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Abstract

It is shown that a Lebesgue integrable function comes equipped with
a sequence of points which one can use in conjunction with a simple “first
return – Riemann” integration procedure to compute the integral.

First return limiting processes have yielded interesting insights into gener-
alized derivatives [2, 5, 9, 11, 13] and have given rise to new characterizations
of the class of Baire one (B1) functions [1, 8, 12], as well as several standard
subclasses of B1 [3, 4, 6, 7, 10]. Thus, it seems natural to investigate whether
a first return technique might be available for computing Lebesgue integrals.
The goal of this paper is to prove the following theorem, which shows that
such a procedure is, indeed, available and is closely akin to that of Riemann
integration.

Theorem 1. Suppose f : In → R is a Lebesgue-integrable function. Then
there is a countable dense set D in In and an enumeration (xp : p ∈ N) of D
such that for each ε > 0 there is a δ > 0 such that if P is a partition of In
having norm less than δ, then∣∣∣∣∣∑

J∈P
f(r(J))|J | −

∫
In

f

∣∣∣∣∣ < ε,

where r(J) denotes the first element of the sequence (xp) that belongs to J .
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Before proving this result, we need to establish some notation and verify an
elementary lemma which will be used repeatedly in the proof of the theorem.
Throughout this work the dimension n of our Euclidean space Rn is fixed and
In denotes the unit “square” in Rn; that is, In is the cartesian product of n
copies of the unit interval [0, 1]. We shall use λ(A) to denote the Lebesgue
n-dimensional measure of a measurable set A ⊆ Rn and shall use ∂S and So

to denote the boundary and interior, respectively, of a set in S ⊆ Rn. By a
“rectangle” we mean a set J of the form

J = [a1, b1]× [a2, b2]× · · · × [an, bn],

where each ai < bi; we call each [ai, bi] a “side” of J .
A partition P of In is a finite collection of non-overlapping rectangles whose

union is In. (By non-overlapping, we mean that if J1 6= J2 belong to P, then
λ(J1 ∩ J2) = 0.) An elementary fact that we shall use in the proof of the
lemma is that no point of In belongs to more than 2n rectangles J ∈ P. The
norm of P, ‖P‖, is the maximum of the lengths of the sides of all of the J ∈ P.

Let i ∈ N and for each j = 0, 1, . . . , 2i, let cj = j
2i . The uniform i-partition

of In, Qi, is the collection of all rectangles of the form

[cj1 , cj1+1]× [cj2 , cj2+1]× · · · × [cjn , cjn+1],

where each integer jk satisfies 0 ≤ jk < 2i. If A ⊆ B ⊂ In, we say that A is
i-fine in B provided that for each J ∈ Qi for which Jo ∩B 6= ∅, it follows that
Jo ∩A 6= ∅.

We shall let B(n) denote the number of (n− 1)-dimensional rectangles of
(n − 1)-dimensional measure one which form the boundary of In. In proving
the lemma we shall make use of the elementary fact that if J ⊆ In is any
rectangle, then the number of elements of Qi which intersect the boundary of
J is at most B(n) · (2i)n−1.

Lemma 1. [The Blocking Lemma] Let A ⊂ In be measurable, let F be a finite
subset of In \A and let η > 0. Then there is a finite subset SA ⊂ A such that
if P is any partition of In and

G = {J ∈ P : J ∩ F 6= ∅ and J ∩ SA = ∅},

then λ
(
A ∩

⋃
J∈G J

)
< η.

Proof: Let F = {y1, y2, . . . , yK}, A, and η be as described. We may assume
that A has positive measure. Choose i ∈ N so large that K·B(n)·2n

2i < η. Let
Qi denote the uniform i-partition of In. For each I ∈ Qi which intersects A,
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select a point sI ∈ I ∩ A. Let SA denote the collection of all such selected
points.

Now let P be a partition of In and let

G = {J ∈ P : J ∩ F 6= ∅ and J ∩ SA = ∅}.

