M. H. Hooshmand Estahbanti, Mathematics Department, Semnan University, Semnan, Iran e-mail: mhooshmand@semnan.ac.ir

LIMIT SUMMABILITY OF REAL FUNCTIONS

Abstract

Let f be a real (or complex) function with domain D_{f} containing the positive integers. We introduce the functional sequence $\left\{f_{\sigma_{n}}(x)\right\}$ as follows: $f_{\sigma_{n}}(x)=x f(n)+\sum_{k=1}^{n}(f(k)-f(x+k))$ and say that the function f limit summable at the point x_{0} if the sequence $\left\{f_{\sigma_{n}}\left(x_{0}\right)\right\}$ is convergent, $\left(f_{\sigma_{n}}\left(x_{0}\right) \rightarrow f_{\sigma}\left(x_{0}\right)\right)$ as $n \rightarrow \infty$, and we call the function $f_{\sigma}(x)$ as the limit summand function (of f). In this article, we first give a necessary condition for the limit summability of functions and present some elementary properties. Then we prove some tests about limit summability of functions and consider the relation between $f(x)$ and $f_{\sigma}(x)$. One of the main theorems in this paper gives a uniqueness conditions for a function to be a limit summand function. Finally, as a consequence of this theorem we deduce a generalization of a result due to Bohr-Mollerup [1].

1 Preliminaries

Definitions and theorems in this article are for complex functions, except when the real case is explicitly mentioned. In general we assume $f: D_{f} \rightarrow \mathbb{C}$, where $D_{f} \subseteq \mathbb{C}$. In the real case we take the function $f: D_{f} \rightarrow \mathbb{R}$, where $D_{f} \subseteq \mathbb{R}$. For a function with domain D_{f}, we put

$$
\Sigma_{f}=\left\{x \mid x+\mathbb{N}^{*} \subseteq D_{f}\right\} ;
$$

[^0]so $x \in \Sigma_{f}$ if and only if $\{x+1, x+2, \cdots\} \subseteq D_{f}$. If $\mathbb{N}^{*} \subseteq D_{f}$ (or equivalently $0 \in \Sigma_{f}$) for any positive integer n and $x \in \Sigma_{f}$, set
\[

$$
\begin{aligned}
R_{n}(f, x) & =R_{n}(x)=f(n)-f(x+n) \\
f_{\sigma_{n}}(x) & =x f(n)+\sum_{k=1}^{n} R_{k}(x)
\end{aligned}
$$
\]

When $x \in D_{f}$, we may use the notation $\sigma_{n}(f(x))$ instead of $f_{\sigma_{n}}(x)$.
Definition 1.1. The function f is called limit summable at $x_{0} \in \Sigma_{f}$ if the functional sequence $\left\{f_{\sigma_{n}}(x)\right\}$ is convergent at $x=x_{0}$. The function f is called limit summable on the set $S \subseteq \Sigma_{f}$ if it is limit summable at all the points of S.

Convention: For brevity we use the term summable for limit summable, and restrict ourselves to the assumption $\mathbb{N}^{*} \subseteq D_{f}$.

Now, put $D_{f_{\sigma}}=\left\{x \in \Sigma_{f} \mid f\right.$ is summable at $\left.x\right\}$. The function f_{σ} is the same limit function $f_{\sigma_{n}}$ with domain $D_{f_{\sigma}}$. We represent also, the limit function $R_{n}(f, x)$ as $R(f, x)$ or $R(x)$. Clearly $f_{\sigma}(0)=0,0 \in D_{f_{\sigma}}$. If $0 \in D_{f}$, then $-1 \in D_{f_{\sigma}}$, and we have $f_{\sigma}(-1)=-f(0)$. Regarding the relations

$$
\begin{aligned}
f_{\sigma_{n}}(1) & =f(1)+R_{n}(1) \\
f_{\sigma_{n}}(x)-f_{\sigma_{n-1}}(x) & =R_{n}(x)-x R_{n-1}(1)
\end{aligned}
$$

we get $1 \in D_{f_{\sigma}}$ if and only if the sequence $\left\{R_{n}(1)\right\}$ is convergent, and if $R(1)=0$, then $f_{\sigma}(1)=f(1)$ (e.g. if $\{f(n)\}$ is convergent, then $R(1)=0$ and so $\left.f_{\sigma}(1)=f(1)\right)$. Also it is inferred that a necessary condition for the summability of f at x is $\lim _{n \rightarrow \infty}\left(R_{n}(x)-x R_{n-1}(1)\right)=0$. Therefore if $1 \in D_{f_{\sigma}}$, then the functional sequence $\left\{R_{n}(x)\right\}$ is convergent on $D_{f_{\sigma}}$ and $R(x)=R(1) x$ (for all $x \in D_{f_{\sigma}}$). Now it is not difficult to show that

$$
D_{f} \cap \Sigma_{f}=\Sigma_{f}+1=\left\{x+1 \mid x \in \Sigma_{f}\right\}
$$

An interesting fact is the similarities between the properties of $D_{f_{\sigma}}$ and those of Σ_{f}. The next theorem shows a corresponding relation for $D_{f_{\sigma}}$.

