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THE NON-UNIFORM RIEMANN
APPROACH TO ITO’S INTEGRAL

Abstract

In this paper, we shall consider two generalized Riemann approaches
to the It integral; namely, the It6-Henstock and the It6-McShane ap-
proaches, and by establishing the equivalence of the It6-Henstock inte-
gral with the classical It6 integral, prove the equivalence of all the three
integrals.

1 Introduction

It is well-known and often emphasized in texts that it is impossible to define
stochastic integrals using the Riemann approach, since the integrators have
paths of unbounded variation while the integrands are usually highly oscillat-
ing. As it is known in the field of Henstock integration, a generalized Riemann
approach is designed to integrate functions which are highly oscillating which
the usual Riemann approach fails to handle.

The generalized Riemann approach was introduced by J. Kurzweil and
R. Henstock independently in 1950s. They used non-uniform meshes (that
vary from point to point) instead of uniform meshes as in the usual Riemann
approach. This technically minor but conceptually important modification of
the classical Riemann approach leads to integrals which are more general than
both the Riemann-Stieltjes and even the Lebesgue-Stieltjes integral.
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The generalized Riemann approach has been used to study It6’s stochastic
integral, see [4, 7, 8, 10, 11, 12, 14]. In [4, 7], Henstock and Lee T. W. used a
full division of [0, 1] to define a stochastic integral for deterministic integrands,
which was a direct generalisation of the classical non-stochastic case.

In [8], McShane used a belated partial division to define his stochastic
integral. Protter in [10] proved that McShane’s integral is equivalent to the
classical It6’s integral. In Section 5 of this note, by using the mean convergence
theorem, we shall give another proof of the equivalence.

In [12], Xu and Lee defined a stochastic integral by using a full belated
division and proved the equivalence of this integral and the classical It6 inte-
gral. They used a full-belated division which was obtained from Henstock’s
full division in [4]. The construction of this belated full division is techni-
cally involved. A variational approach was introduced in [11] to study the It
integral, which is a modification of [8] by using partial divisions.

In this paper, we shall consider two generalized Riemann approaches to the
It6 integral; namely, the It6-Henstock and the It6-McShane approaches, and
by establishing the equivalence of the Ito-Henstock integral with the classical
Ito’s integral, prove the equivalence of all the three integrals. This offers
an alternative proof of equivalence given in [11]. For the convenience of our
presentation, we shall consider the integral over the interval [0, 1] throughout
our discussion, although the theory holds over any compact interval [a, b].

2 Itd’s Stochastic Integral

Let € denote the set of all real-valued continuous functions on [0, 1] and R the
set of all real numbers.

The class of all Borel cylindrical sets B in €2, denoted by C, is a collection
of all the sets B in €2 of the form

B ={w: (w(t1),w(te),...,w(t,)) € E}

where 0 <t; <itg <---<t, <1and E is any Borel set in R™ (n is not fixed).
The Borel o-field of C is denoted by F; i.e., it is the smallest o-field which
contains C. Let P be the Wiener measure defined on (2, ). Then (9, F, P)
is a probability space; that is, a measure space with P(Q) = 1.

Let {F;} be an increasing family of o-subfields of F for ¢ € [0, 1]; that is,
Fr C Fsfor 0 <r < s <1 with 7y = F. The probability space together
with its family of increasing o-subfields is called a standard filtering space and
denoted by (Q, F,{F:}, P).

A process {p(t,w) : t € [0,1]} on (Q,F, P) is a family of F-measurable
functions (which are called random variables) on (€2, F, P). Very often, ¢(t,w)
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is denoted by ¢¢(w). Now we shall consider a very special and important
process; namely, the Brownian motion denoted by W.

Let W = {W,(w) }o<i<1 be a canonical Brownian motion; that is, it satisfies
the following properties:

1. Wy(w) =0 for all w € ;

2. it has Normal Increments; that is, W; — W has a Normal distribution
with mean 0 and variance ¢t — s for all ¢ > s (which naturally implies
that W; has a Normal distribution with mean 0 and variance t);

3. it has Independent Increments; that is, W; — W is independent of
its past; that is, W,, 0 < u < s < t; and

4. its sample paths are continuous; i.e., for each w € Q, W;(w) as a function
of ¢ is continuous on [0, 1].

