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A THEOREM OF NAKANISHI FOR THE
GENERAL DENJOY INTEGRAL

Abstract
In this paper, we give an example to show that a theorem of Nakan-
ishi for the Henstock integral does not hold for the general Denjoy inte-
gral.
1 Introduction and Preliminaries

Shizu Nakanishi proved the following theorem [3].

Theorem 1.1. Let f be a Henstock integrable function on an interval E of the
real line. Then for any monotone null sequence {ey}, there exists a sequence
{Xk} of closed sets in E such that:

1). X, / E,

2). fx, is Lebesgue integrable on E for each k,
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3). for any k, if {I;}*_, is a finite sequence of nonoverlapping intervals in E
with at least one of the vertices of each I; belonging to Xy, then we have

i(L)/Iika(H)/Iif‘<€ka

where X,/ E means that X;, C Xyq1 for any k and U2, X, = E, and
Ix, (x) = f(z) when z € X}, and 0 otherwise.

It is well-known that the Henstock integral is equivalent to the Denjoy
integral in the restricted sense, and not to the Denjoy integral in the wide
sense (general Denjoy integral). So a question arises naturally: Can Theorem
1.1 apply to the general Denjoy integral? The answer is negative. In this short
paper, we give an example to illustrate this. We note that a modified version
of Theorem 1.1 for the general Denjoy integral is given in Corollary 1 of [2].

2 Point Sets on the Real Line

Let [0, 1] be the unit interval on the real line and X be the generalized Cantor

set with |X| = g, [1, p.41], with the complementary open intervals given by
) 1

I i=12...,5=1,... ,2071in which |I; ;| = SPETh Suppose Y is another

closed set with [Y| > I. Then it is obvious that |X NY| > 2. Moreover, we

have the following lemmas.

Lemma 2.1. There exists a point xg € X and an ro9 > 0 such that for any
interval I C B(xg,r0) with xg € I, we have

3
|XmImY|ZZ|XmI\, (2.1)

where B(xg,r0) ={z : |z — x0| <70}

PROOF. If not, then for any € X, there exists asequence of intervals {I,,(x)}
which satisfies NS, I, (x) = {z} and

X N I(z) Y| < %an(xﬂ. (2.2)

Then from the Vitali’s Covering Theorem, [8, p.109], we know that for any ¢ >
0, there exists a finite sequence of disjoint intervals {I,,, (zx) : k=1,2,...,s}
in {I,(z) :n=1,2,... and © € X}, such that | X — (Uj_, I, (zx)) N X| < e.
Thus

(X —Uj_qIn, (z)) N X NY| <e. (2.3)
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On the other hand, using (2.2) we know that

X 0 (Uimi Loy (z0)) N Y] =) X N L () N Y
k=1

3¢ 3
<Z; X 1 L, ()] < 1 X].

Combining the above relation with (2.3), we have |[ X NY| < % + €. Since €
can be arbitrarily small, then | X NY] < %. This is a contradiction to the fact
that [ X NY| > 2. The proof is complete. O

Lemma 2.2. Let xg and ro be a point and the corresponding positive number
in Lemma 2.1. We denote by I; j;) the interval which is closest to xq among
L, j=1,...,27 and by z; , y; and z; the center, the left and the right
endpoints of I; jy, for any © = 1,2,.... Then there exists a positive integer
io and a sequence of points {u; : i > ig} in X NY, such that {< u;,z; >}
is a sequence of closed intervals, no two of which have common points, where
< wui,x; > denotes [u; x;] when w; < z; and [z;,w;] when x; < u;.

PROOF. Let ig be the integer such that I; ;i) C B(xg,10) for any i > ip and
ig < i1 < iz < ... be all the integers such that I, () C [0, 0 + 70]. Note
that the generalized Cantor set X is symmetric. So that zq lies inside the
left-hand half of an interval with center at x;, ,, and right-hand endpoint y;, .
Thus, on"rik+1]‘ < |[xik+1’yik]| and |[$0’yik+l]‘ < Hzik+1ayik]|' Again from
the symmetry of X we know that

Hx07yi1«+1] N X| < |[Zi1«+1vyik] N X|
Then from (2.1) we have
3
‘X N [IO,yik} n Y‘ ZZ‘X N [IO,yikH
3
Z§‘X N [Ioﬂyik+1”
3
>§‘X N [xo)yik+1:| N Y|
From the above relation we know that X N(z;,,,,%;,]NY # 0. Choose a point
u;,, from X N[z, ,,v:,) NY. It is obvious that [us, , x| N [zo,z4,,,] = 0. Do

the same on the other side of zg. Then we obtain the required sequence of
points {u;}. The proof is complete. O
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3 A Counter Example

Let I; ; be any interval mentioned above. Suppose I; ; = [a,b]. Then we can
define easily a differentiable function W; ; on I; ; such that W; ;(“+%) = 1 and
V; j(a) = ¥, ;(b) = 0. Let ¢; j(x) = V] ;(x) for any x € I; ;. Then we obtain a
D-integrable function ; ; on I, ;. Let ¢ be a function defined on [0, 1] such that
é(x) =1 j(x) when z € I, ; and 0 otherwise. Then from the theorem [4, p.257]
we can verify that ¢ is D-integrable on [0, 1]. Now we shall prove that the above
D-integrable function f does not satisfy the conditions in Theorem 1.1. If f
satisfies all the conditions in Theorem 1.1, then for given positive number 1,
there exists a closed set Yy C [0,1] x [0, 1] with its measure being bigger than Z,
such that fy, is Lebesgue integrable on [0, 1] x [0, 1] and for any finite sequence

of nonoverlapping intervals {I, : k = 1,...,p} in [0, 1] with that at least one of
vertices of each Ij; belong to Y, we have > % _; ‘ (L) [;, fvo—(D) [}, f|< 1. Thus

v nf |< M, where |fy,| denotes the absolute function of fy, and
M =1+ (L) f[O,l] | fv,|- From Lemma 2.2 we know that there exist a positive
ko and a sequence of point-intervals {(x, < ug,zr >) : k = ko, ..., 00} with
2 € X NY and no two of {< ug,xr >} have common points. It is obvious
that (D) f<uk’wk> o= % for any k. Let I =< wug,x >. Then for the above
given M > 0, there exists p > 0 such that 3°7_, [(D) [, ¢| > M. This is a
contradiction.

We note that an easy application of Theorem 1.1 shows that the function
given above is not Henstock integrable on [0,1]. Thus, it is also an example of
general Denjoy integrable but not Henstock integrable functions.

References

[1] G. B. Folland, Real analysis, Modern techniques and their applications,
New York, 1984.

[2] T.Y. Lee and P. Y. Lee, On necessary and sufficient conditions for non-
absolute integrability, Real Anal. Exchange, 20(2) (1994-5), 847-857.

[3] S. Nakanishi, A new definition of the Denjoy’s special integral by the
method of successive approximation, Mathematica Japonica, 41 (1995),
217-230.

[4] S. Saks, Theory of the integral, New York, 1937.



