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A THEOREM OF NAKANISHI FOR THE
GENERAL DENJOY INTEGRAL

Abstract

In this paper, we give an example to show that a theorem of Nakan-
ishi for the Henstock integral does not hold for the general Denjoy inte-
gral.

1 Introduction and Preliminaries

Shizu Nakanishi proved the following theorem [3].

Theorem 1.1. Let f be a Henstock integrable function on an interval E of the
real line. Then for any monotone null sequence {εk}, there exists a sequence
{Xk} of closed sets in E such that:

1). Xk ↗ E,

2). fXk
is Lebesgue integrable on E for each k,
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3). for any k, if {Ii}pi=1 is a finite sequence of nonoverlapping intervals in E
with at least one of the vertices of each Ii belonging to Xk, then we have

p∑
i=1

∣∣∣∣(L)
∫

Ii

fXk
− (H)

∫
Ii

f

∣∣∣∣< εk,

where Xk ↗ E means that Xk ⊂ Xk+1 for any k and ∪∞k=1Xk = E, and
fXk

(x) = f(x) when x ∈ Xk and 0 otherwise.

It is well-known that the Henstock integral is equivalent to the Denjoy
integral in the restricted sense, and not to the Denjoy integral in the wide
sense (general Denjoy integral). So a question arises naturally: Can Theorem
1.1 apply to the general Denjoy integral? The answer is negative. In this short
paper, we give an example to illustrate this. We note that a modified version
of Theorem 1.1 for the general Denjoy integral is given in Corollary 1 of [2].

2 Point Sets on the Real Line

Let [0, 1] be the unit interval on the real line and X be the generalized Cantor
set with |X| = 7

8 , [1, p.41], with the complementary open intervals given by

I◦i,j , i = 1, 2, . . . , j = 1, . . . , 2i−1, in which |Ii,j | =
1

22i+2
. Suppose Y is another

closed set with |Y | ≥ 7
8 . Then it is obvious that |X ∩ Y | ≥ 3

4 . Moreover, we
have the following lemmas.

Lemma 2.1. There exists a point x0 ∈ X and an r0 > 0 such that for any
interval I ⊂ B(x0, r0) with x0 ∈ I, we have

|X ∩ I ∩ Y | ≥ 3
4
|X ∩ I|, (2.1)

where B(x0, r0) = {x : |x− x0| < ro}.

Proof. If not, then for any x ∈ X, there exists asequence of intervals {In(x)}
which satisfies ∩∞n=1In(x) = {x} and

|X ∩ In(x) ∩ Y | < 3
4
|X ∩ In(x)|. (2.2)

Then from the Vitali’s Covering Theorem, [8, p.109], we know that for any ε >
0, there exists a finite sequence of disjoint intervals {Ink

(xk) : k = 1, 2, . . . , s}
in {In(x) : n = 1, 2, . . . and x ∈ X}, such that |X − (∪s

k=1Ink
(xk)) ∩X| < ε.

Thus
|(X − ∪s

k=1Ink
(xk)) ∩X ∩ Y | < ε. (2.3)
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On the other hand, using (2.2) we know that

|X ∩ (∪s
k=1Ink

(xk)) ∩ Y | =
s∑

k=1

|X ∩ Ink
(xk) ∩ Y |

<
3
4

s∑
k=1

|X ∩ Ink
(xk)| < 3

4
|X|.

Combining the above relation with (2.3), we have |X ∩ Y | < 21
32 + ε. Since ε

can be arbitrarily small, then |X ∩ Y | < 3
4 . This is a contradiction to the fact

that |X ∩ Y | ≥ 3
4 . The proof is complete.