A process {p¢(w) : t € [0,1]} is said to be adapted to the filtering {F;} if
for each t € [0,1], ¢; is Fi-measurable. We always assume that W = {W;(w)}
is adapted to {F;}. For example, if {F;} is the smallest o-field generated by
{We(w) : s <t}. Then W = {Wy(w)} is adapted to {F;}.

A process X = {X;(w) : t € [0,1]} on the standard filtering space is said
to be a Martingale if

1. X is adapted to {F;}; that is, X; is Fi-measurable for each t € [0, 1];
2. [ |X¢|dP is finite for almost all ¢ € [0, 1], and

3. E(X¢|Fs) = X, for all t > s, where E(X|Fs) is the conditional expecta-
tion of Xy given Fs, which is defined to be a random variable such that
E(X4|Fs) is Fe-measurable and [, E(X;|F,)dP = [, X;dP for each
A € F,. By Radon-Nikodym Theorem, F(X;|Fs) is well-defined.

If in addition we have sup,c(o 1) [ [ X¢|* dP is finite, we say that X is a L-
martingale.

In the following we define E(f) to be / f dP for any random variable f.

It is well-known, see [9, p. 239] for exargrllple, that the following properties
hold (details are given for the convenience of readers who are not familiar with
stochastic analysis):

(i) E[Xs] = E[E[X:|Fs]] = E[X¢] for any t > s; that is, E[X] is a constant
for all s € [0,1].

(ii) For any 0 <u < v < s <t <1, we have

E[(Xy = Xo)(Xy = Xu)] =E{E[(X; — X)(Xy — Xu)|Fs]}
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:E{(Xv - Xu)E[Xt - XS|'7:S]}
:E{(Xv - Xu) [E[Xt|-7:3] - XS]} =0,

that is, a martingale has orthogonal increments.

(iii) From (i) we get E |(D) (X, — X,)|° = (D) 3 E(X, — X,,)? for any
partial partition D = {[u, v]} of [0, 1].

(iv) For any u < v we have

E[X,X,] = E[E[X,X,|F.]] = E[X,E[X,|F.]] = E[X]]

and then B(X, — X,)? = BE(X? — X2).

It is also well-known, see [9, p. 28], that a canonical Brownian motion is a
martingale. In fact, it is an Lo-martingale with E(W2) = t, see property 2 of
a Brownian motion.

Let Lo(Q2, F, P) be the space of all real-valued F-measurable functions ¢ on
Q (which are called random variables) such that ||¢||3, = [, [¢(w)[* dP < oc.
Since () is separable, Lo is separable.

We denote by Lo the space of all processes {p(t,w)}o<i<1 defined on
(. F, P) such that ||p|[2, = [y [, lo(t, w)[? dP dt < co.

We further assume that {¢,(w) : ¢t € [0,1]} is adapted to the filtration
{F:}; that is, ¢; is Fi-adapted for each ¢ € [0, 1].

Recall that E[-] denotes [, - dP so that we write |[¢||%, = fol Elp(t,w)|* dt.

Let Ly be the set of all step processes ¢(t, w) satisfying the following con-
ditions:

1. there exists M > 0 such that |p(t,w)] < M for all ¢t € [0,1] and all
w €

2. there are a finite sequence of points tg =0 < t1 <t < -+ < tp_1 <tp, =
1 and a finite sequence of random variables f;(w),7 =0,1,2,...,n, such
that each f; is Fi,-measurable for ¢ = 0,1,2,...,n, and that p(t,w) =

folw)xqoy(8) + 227y fim1 (W)Xt (t) for ¢ € [0,1] where X(4, ;) de-
notes the characteristic function of (¢;, t;41]-

Then L is dense in Lo (see, for example, [9, p. 22-25)); i.e., for every ¢ € Lo
there is a sequence {1, ¢a,...} in Ly such that ||om — ¢l|z, — 0 as m — oo.
For each ¢ € Ly, define the It6 integral of ¢ to be

I(p)(w) = Z fica (W)W (ti,w) = W(ti-1,w)].

Note that I(y) € Lo. Since Lo is complete and using the It6 isometry, see [9, p.
23], or see the last equality of this section, for a general ¢ € Lo, we can define
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its 1t6 integral I(p) to be I(¢) = lim, o I(¢n) in Lo, where {¢,}22 is a
sequence in L, converging to ¢, see [9, p. 22-26]. The Itd integral is uniquely

determined in Ls. In this paper, the classical It6 integral of ¢ with respect to
1

W is written as (1) / pedWy. Tt is well-known that the Ito isometry property
0
2
holds. F ((I) fol ‘Ptth) =F (fol @2 dt) , see [8, p. 23].