Fix a yt ∈ F and fix a J ∈ G containing yt, if such a J exists. There can be at
most 2n such J ’s containing yt. Without loss of generality suppose that A∩J
has positive measure. Since J ∩ SA = ∅, if I ∈ Qi and I ⊆ J , then I ∩A = ∅.
Thus, if I ∈ Qi satisfies I ∩ (J ∩A) 6= ∅, then I ∩ ∂J 6= ∅. However, there are
at most B(n) · (2i)n−1 such I ∈ Qi. Hence,

λ

(
A ∩

⋃
J∈G

J

)
< 2n ·K ·B(n) · (2i)n−1 1

(2i)n
=
K ·B(n) · 2n

2i
< η,

completing the proof.

Proof of Theorem. For each j ∈ N we set

Aj = {x : j − 1 ≤ |f(x)| < j},

and note that since f is integrable, the series
∑∞
j=1 jλ(Aj) converges. It will

be convenient to denote the tails of this series by ζj =
∑∞
k=j+1 kλ(Ak).

For each j we use Lusin’s Theorem repeatedly to obtain a sequence, {Aij},
of pairwise disjoint, perfect subsets of Aj such that λ(Aij) = λ(Aj)

2i and the
restriction of f to Aij , f |Aij , is continuous. Thus, for each j we have

λ(Aj) =
∞∑
i=1

λ(Aij).

Also, for each j we set

Bj =
j⋃

k=1

j⋃
i=1

Aik, Cj =
∞⋃

k=j+1

Ak, and Dj =
j⋃

k=1

∞⋃
i=j+1

Aik,

and note that λ(Bj)+λ(Cj)+λ(Dj) = 1. Furthermore, we set B∗j = Bj \Bj−1,
where we take B0 = ∅. Note that for each j, f |Bj is continuous and is in
absolute value less than j. For each j ∈ N, apply Tietze’s extension theorem
to obtain fj as a continuous extension of f |Bj to all of In with |fj(x)| < j for
all x ∈ In. For each j ∈ N let εj = 1

2j and let δj be a positive number such
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that δj witnesses the Riemann integrability of fj over In with respect to εj ;
that is, if P is a partition of In with norm less than δj , and for each J ∈ P,
s(J) denotes any point in J , then

∣∣∣∣∣∑
J∈P

fj(s(J))|J | −
∫

In

fj

∣∣∣∣∣ < εj . (1)

Our next goal is to inductively by stages define the sequence (xp : p ∈ N).
At stage 1, we choose a finite set S ⊂ B1 so that S is 1-fine in B1. We list
these points in any order as x1, x2, . . . , xp1 . Now, suppose stage j has been
completed with x1, x2, . . . , xpj

having been selected and ordered. We proceed
to stage j+1. First, select a finite subset Sj+1 ⊂ B∗j+1 such that Sj+1 is (j+1)-
fine in B∗j+1. We are going to apply the blocking lemma j times, each time
taking η = 1

(j+1)22j+1 . Initially, apply the blocking lemma with F = Sj+1 and
A = B∗j to determine a finite subset Sj ⊂ B∗j which satisfies the conclusion of
that lemma. We may clearly assume that Sj is (j+ 1)-fine in B∗j and contains
no xp, p ≤ pj , since all of the sets Aik are perfect. Next, assume that

Sj ⊂ B∗j , Sj−1 ⊂ B∗j−1, . . . , Sj−k ⊂ B∗j−k

have been selected for some 0 ≤ k ≤ j − 2. Apply the blocking lemma
with F =

⋃k
i=−1 Sj−i, A = B∗j−k−1, to yield a finite set Sj−k−1 ⊂ B∗j−k−1.

Again, we may assume that Sj−k−1 is (j + 1)-fine in B∗j−k−1 and contains no
xp, p ≤ pj . We do this for each 0 ≤ k ≤ j − 2. We now complete stage j + 1
by appending the points from

⋃j−1
k=−1 Sj−k to (x1, x2, . . . , xpj

), first appending
those from S1 (in any order), then those from S2 (in any order), . . . , and
finally those from Sj+1. This completes stage j + 1 and we have defined
x1, x2, . . . , xpj , xpj+1, . . . , xpj+1 .

Once all stages have been carried out, the sequence (xp : p ∈ N) has been
completely specified and it remains to show that this sequence accomplishes
what the theorem claims. First, note that if D = {xp : p ∈ N}, then D is
clearly dense in In.

