x_i}))) \to L^p(L_{x_i}(E(h_{x_i})))$ are compact, and since $\mu(\partial E(h_{x_i})) = 0$ for $0 \leq i \leq m$, we conclude from theorem 6.1 that the embedding $W^{1p}(\Omega) \to L^p(\Omega)$ is compact.

We can give a nice formulation of this result in the case N = 2.

Corollary 9.1. Let $p \in [1, +\infty[$. If Ω is a bounded open subset of \mathbb{R}^2 for whom the boundary is locally a graph of continuous applications in $W^{1p'}$, then the embedding $W^{1p}(\Omega) \to L^p(\Omega)$ is compact.

10 APPENDIX A Extension to Locally Compact Metric Spaces

In this appendix, we give without proof the straightforward extension of compactness theorem when Ω is a general metric locally compact set and $1 \leq p < +\infty$.

To extend the result of section 3, we must specify notions of subdivision and simple function.

- A restricted subdivision of Ω is a couple (Ω_0, S) , where $\Omega_0 \in \mathfrak{M}$ is relatively compact, and S is a subdivision of Ω_0 .
- A function $f : \Omega \to \mathbf{C}$ is a restricted simple function if there is a restricted subdivision (Ω_0, S) of Ω such that the restriction of f to Ω_0 is simple, and f is the null function over Ω_0^c . In this case, we will say that f and (Ω_0, S) are adapted to each other. We denote by $E(\Omega)$ the classes of restricted simple functions modulo the negligibility relation. We will say that $F \in E(\Omega)$ and a restricted subdivision (Ω_0, S) are adapted to each other if there is $f \in F$ adapted to (Ω_0, S) .
- Let $f: \Omega \to X$ be a measurable function and (Ω_0, S) a restricted subdivision such that f is integrable on Ω_0 . We denote by $T(f, \Omega_0, S)$ the restricted simple function null outside of Ω_0 and such that the restriction to Ω_0 is T(f, S). For every $F \in L^p(\Omega)$, $f \in F$ and (Ω_0, S) a restricted subdivision of Ω , we still denote by $T(F, \Omega_0, S)$ the class of T(f, S).

Remark 10.1. If Ω is relatively compact, for every subdivision S of Ω , (Ω, S) is a restricted subdivision of Ω . Moreover, simple functions and restricted simple functions are the same.

Theorem 10.1. Let Γ be a subset of $L^p(\Omega)$. We say that Γ is equi-p-Integrable if one of those equivalent properties is satisfied.

- For every $\varepsilon > 0$ there exists a restricted subdivision (Ω_0, S) of Ω such that

$$\forall F \in \Gamma, \quad \|F - T(F, \Omega_0, S)\|_n \leq \varepsilon.$$

- For every $\varepsilon > 0$ there exists a restricted subdivision (Ω_0, S) of Ω such that for all $F \in \Gamma$ we can find $F_{s\varepsilon} \in E(\Omega)$ adapted to (Ω_0, S) and such that $||F - F_{s\varepsilon}||_p \leq \varepsilon$.

We say that Γ is weakly uniformly equi-p-Integrable if one of those equivalent properties is satisfied.

- For every $\varepsilon > 0$ there exists $\eta > 0$ and $\Omega_0 \in \mathfrak{M}$ such that for every restricted subdivision (Ω_0, S) of Ω satisfying $\tau(S) \leq \eta$ we have

$$\forall F \in \Gamma, \quad \|F - T(F, \Omega_0, S)\|_n \leq \varepsilon$$

- For every $\varepsilon > 0$ there exists $\eta > 0$ and $\Omega_0 \in \mathfrak{M}$ such that for every restricted subdivision (Ω_0, S) of Ω satisfying $\tau(S) \leq \eta$, and for every $F \in$ Γ , we can find $F_{s\varepsilon} \in E(\Omega)$ adapted to (Ω_0, S) such that $||F - F_{s\varepsilon}||_p \leq \varepsilon$.

Remark 10.2. The equivalence of the two definitions of equi-p-Integrability is obvious for a relatively compact subset Ω , but uniform equi-p-Integrability and weak uniform equi-p-Integrability are not exactly the same notion.

Clearly, uniform equi-*p*-Integrability implies weak uniform equi-*p*-Integrability but the converse is false. For instance, if $f : [0,1] \to \mathbb{R}$ with f(x) = 0 for $0 \leq x \leq \frac{1}{2}$ and f(x) = 1 for $\frac{1}{2} < x \leq 1$, the set of functions $\Gamma = \{\lambda f, \lambda \in \mathbb{R}\} \subset$ $L^p(\Omega)$ is weakly uniformly equi-*p*-Integrable (we set $\Omega_0 = [\frac{1}{2}, 1] \ldots$), but it is not uniformly equi-*p*-Integrable.

Nevertheless, as a consequence of theorem 10.3, those concepts are equivalent for a bounded subset of $\mathcal{L}^{p}(\Omega)$.