3 Non-Uniform Mesh

In this section we shall discuss three ways of constructing non-uniform meshes
in defining the stochastic integrals.

Type a. McShane’s Full Division.

Let 6(x) > 0 be a function defined on all x € [0,1]. A finite collection D of
interval-point pairs {(Z;,z;) : 4= 1,2,3,...,n} is said to be a McShane d-fine
full division of [0, 1] if

1. I;,i=1,2,3,...,n, are disjoint left-open subintervals of [0, 1],

I; = [0,1], where I;, for each i = 1,2,3,...,n, is the closure of I,

C=

1
nd

o s

3. each (I;,x;) is McShane d-fine; that is, I; C [x; — 6(x;), x5 + 6(x;)].

Note that in defining McShane’s -fine full division above we do not assume
that z; must be contained in I;.

In our definition of stochastic integral we do not use McShane’s full division
as above since the integral defined does not reflect its adaptedness property.
Instead, we consider McShane’s d-fine belated division of [0,1] where each z;
is to the left of the interval I;. However, such a J-fine belated full division
may not exist, for example, take 6(z) = (1 — z)/2. We thus consider a J-
fine McShane’s belated partial division that covers almost the entire interval
[0,1] in Type b. Such a division always exists by virtue of Vitali’s Covering
Theorem.

Type b. McShane’s Belated Partial Division.

A finite collection D of interval-point pairs {(l;,z;) : i = 1,2,3,...,n} is a
McShane’s (4, n)-fine belated partial division of [0, 1] if
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1. I;;i=1,2,3,...n, are disjoint left-open subintervals of [0, 1],

2. each I; is belated o-fine; that is, I; C [z;, z; + d(=;)], and

n

[Ov 1]\ U Ii

=1

3. < n, where |J| denotes the length of the interval .J .

Type c. Belated Partial Division.

If the collection of intervals {(I;, z;) : i = 1,2,3,...,n} only satisfies conditions
1 and 2 but not 3 above, we call it a J-fine belated partial division.

4 TIto-Henstock’s Approach to 1to’s Integral

In this section we shall discuss a non-uniform Riemann approach to Itd’s in-
tegral using belated partial divisions of Type ¢ in Section 3 above. This is
motivated by the Henstock Lemma for the classical Henstock integration the-
ory, (see for example [5]).

Definition 1. Let Z be a family of all left-open subintervals of [0, 1], and
F(I,w) be a real-valued function defined on Z x Q. Then F is an additive
function on 7 if for every pair of disjoint intervals I, J € Z with TU J € 7, we
have F(I U J,w) = F(I,w) + F(J,w) for all w € Q.

An example of an additive function is the primitive function of It6’s stochas-
tic integral; that is,

FlJ,w) = (I) / o1 ()W (w)

where J = (a, b].
We are now ready to give the definition of It6-Henstock integral.

Definition 2. [11]. Let ¢ = {¢: : t € [0,1]} be a processes adapted to the
standard filtering space. Then ¢ is said to be Ité6-Henstock (IH) integrable
on [0, 1] with respect to Brownian motion W if for any ¢ > 0 there exists an
additive function F : T x @ — R and a é(z) > 0 on [0, 1] such that for any
o-fine belated partial division D = {((u;,v;],&) : i =1,2,3,...,n} of [0,1] we
have

n 2
E <Z {p (& W)W (vi, w) = W(ui, )] = F((ui, vi],w)}> <e.
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1
We denote F((0,1],-) by (IH)/ p1dWy. The function F' is unique up to

0
zero variation, (see [3, p. 76-77]). Very often, we shall impose some conditions
on F'; for example, absolute continuity in this note, such that each equivalence
class is small. For a non-stochastic case, see [1; 8].

Theorem 3. (Basic Properties of TH-integral)

1. Let f and g be adapted processes on [0,1] which are IH integrable with
respect to W on [0,1], and let « € R. Then f + g, af are IH integrable
with respect to W and that

1 1 1
dW; = d d
(IH)/O (ft £ g¢)dW; (IH)/O It Wti(IH)/O gtdW;
1 1
(IH)‘/O aftth :OZ(IH)/(; ftth

2. Let the adapted process [ be IH integrable on [0, a] and [a, 1] with respect
to W. Then f is IH integrable on [0,1] and further

1 a 1
(IH)/O ftth:(IH)/O ftth+(IH)/ fedWy.