Lemma 2.2. Let x0 and r0 be a point and the corresponding positive number
in Lemma 2.1. We denote by Ii,j(i) the interval which is closest to x0 among
Ii,j, j = 1, . . . , 2i−1, and by xi , yi and zi the center, the left and the right
endpoints of Ii,j(i), for any i = 1, 2, . . . . Then there exists a positive integer
i0 and a sequence of points {ui : i > i0} in X ∩ Y , such that {< ui, xi >}
is a sequence of closed intervals, no two of which have common points, where
< ui, xi > denotes [ui,xi] when ui ≤ xi and [xi, ui] when xi < ui.

Proof. Let i0 be the integer such that Ii,j(i) ⊂ B(x0, r0) for any i > i0 and
i0 < i1 < i2 < . . . be all the integers such that Iik,j(ik) ⊂ [x0, x0 + r0]. Note
that the generalized Cantor set X is symmetric. So that x0 lies inside the
left-hand half of an interval with center at xik+1 and right-hand endpoint yik

.
Thus, |[x0, xik+1 ]| ≤ |[xik+1 , yik

]| and |[x0, yik+1 ]| ≤ |[zik+1 , yik
]|. Again from

the symmetry of X we know that

|[x0, yik+1 ] ∩X| ≤ |[zik+1 , yik
] ∩X|.

Then from (2.1) we have

|X ∩ [x0, yik
] ∩ Y | ≥3

4
|X ∩ [x0, yik

]|

≥3
2
|X ∩ [x0, yik+1 ]|

>
3
2
|X ∩ [x0, yik+1 ] ∩ Y |.

From the above relation we know that X ∩ [zik+1 , yik
]∩Y 6= ∅. Choose a point

uik
from X ∩ [zik+1 , yik

] ∩ Y. It is obvious that [uik
, xik

] ∩ [x0, xik+1 ] = ∅. Do
the same on the other side of x0. Then we obtain the required sequence of
points {ui}. The proof is complete.
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3 A Counter Example

Let Ii,j be any interval mentioned above. Suppose Ii,j = [a, b]. Then we can
define easily a differentiable function Ψi,j on Ii,j such that Ψi,j(a+b

2 ) = 1
i and

Ψi,j(a) = Ψi,j(b) = 0. Let ψi,j(x) = Ψ′i,j(x) for any x ∈ Ii,j . Then we obtain a
D-integrable function ψi,j on Ii,j . Let φ be a function defined on [0, 1] such that
φ(x) = ψi,j(x) when x ∈ Ii,j and 0 otherwise. Then from the theorem [4, p.257]
we can verify that φ is D-integrable on [0, 1]. Now we shall prove that the above
D-integrable function f does not satisfy the conditions in Theorem 1.1. If f
satisfies all the conditions in Theorem 1.1, then for given positive number 1,
there exists a closed set Y0 ⊂ [0, 1]×[0, 1] with its measure being bigger than 7

8 ,
such that fY0 is Lebesgue integrable on [0, 1]× [0, 1] and for any finite sequence
of nonoverlapping intervals {Ik : k = 1, . . . , p} in [0, 1] with that at least one of

vertices of each Ik belong to Y0, we have
∑p

k=1

∣∣∣∣(L)
∫

Ik
fY0−(D)

∫
Ik
f

∣∣∣∣< 1. Thus∑p
k=1

∣∣(D)
∫

Ik
f
∣∣< M, where |fY0 | denotes the absolute function of fY0 and

M = 1 + (L)
∫
[0,1]
|fY0 |. From Lemma 2.2 we know that there exist a positive

k0 and a sequence of point-intervals {(xk, < uk, xk >) : k = k0, . . . ,∞} with
xk ∈ X ∩ Y and no two of {< uk, xk >} have common points. It is obvious
that (D)

∫
<uk,xk>

φ = 1
k for any k. Let Ik =< uk, xk >. Then for the above

given M > 0, there exists p > 0 such that
∑p

k=1 |(D)
∫

Ik
φ| > M. This is a

contradiction.
We note that an easy application of Theorem 1.1 shows that the function

given above is not Henstock integrable on [0,1]. Thus, it is also an example of
general Denjoy integrable but not Henstock integrable functions.
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