The proofs of the following results are straightforward adaptations of previous theorems and will be omitted.

Theorem 10.2. Let $(f_k)_{0 \leq k \leq n}$ be a finite family of $\mathcal{L}^p(\Omega)$. For every $\varepsilon > 0$, there exits a relatively compact part Ω_0 in \mathfrak{M} and $\eta > 0$ such that for every restricted subdivision (Ω_0, S) of Ω satisfying $\tau(S) < \eta$ we have

$$\forall k \in \{0, \dots, n\}, \quad \|f_k - T(f_k, \Omega_0, S)\|_n \leq \varepsilon.$$

Lemma 10.1. Let (F_n) be a sequence of $E(\Omega)$ adapted to a same restricted subdivision of Ω . If $(||F_n||_p)$ is bounded, we can extract a subsequence $(F_{\varphi(n)})$ converging in $(E(\Omega), || ||_p)$.

Theorem 10.3. Let Γ be a subset of $L^p(\Omega)$. The following assertions are equivalent:

- (i) Γ is relatively compact ;
- (ii) Γ is bounded and weakly uniformly equi-p-Integrable ;
- (iii) Γ is bounded and equi-p-Integrable.

11 APPENDIX B Topological Results

Theorem 11.1. Let Ω be an open subset of \mathbb{R}^N with a q-Rectifiable boundary, and let a finite family $(x_k)_{0 \leq k \leq m}$ of $\partial\Omega$ be such that Ω is q-Rectifiable at every point x_k with $\partial\Omega = \bigcup_{k=0}^m \overline{L_{x_k}(F(h_{x_k}))}$. Then the open set $\Omega' = \Omega - \bigcup_{k=0}^m \overline{L_{x_k}(E(h_{x_k}))}$ is the union of a finite family of convex polytopes, with a negligible set lying on boundaries of those convex polytopes.

PROOF. For $0 \leq i \leq m$ we set $\Omega_i = L_{x_i}(E(h_{x_i}))$ and denote by $(G_{ik})_{1 \leq k \leq 2^N - 1}$ the hyperplanes limiting the boundary of Ω_i . We set $G_{ik} = \{x \in \mathbb{R}^N, g_{ik}(x) = 0\}$, where g_{ik} are non null linear forms, and $G_{ik}^+ = \{x \in \mathbb{R}^N, g_{ik}(x) > 0\}$, $G_{ik}^- = \{x \in \mathbb{R}^N, g_{ik}(x) < 0\}$.

We first prove that $\partial \Omega' \subset \bigcup_{i,k} G_{ik}$.

Indeed, since ${\Omega'}^c = \Omega^c \cup (\bigcup_{0 \leq i \leq \underline{m}} \overline{\Omega_i})$ we deduce that for every $x \in \partial \Omega'$, there exists an index *i* such that $x \in \overline{\Omega_i} \cap \overline{\Omega'}$, and more precisely, $x \in \partial \Omega_i \cap \overline{\Omega'}$.

For every index *i*, we have $\partial \Omega_i \subset (\cup_k G_{ik}) \cup L_{x_i}(F(h_{x_i}))$. But $U_{x_i} \subset \overline{\Omega'}^c$ and $L_{x_i}(F(h_{x_i})) \subset U_{x_i}$. We deduce $x \in \bigcup_k G_{ik} \subset \bigcup_{j,k} G_{jk}$ and the result follows.

For $\varepsilon = (\varepsilon_{ik}) \in \{+, -\}^{(m+1)(2^N-1)}$, we set $V_{\varepsilon} = \bigcap_{i,k} G_{ik}^{\varepsilon_{ik}}$. We want to prove the following alternative: $V_{\varepsilon} \cap \Omega' = \emptyset$ or $V_{\varepsilon} \subset \Omega'$.

If there exist $x_0 \in V_{\varepsilon} \cap \Omega'$ and $x_1 \in V_{\varepsilon} \cap {\Omega'}^c$, we can find $x_2 \in [x_0, x_1] \cap \partial \Omega'$. Then, there exists an index (i, k) such that $x_2 \in G_{ik}$ which is a contradiction with $x_2 \in V_{\varepsilon}$.

Now, let Δ be the set of indexes ε such that $V_{\varepsilon} \subset \Omega'$. From the partition $\mathbb{R}^N = (\bigcup_{\varepsilon} V_{\varepsilon}) \cup (\bigcup_{i,k} G_{i,k})$, we deduce $\Omega' = (\bigcup_{\varepsilon \in \Delta} V_{\varepsilon}) \cup (\Omega' \cap (\bigcup_{i,k} G_{i,k}))$.

Lemma 11.1. Let Ω be a bounded convex open subset of \mathbb{R}^N with $0 \in \Omega$. The function $h: S_{N-1} \to \mathbb{R}^*_+$ defined by $h(u)u \in \partial\Omega$ is Lipschitzian.