3. If f is IH integrable on [0, 1] with respect to W, then f is IH integrable
on any subinterval [c,d] of [0,1].

Theorem 3 consists of standard results of classical theory of Henstock’s
integration see for example [2,3,5,6], hence omitted.

Definition 4. Let A and A™ n = 1,2,3,..., be real-valued functions on
7T x Q. Then A" is said to converge variationally to A if given € > 0 there
exists a positive integer N such that for any finite collection of disjoint intervals
{(us,v;] :1=1,2,3,...,q} forallm > N

E (i {A(”)((ui,vi],w) — A((ui,vi],w)}> <e.

i=1

We remark that the convergence in Definition 4 above is also called the
Mean Convergence for deterministic case, (see [5, p. 17] for example).

Proposition 5. Let ¢ € Lo and {on} a sequence of step processes in Lo
such that 0, — @ in Lo. Let F denote the primitive function of the classical
It6 stochastic integral of ¢ and F™ of ¢, for each n =1,2,3,... . Then F"
converges to F' variationally.
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t
PROOF. Let ¢ > 0 be given. If ¢ € Lo, let F; = (1) / p:dWy be the primitive

0
function. Then F} is an Lo -martingale, (see [9, Corollary 3.14, p. 30; [13],
t
Remark 12.15, p. 241]). Similarly for each n € N, if F}* = (I)/ prdXy,

0
then each F}* is also an Lo-martingale. Choose an integer N > 0 such that
whenever n > N

2
<e.

1 1
E \(I) [ eraxi—m [

Given a finite collection of disjoint subintervals D = {(u, v]} from [0, 1], let

Z denote the summation over those intervals included in D and Z be the
1 2
summation over the collection of subintervals of [0, 1] of D¢ which consists of

all left-open subintervals of (0, 1] not included in D and D U D° = (0, 1]. Let

D142 =21+ 2, Then
ES 0 [ erax,— SN0 [ pudx,
’21: /u ¢ 21: / ¢

| x|

B[ Y - - YR )|

2

:E’ N {Er —F) — (F7 — F)} ‘2 = E‘ > (-
n 1

where W} = F{* — F}, which is also an Ls-martingale since the difference
of two martingales is again a martingale. From the orthogonal increment of
martingales, we thus have

D (v -

1

2
E =Y B -y’
1

<Y B -0+ B -0
1 2

2 (1)
n n|2
= B0} — Vg

= B| (- un)

142

1 1
=E\<I> [ eaxe-m [ pax.

2
<E.
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We remark that (1) is due to the orthogonal increment of martingales, (see
(ii) and (iii) in Section 2.) O

We shall next establish a series of results, ultimately leading to the estab-
lishment of the equivalence of the IH integral and the classical It integral at
the end of this section. As mentioned in the introduction section of this note,
the equivalence was proved in [11]. Here we offer an alternative proof by using
convergence theorem.

Proposition 5a. Suppose D = {((u;,v;],&)} is a 0-fine belated partial divi-
sion and h(&;,w) is a function which is F¢,-measurable. Then

( Zh&, W (vi,w) — W(u;, w) ) ( Zh2 &, w zfuz)).
PRrOOF. Note that

E((D Zh&z, W (05,0 )—W(uz-,w)})2
=E{Z( (€)W <vi,w>—W<ui,w>l)2

# 3 (6 (€5 )V (050 = W a6,V (5.0 = W (a5, 0)]) |

i#£]

_Z{ ( (& W)W (Umw)—W(ui,w)]?)}
+Z{ ( (&iyw (fﬂ"‘”)[W(%w)—W(ui,w)][W(va)_W(uj7w)])}

i#j

_Z{ (In(es,w (i—ui))}:E((D)ZhQ(fi,w)(vi—ui)),

We remark that the equality above is due to the orthogonal increment of
Brownian motion or a martingale and E(W,,, — W,,,)? = v; — u;, (see property
(ii) and property of Normal increments of W in Section 2) .

Theorem 6. Let o, 0™ n=1,2,..., be adapted processes such that for each

2

¢ €0, 1],E(f(")(§,w) — f(g,w)> — 0 as n — oo. Suppose that each o™
is IH-integrable to A" on [0, 1] with respect to the Brownian motion W and
A™) wariationally converges to A. Then f is IH-integrable to A on [0,1].