Before proceeding to see that the rest of the conclusion holds, we wish to
make an additional observation. Fix a j ∈ N and let P be any partition of In.
If k ∈ N and

Gk = {J ∈ P : r(J) /∈ Bj , and r(J) was appended during stage j + k},
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then

λ

(
Bj ∩

⋃
J∈Gk

J

)
=

j∑
i=1

λ

(
B∗i ∩

⋃
J∈Gk

J

)

< j · 1
(j + k)22j+k

<
1

(j + k)2j+k
.

(2)

Now, let ε > 0, choose j so large that 5j+12
2j +4ζj < ε, and set δ = δj . Let P

be any partition of In having norm less than δ. Let P1 = {J ∈ P : r(J) ∈ Bj}
and P2 = P \ P1. Then, adopting the notation

⋃
P1 for the union of all the

J ’s in P1, we have

∣∣∣∣∣∑
J∈P

f(r(J))|J | −
∫

In

f

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
J∈P1

fj(r(J))|J | −
∫

S
P1

f

∣∣∣∣∣
+

∣∣∣∣∣ ∑
J∈P2

f(r(J))|J | −
∫

S
P2

f

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
J∈P1

fj(r(J))|J | −
∫

S
P1

fj

∣∣∣∣∣
+

∣∣∣∣∣
∫

S
P1

(fj − f)

∣∣∣∣∣+
∑
J∈P2

|f(r(J))||J |

+
∫

S
P2

|f |.

(3)

We shall obtain estimates on each of the four terms on the right hand side of
the final inequality.

For each J ∈ P2, employ the mean value theorem to select a point sJ ∈ J
such that fj(sJ)|J | =

∫
J
fj . Also, for each J ∈ P1, set sJ = r(J). Then

∣∣∣∣∣ ∑
J∈P1

fj(r(J))|J | −
∫

S
P1

fj

∣∣∣∣∣ =

∣∣∣∣∣∑
J∈P

fj(sJ)|J | −
∫

In

fj

∣∣∣∣∣ < εj =
1
2j
, (4)

where the inequality follows from (1) and the fact that ‖P‖ < δj .
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Next,∣∣∣∣∣
∫

S
P1

(fj − f)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
Bj∩

S
P1

(fj − f)

∣∣∣∣∣+

∣∣∣∣∣
∫
Cj∩

S
P1

(|fj |+ |f |)

∣∣∣∣∣
+

∣∣∣∣∣
∫
Dj∩

S
P1

(|fj |+ |f |)

∣∣∣∣∣
≤0 +

∫
Cj

(|f |+ j) +
∫
Dj

(|f |+ j).

(5)

Now,

∫
Cj

(|f |+ j) =
∞∑

k=j+1

∫
Ak

(|f |+ j) ≤
∞∑

k=j+1

(k + j)λ(Ak)

≤
∞∑

k=j+1

2kλ(Ak) = 2ζj ,

(6)

and

∫
Dj

(|f |+ j) =
j∑

k=1

∞∑
i=j+1

∫
Ai

k

(|f |+ j) ≤
j∑

k=1

∞∑
i=j+1

(k + j)λ(Aik)

≤
j∑

k=1

∞∑
i=j+1

(k + j)
λ(Ak)

2i
≤ 2j

j∑
k=1

λ(Ak)
∞∑

i=j+1

1
2i

=
2j
2j

j∑
k=1

λ(Ak) ≤ 2j
2j
.

(7)

Thus, from (5), (6), and (7) we have∣∣∣∣∣
∫

S
P1

(fj − f)

∣∣∣∣∣ ≤ 2ζj +
2j
2j
. (8)

Next we turn our attention to
∑
J∈P2

|f(r(J))||J |. For each i ∈ N, let

P2,i = {J ∈ P2 : r(J) ∈ B∗j+i}.
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Then
∑
J∈P2

|f(r(J))||J | =
∑∞
i=1

∑
J∈P2,i

|f(r(J))||J |. Now,∑
J∈P2,i

|f(r(J))||J | =
∑
J∈P2,i

|f(r(J))|λ(J ∩Bj+i−1)

+
∑
J∈P2,i

|f(r(J))|λ(J ∩Dj+i−1)

+
∑
J∈P2,i

|f(r(J))|λ(J ∩ Cj+i−1)

≤(j + i)λ(∪P2,i ∩Bj+i−1) + (j + i)λ(∪P2,i ∩Dj+i−1)
+ (j + i)λ(∪P2,i ∩ Cj+i−1).