PROOF. Let $\alpha > 0$ be such that $B(0, \alpha) \subset \Omega$. If h is not a Lipschitzian application, we can find two sequences (u_n) and (v_n) of S_{N-1} with the same limit u, such that

 $\forall n \in \mathbb{N}, \ u_n \neq v_n, \ u_n \neq -v_n \text{ and } h(u_n) - h(v_n) \ge n|u_n - v_n|.$

Let $w_n \in S_{N-1}$ be such that (v_n, w_n) is an orthonormal basis of $vect(u_n, w_n)$ satisfying $u_n = \cos(\theta_n)v_n + \sin(\theta_n)w_n$ with $\theta_n \in]0, \pi[$ and $\lim_{n \to +\infty} \theta_n = 0$. We have $\theta_n < \pi/2$ for $n \ge n_0$. We are going to show that $h(v_n)v_n$ falls into the triangle $(O, h(u_n)u_n, -\alpha w_n)$ for some n. This will be in contradiction with $h(v_n)u_n \in \partial\Omega$.

For $n \ge n_0$, $h(v_n)v_n = \frac{h(v_n)}{\cos(\theta_n)h(u_n)}h(u_n)u_n + \frac{\sin(\theta_n)h(v_n)}{\alpha\cos(\theta_n)}(-\alpha v_n).$ We have

$$\frac{h(v_n)}{\cos(\theta_n)h(u_n)} > 0 \text{ and } \frac{\sin(\theta_n)h(v_n)}{\alpha\cos(\theta_n)} > 0;$$

we have to prove

$$\frac{h(v_n)}{\cos(\theta_n)h(u_n)} + \frac{\sin(\theta_n)h(v_n)}{\alpha\cos(\theta_n)} < 1 \text{ for large } n.$$

From the hypothesis,

$$\frac{h(v_n)}{\cos(\theta_n)h(u_n)} + \frac{\sin(\theta_n)h(v_n)}{\alpha\cos(\theta_n)} \leqslant \frac{1}{\cos(\theta_n)} \left(1 - \frac{2n\sin(\theta_n/2)}{h(u_n)} + \frac{\sin(\theta_n)}{\alpha}h(v_n)\right)$$
$$\leqslant 1 - \frac{n\theta_n}{h(u)} + o(n\theta_n)$$

which concludes the proof.

Theorem 11.2. Let Ω be a bounded convex open subset of \mathbb{R}^N with $0 \in \Omega$ and h as in lemma 11.1. The function $\Phi : \mathbb{R}^N \to \mathbb{R}^N$ defined by $\Phi(0) = 0$ and, for $x \in \mathbb{R}^N - \{0\}$, $\Phi(x) = h(\frac{x}{|x|})x$ is bi-Lipschitzian.

PROOF. *M* denotes a Lipschitz ratio for *h*. For *x* and *x'* in $\mathbb{R}^N - \{0\}$,

$$\begin{split} |\Phi(x) - \Phi(x')| &= \left| h(\frac{x}{|x|})x - h(\frac{x'}{|x'|})x' \right| \\ &\leq \|h\|_{\infty} |x - x'| + |x'| \left| h(\frac{x}{|x|}) - h(\frac{x'}{|x'|}) \right| \\ &\leq \|h\|_{\infty} |x - x'| + M|x'| \left| \frac{x}{|x|} - \frac{x'}{|x'|} \right| \\ &\leq \|h\|_{\infty} |x - x'| + \frac{M}{|x|} |x|x'| - x'|x|| \end{split}$$

 \square

$$\leq \|h\|_{\infty} |x - x'| + \frac{M}{|x|} (|x|||x'| - |x|| + |x||x - x'|)$$

$$\leq (\|h\|_{\infty} + 2M)|x - x'|$$

which is still valid when x = 0 or x' = 0. Now, $\Phi^{-1}(x) = \left[h(\frac{x}{|x|})\right]^{-1} x$ for $x \in \mathbb{R} - \{0\}$ and the previous calculus still stands for Φ^{-1} because

$$\forall (u,v) \in S_{N-1}^2, \quad \left| \frac{1}{h(u)} - \frac{1}{h(v)} \right| \leqslant \frac{M}{m^2} |u-v|$$

where $m = \min\{h(u), u \in S_{N-1}\} > 0$.

References

- [1] R. Adams, Sobolev spaces, Academic Press, 1975.
- [2] H. Brézis, Analyse fonctionnelle, Masson, Paris, (1983).
- [3] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CCR Press, (1992).
- [4] J.-C. Feauveau, Approximation theorems for generalized Riemann integrals, Real Anal. Exchange, 26(2) (2000-2001), 471-484.
- [5] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math., **147** (1981).
- [6] W. Rudin, Real and complex analysis, McGraw-Hill, 1966.
- [7] W. P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, Springer-Verlag, 120 (1989).