PROOF. The idea of the proof is standard in the theory of Henstock integra-
tion. Let € > 0 be given. For any £ € [0,1] there exists n(§) > 0 such that
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2
E(gp"@)(f,w) — @(g,w)) < 35. Since ©(™) is TH-integrable to A™ on [0, 1]

for each n = 1,2,3,... , there exists 6(™)(¢) > 0 on [0,1] such that for any
5" (€)-fine belated partial divisions D,, = {((u,v],€)} of [0, 1], we have

€

B{ (D) 3 (67 (010) = W (5] = A (15,0, ) } e

i

Since A(™) variationally converges to A, there exists a positive integer N such
that for any finite collection of disjoint intervals {(u;,v;];¢ =1,...,q}, we have

q 2
E [A(”) ui, V5], w) — A ui,vi,w}} <;
[ - Ao | <
whenever n > N. Choose a subsequence {A™*)} of {AM} for k =1,2,...,
such that

E{i[A(”k)((ui,vi],w) _ A((ui,vi],w)} }2 < m

In the proof that follows, we shall use the subsequence {A(™)} and {f(")}.
However, for the convenience of our presentation, we denote {A(™*)} and
{f)} by {A®)Y and {f®)} respectively. Now, let §(¢) = 6™&(¢) and
D = {((u,v],£)} be any J-fine belated partial division of [0,1]. Thus, we
have

B{ (D) (60 0¥ (019 — W 9]~ AlCwve) |

2

—5{ (D) 2 ([p(6:.0) — " (65 )] W (510) ~ W (w5,

2

(D) 32 (A" (s 0], ) = Al(ui,vi) )

%

(D) Y (7 (€6, 0) W (01,0) — W (s, )] — A" (u, m,w))}

%

3

S3E{(D) Z([@(&,w) — ") (&, w)] [W (g, w) — W(UuW)]) }2

2
+35{ (D) 3 (4 (w0~ Allws )

%
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+35 (0) 3 (6 IV (01,0) ~ Wl 0]~ 47 (i 009) |

=3X+3Y 4+ 3Z.

Now,

3 =35{ (D) 3 [p(65) — (61,0 [W () = W) |

%

=3B((D) Y [p(61,) — ") (€0,0)] (v — w))

3

since p(&;, w)—™ (&) (&, w) is F¢,-measurable, and thus F,,-measurable, Propo-
sition 5a can be applied. Therefore,

3X =3 Z{(”" —u)Ble" ) (6,w) - p(6,w)| 2}

where D; = {((w;, vi], &) : n(&) = nj}
Similarly,
7% ={E(<D> > [6"E (€w) W (v, 0) = W (ws, )] - A"“”«wvvz‘]’“’)})2}é

%

SZ{E (D)7 (9 (€6, )W (01, 0) = W (g, )] = AT (s, 03], ) ) | 2};

i

=V
<; 3o(2)" 3
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Thus 3X + 3Y + 3Z < ¢, showing that ¢ is IH-integrable to A on [0,1]. O

Lemma 7. Let h(w) be a bounded random variable on (2, F, Pa) with |h(w)| <
M, for allw € Q. Let s € [0,1] be fized. Suppose that f(t,w) = h(w), ift = s
and f(t,w) =0, if t #s. Then f is IH-integrable to zero on [0,1].

PROOF. For any € > 0, let §(¢) = ¢/M?. Consider any J-fine belated partial
divisions D = {((u,v],£)} of [0,1]. Assume that s = &, for some j; otherwise,
it is trivial since f(&;,w) = 0, for all 4. Thus,

E(( )Z(f(&, w) [W (%@W(“iv‘”ﬂo)f

B (f(s, w) [W (vj,w) — W (uj,w)] > 2
§M2E<W(Uja w) = W(u;, “’)) 2

€
=M?E(v; —uj) = M*(vj —uj) < M? (MQ) =e.
Hence, f is IH-integrable to zero on [0, 1]. O

From a bounded random variable, we now move on to an adapted bounded
step process in Ly. We will show that this process is also IH-integrable. Let
W((a,b],w) denote W(b,w) — W(a,w), for any a < b, where a,b € R for
succinctness of our presentation.

Lemma 8. Let f € Ly. Then f is IH-integrable on [0,1] and its integral is
equal to the classical Ito-integral of f with respect to W.