(9)

Keeping in mind that r(J) could have been appended to the (xp) sequence
during any stage j + i+m, m = 0, 1, . . . , we have from (2) that

λ(∪P2,i ∩Bj+i−1) ≤
∞∑
m=0

1
(j + i+m)2j+i+m

≤ 2
(j + i)2j+i

. (10)

Next,

λ(∪P2,i ∩Dj+i−1) ≤ λ(Dj+i−1) ≤
j+i−1∑
k=1

∞∑
m=0

λ(Aj+i+mk )

≤
j+i−1∑
k=1

2λ(Ak)
2j+i

≤ 2
2j+i

.

(11)

From (9), (10), and (11), we obtain∑
J∈P2,i

|f(r(J))||J | ≤ 2
2j+i

+ (j + i)
2

2j+i
+ (j + i)λ(∪P2,i ∩ Cj+i−1)

Consequently,∑
J∈P2

|f(r(J))||J | ≤
∞∑
i=1

2
2j+i

+
∞∑
i=1

(j + i)
2

2j+i

+
∞∑
i=1

(j + i)λ(∪P2,i ∩ Cj+i−1)

=
2
2j

+
2(j + 4)

2j
+
∞∑
i=1

(j + i)λ(P2,i ∩ Cj+i−1)

=
2j + 10

2j
+
∞∑
i=1

(j + i)λ(∪P2,i ∩ Cj+i−1).
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Keeping in mind that the sets ∪P2,i and ∪P2,i′ are disjoint for i 6= i′, that
Cj+i−1 = ∪∞k=j+iAk, and hence that Aj+m∩Cj+i−1 = ∅ for i > m, it is readily
seen that

∞∑
i=1

(j + i)λ(∪P2,i ∩ Cj+i−1) ≤
∞∑
i=1

(j + i)λ(Aj+i) = ζj .

Thus, ∑
J∈P2

|f(r(J))||J | ≤ 2j + 10
2j

+ ζj . (12)

Next, from the right hand side of (3) we consider the term∫
∪P2

|f | =
∫
∪P2∩Bj

|f |+
∫
∪P2∩Cj

|f |+
∫
∪P2∩Dj

|f |

≤ jλ(∪P2 ∩Bj) +
∫
Cj

|f |+
∫
Dj

|f |.
(13)

Keeping in mind that for J ∈ P2 we know that r(J) /∈ Bj and hence was
appended to the sequence (xp) at some stage (j + i), i ∈ N, we observe from
(2) that

jλ(∪P2 ∩Bj) ≤ j
∞∑
i=1

1
(j + i)2j+i

<

∞∑
i=1

1
2j+i

=
1
2j

(14)

Next, ∫
Cj

|f | =
∞∑

k=j+1

∫
Ak

|f | ≤
∞∑

k=j+1

kλ(Ak) = ζj , (15)

and∫
Dj

|f | =
j∑

k=1

∞∑
i=j+1

∫
Ai

k

|f | ≤
j∑

k=1

∞∑
i=j+1

kλ(Aik) ≤
j∑

k=1

∞∑
i=j+1

k
λ(Ak)

2i

≤ j
j∑

k=1

λ(Ak)
∞∑

i=j+1

1
2i

=
j

2j

j∑
k=1

λ(Ak) ≤ j

2j
.

(16)

Thus, from (13), (14), (15), and (16) we obtain∫
∪P2

|f | ≤ 1
2j

+ ζj +
j

2j
=
j + 1

2j
+ ζj . (17)
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Combining (3), (4), (8), (12), and (17), we obtain∣∣∣∣∣∑
J∈P

f(r(J))|J | −
∫

In

f

∣∣∣∣∣ ≤
(

1
2j

)
+
(

2ζj +
2j
2j

)
+
(

2j + 10
2j

+ ζj

)
+
(
j + 1

2j
+ ζj

)
=

5j + 12
2j

+ 4ζj < ε,

and this inequality completes the proof.
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