PRrROOF. Let f € Ly be expressed as

f(t,w) = fo(w)xoy(t +Zf11 W)X (t;_1 2] (1)

be as given in the definition of £y. By Lemma 7, we may ignore the values of
f(t,w) at to,t1,t2,...,t,. Let £ €0, 1] We only need to consider £ # t; for
alli=0,1,2,...,n. Assume £ € (t;_1,t;). Define §(§) such that [¢,£+5(€)] C
(tiz1,t;). Hence f(ﬁ, ) = fi—1(w) and

f(&w)Wy(w) = Wau(w)] = fioa(w)[We(w) = Wy (w)]
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whenever (u,v] C [£,£ 4+ 6(£)]. Recall that for such interval (u,v],

o [ (L 0) W) = fiot (@)W (@) — Wa(w).

Let D = {((u,v],€)} be a d-fine belated partial division of [0,1] with £ # ¢;
for all 7. Then

2

) “o

Thus f is TH-integrable on [0,1] and (IH) [, f;dW; = (I) [y f:dW;, thereby
completing the proof. O

E (\(D) > {f@,w)[wm W= [ f(t,mdwt}

Theorem 9. If f € Lo, then f is IH-integrable. Furthermore, the IH-integral
of [ is equal to the classical Ito-integral of f.

PROOF. For every f € Ly, there exists a sequence { (™} in Ly such that
£ = fll,, — 0 as m — oo.

By Lemma 8, the IH-integral of f(™) is equal to the classical It6-integral
I(fm) of f.
2
On the other hand, we have E{ [I(f(m))(w) fI(f)(w)] } — 0asm — oo.

We shall next use Theorem 6 to prove that f is IH-integrable to I(f)(w).
Denote I(f™)(w) by A (w) and I(f)(w) by A(w). Since

1700~ 12, = [ [ (5900 - 50.09)° P at 0 s 0 e,

for every & € [0, 1], except possibly on a set of measure zero, there exists a

subsequence f™¢) such that [, (f”(g)(ﬁ,w)—f(ﬁ,w))2 dP — 0, as n(§) — oo.

We may assume that [, (f”(f)(f,w) - f(§,w))2 dP — 0, for any £ € [0,1].

Denote {f™©} by {f™} and let D = {(u,v]} by any finite collection of
disjoint intervals. Thus, we have

E{(D) >[4 (s, v, w) A<<Uiv”i17”)r}

%

2
(f(n) (t,w) — f(tvw)) dt} } by isometric property
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-ny|/ [ (1900 - se.0) apar

<[ [ (100 - sww) apa=is - i,

for any positive integer n.
2
Since | f™ — fllz, — 0 as n — oo, thus A™) variationally converges to

2
A. Since for each £ € [0, 1], we have E(f”(é)(g,w) — f({,w)) — 0 with each

f(") being TH-integrable to A™ on [0,1] and A™ variationally converging to
A, therefore, f is IH-integrable to A on [0, 1], where A is the classical Ito-
integral of f. Hence the IH-integral of f in our sense agrees with the classical
Ito-integral of f. O

5 Ito-McShane’s Approach to Stochastic Integral

McShane applied the generalized Riemann approach (with non-uniform meshes)
to study stochastic integrals in 1969 and developed the theory of stochastic
integrals when the integrator X satisfies some form of Lipschitz conditions,
see [8]. In this section, we only consider the case when X = W is a Brownian
motion, over which the Lipschitz conditions are automatically satisfied.

Note that the interval used by McShane is right-open, see [8]. There is no
difference between using right-open or left-open intervals when the integrator
is continuous.

In this section, we shall modify the definition of McShane’s stochastic in-
tegral. Instead of using right-open interval [u,v) in the interval-point pair
{[u,v), &}, we replace by left-open interval (u,v] in {(u,v], £}, and we call this
approach with the modification of using left-open intervals the It6-McShane’s
(IM) approach, in line with the classical construction of the classical It6 inte-
gral.

Definition 10. Let ¢ and X be adapted processes defined on (2, F, {F;}, P).
Then ¢ is said to be Ité6-McShane (IM) integrable to A € La(2) on [0, 1] with
respect to X if for every € > 0, there exist §(§) > 0 on [0,1] and n > 0 such
that

E (‘(D)Z@g[Wv W] —AD2 <e

for any (6(€),n)-fine belated partial division D = {((u,v],€)} of [0,1]. Of
course, the interval [0,1] can be replaced by any other interval [a,b] in the
above definition. In the above, Y @¢[W, — W, ] — A denotes > e (w)[W, (w) —
Wy (w)] — A(w) for each w € Q.
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It can be seen that the IM-integral is uniquely determined up to a set

of P-measure zero. We denote the IM-integral of ¢ with respect to W by
1

(IM) / ©udW;.

Some standard properties of integration theory are appended in the fol-
lowing theorem. The proofs are omitted.

Theorem 11. (Cauchy’s Criterion). The process ¢ is IM-integrable with
respect to X on [0,1] if and only if there exist §(§) > 0 and n > 0 such that

2
)<

for any two (6(§),n)-fine McShane’s belated divisions of [0,1] denoted by Dy =
{((u,0],€)} and Dy = {((u',v'], )}

Theorem 12. 1. If p is IM-integrable on [0, 1] with respect to W, then ¢
is also IM-integrable on any |a,b] C [0,1].

B (D) Y 0el Wy = W] = (D2) 3 pe W = W]

2. Let o be IM-integrable on [0, 1] with respect to X. Then (IM)/ o dWy =

b c

(IM)/ gotth—l—(IM)/ wrdWy for any subintervals [a,b] and [b, c] in
a b

[0,1].

It is a classical result from the non-stochastic integration theory that the
primitive function of a Lebesgue integral is absolutely continuous. Next, we
shall establish the corresponding results on absolute continuity for stochastic
integrals. The ideas of the following proofs are standard in the classical theory
of Henstock integration.

Definition 13. The real-valued function F : Zx Q — R is said to be AC?[0, 1]

2
if given € > 0 there exists n > 0 such that E‘ > F(L)’ < ¢ for any fi-
nite collection of disjoint left-open intervals {I; : ¢ = 1,2,3,...,n} for which
i llil <.

Example 14. It is easy to see from It6’s isometry, see the last part of Section
b

2 or [9, p. 23] for example, that if F(a,b] = (I)/ ©idWy, then F is AC?[0,1].
Lemma 15. Let ¢ be IM-integrable on [0,1]. Givene > 0, there exist 6(§) > 0
and n > 0 such that E (|(D)>_ pe[Wy — W.D? < e for any é-fine belated
partial division D = {((u,v],€)} (type c of Sect 3) with (D) > |v —u| < n.
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PROOF. Given ¢ > 0 there exist §(§) > 0 and n > 0 such that for any
McShane’s (§(€), n)-fine belated division Dy,

2
) <
Let D = {((u,v],€)} be d-fine belated partial division of [0,1] such that
(D)Y " Jv —u] < n. Define a McShane’s (6(€),n)-fine belated division Dy

of [0, 1] such that DU D, is a McShane’s (§(€), n)-fine belated division of [0, 1].
Hence

1o

E (](D@ S el W, — W] - (IM) / v,

2

) <

= M

E(|(DUD1)Y  @eW, —W,] - (IM) 1 P dW,
( I

Consequently

2

E’(D)ng[WU—Wu] :E‘(DUDl)ZQOAWv_Wu]_(IM)/O prdWy

2

(1) [ W= (D) Y el = W)

1 2
SQE‘(D UD1)> W, — W] - (IM)/O o dW;

n QE‘(IM)/O ordWy — (D) S e[ W, — W] ’

() +2(5) -

thereby completing the proof. O

Theorem 16. Let p be IM-integrable with respect on [0,1]. Then ® is AC?[0,1],
where ®(J) = (IM)/ prdWy for any left-open subinterval J of [0, 1].
J

PROOF. Let € > 0 be given. By Lemma 15 there exist n and 6(¢) > 0 such

that whenever Dy = {((u,v],§)} is a é-fine belated partial division of [0, 1] with

(D1) S o = ul < n we have B ((D1) S elW, = Wall*) < e. Let {(as, b},
N

be a finite collection of disjoint subintervals from [0, 1], where Z |b; —a;] < n.

i=1
Then ¢ is IM-integrable on each [a;, b;],¢ = 1,2,3,...,N. On each [a;, ;]
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there exist 0;(£) > 0 and 7; > 0 such that

b;
B[00 S e = wal = 1) [ iy

i

whenever D; = {((u,v],€)} is a d;-fine belated partial division of [a;, b;] with
(D;) Z |[v—u| < n;. We may assume that 6;(§) < 6(§) foreachi =1,2,...,N.
N
Now D = U D; is a d-fine belated partial division of [0, 1], with
i=1

(UDi)Zh}—u\ §Z|bi—ai| <1

2
so that we have E (‘(Uf\il D;) > 0e[Wy — W] ) < e. Consequently

b;
BIS (1) / rd W2

2
b;
2
+2B|Y (D) Y pe[Wo — W
2
b 2
<2¢) L |E (IM)/ prdWy — (D) Y oe[Wy — W] + 2¢
i ai
€
<2 -_— 2e < 4
hS {; oi } + 2e < 4e
showing that the primitive of IM-integrable function is AC?[0, 1]. O

We shall next establish the relation between IM-integral and IH-integral.

Theorem 17. Let ¢ be IM-integrable. Then ¢ is IH-integrable and that

1 1
(IM)/ prdWy = (IH)/ ordWy.
0 0
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PROOF. Given € > 0 there exist §(£) > 0 on [0,1] and 1 > 0 such that for any
(6(¢),n)-fine McShane’s belated partial division D = {(u,v],&} we have

E ((D) > pe[Wy — W] — (IM) /01 @tth)z <e.

Let Dy = {(u,v],£} be any §(§)-fine belated partial division (of Type ¢ in
Section 3) and define F'(u,v] = (IM)/ p1dWy. Suppose that

u

m

0 1\{UU’U c(u,v €D1}—U[ai,bi].

=2

Then by Theorem 12, ¢ is IM-integrable on each [a;, b;], i = 2,3,...,m. Let
0;(§) > 0 and n; > 0 be defined for each [a;, b;] such that for any (6;(£),n;)-fine
McShane’s belated partial division of [a;, b;], denoted by D;, we have

B (D)X el - ) - 1) |

We may assume that ), 7; <7 and that §;(§) < 0(§) forall i =2,3,4,...,m

v

2
e
thth> < ﬁ

Consider the division D = U D;, which is (6(§),n)-fine. Then

=1

§ =8 (D) Y {eelWe — W] Flu,o]})’
<2 (D) 3 W~ Wil = (101) [

+2F (i(Dl) {ZQOE[WU - W] = (IM) /bi Sﬁtth}> <2+2J

2

i=2

where

2

>\ 2

=2

J

IN

{(Dn S elW, — W - (1) [ wtdwt}

i

<.

‘SL

IN

LLMS

BEN

thereby forcing 4e showing ¢ is IH-integrable to the same primitive as its
IM-integral. O
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Theorem 18. Let ¢ be IH-integrable with primitive function F : T x @ — R.
If F is AC?[0,1], then ¢ is IM-integrable with the same primitive.

PROOF. Given € > 0 there exists a () > 0 such that for any d-fine belated
partial division D = {(u,v],£} we have

B ((D) S el = Wl = Flual}) <

Choose 1 > 0 such that |3 F(I)]> < ¢ for any finite collection of disjoint
left-open subintervals of (0,1] such that > |I| < n. Let Dy = {(u,v],£} be
any (8(£),n)-fine McShane’s belated partial division. Let the collection of the
subintervals in (0, 1] not covered by D; be denoted by {J}, whose total length
is less than 7. Then

E (D)) welWu = W] = F(0, 1})2
<2F ((D) S {pelWy — W) - F(u,v]})2 1 oF ‘Z F(J)’2 < 4,

thereby completing our proof. O

So that we have the result: if f is IM-integrable, then it is IH-integrable.
Conversely, if f is [H-integrable with primitive which is AC?[0,1], then f is
IM-integrable.

Corollary 19. Let ¢ € Lo. Then it is both IM-integrable and IH-integrable.
Moreover, the two integrals agree with each other and also with the classical
Ito integral.

ProoF. This follows directly from Theorem 9, Example 14 and Theorem
18. [

We remark that alternatively Corollary 19 can be proved directly as in [10],
[11] or [12].

6 Further Remark

The use of generalized Riemann approach (with non-uniform mesh) to define
stochastic integral can be further extended to the case when the integrators are
semimartingales, the details of which will appear in a paper elsewhere. Here,
we mention that when the integrators are more general, the mesh §(¢) > 0
will have to be replaced by a random mesh 6(¢,w) and the proofs are further
generalizations of Section 4.
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