Theorem 1.2. If $R_{n}(1, f)$ is convergent, then $D_{f} \cap D_{f_{\sigma}}=D_{f_{\sigma}}+1$.
Proof. Take an x in $D_{f} \cap D_{f_{\sigma}}$. Then $x \in \Sigma_{f}+1$ and so, both x and $x-1$ belong to Σ_{f} and we have

$$
f_{\sigma_{n}}(x-1)=f_{\sigma_{n}}(x)-f(x)-R_{n}(x)
$$

From $x \in D_{f_{\sigma}}$ and $R_{n}(1) \rightarrow R(1)$ we conclude that $R(x)=R(1) x$; so $f_{\sigma_{n}}(x-1)$ is convergent; that is, $x-1 \in D_{f_{\sigma}}$ and so $x \in D_{f_{\sigma}}+1$.

Now if $x \in D_{f_{\sigma}}+1$, then $x \in D_{f} \cap \Sigma_{f}$, and $R_{n}(x)$ is convergent, because $R_{n}(x)=R_{n}(1)+R_{n+1}(x-1)$, and $x-1 \in D_{f_{\sigma}}$. Hence $f_{\sigma_{n}}(x)$ is convergent and $f_{\sigma}(x)=f(x)+f_{\sigma}(x-1)+R(1) x$; so that $x \in D_{f_{\sigma}} \cap D_{f}$.

Remark. The converse of the above theorem is clearly true.
Corollary 1.3. If $R(1)=0$, then
(a) $f_{\sigma}(x)=f(x)+f_{\sigma}(x-1)$, for all $x \in D_{f_{\sigma}}+1$.
(b) f is summable on \mathbb{N} and on $\Sigma_{f} \cap \mathbb{Z}^{-}$, and we have

$$
f_{\sigma}(m)= \begin{cases}\sum_{j=1}^{m} f(j) & \text { if } m \in \mathbb{N}^{*} \\ -\sum_{j=0}^{-m-1} f(-j) & \text { if } m \in \mathbb{Z}^{-} \cap \Sigma_{f}\end{cases}
$$

2 Limit Summable Functions

Lemma 2.1. The followings are equivalent:
(a) $D_{f} \subseteq D_{f_{\sigma}}, R(1)=0$.
(b) $D_{f_{\sigma}}=\Sigma_{f}, D_{f} \subseteq D_{f}-1, R(1)=0$.
(c) $f_{\sigma}(x)=f(x)+f_{\sigma}(x-1)$, for all $x \in D_{f}$.

Proof. $(a) \Longrightarrow(b)$: Since $D_{f} \subseteq D_{f_{\sigma}}$, we have $D_{f} \subseteq D_{f_{\sigma}} \subseteq \Sigma_{f} \subseteq D_{f}-1$. Hence $D_{f} \subseteq D_{f}-1$, and consequently $\Sigma_{f}=D_{f}-1$. Now, by Theorem 1.2. we get $\Sigma_{f}=\left(D_{f} \cap D_{f_{\sigma}}\right)-1=D_{f_{\sigma}}$.
$(\mathrm{b}) \Longrightarrow(\mathrm{c})$: This clearly follows from Corollary 1.3.
$(\mathrm{c}) \Longrightarrow$ (a): From the assumption we conclude that $D_{f} \subseteq D_{f_{\sigma}}$. Now putting $x=1$ we get $f_{\sigma}(1)=f(1)+f_{\sigma}(0)=f(1)$, and this yields $R(1)=0$.

Definition 2.2. The function f is called limit summable (or more briefly summable) if it is summable on its domain and $R(1)=0$. In this case the function f_{σ} is referred to as the limit summand function of f (or the summand function of f).

Because a summable function f satisfies condition (a) of Lemma 2.1, one has $D_{f}=D_{f} \cap D_{f_{\sigma}}=D_{f_{\sigma}}+1$, i.e. $D_{f_{\sigma}}=D_{f}-1$.
Example 2.3. If $|a|<1$, then the function a^{x} is summable and we have

$$
\sigma\left(a^{x}\right)=\frac{a}{a-1}\left(a^{x}-1\right) .
$$

Example 2.4. The function $f(x)=1 / x$ is not summable. But from the fact that it is summable on $D=D_{f} \backslash \mathbb{Z}^{-}$, the restricted function $g=\left.f\right|_{D}$ is summable and we have

$$
g_{\sigma}(x)=\sum_{n=1}^{\infty} \frac{x}{n x+n^{2}}
$$

The domain of g_{σ} is the set $\mathbb{C} \backslash \mathbb{Z}^{-}$(if x is complex) or the set $\mathbb{R} \backslash \mathbb{Z}^{-}$(if x is real).
Example 2.5. The real function $\ln x$ (with domain \mathbb{R}_{+}^{*}) is summable and $\ln _{\sigma}(x)=\ln \Gamma(x+1)$.
Lemma 2.6. If the functions f and g are summable, then $\alpha f+\beta g$ is and we have $(\alpha f+\beta g)_{\sigma}=\alpha f_{\sigma}+\beta g_{\sigma}$.
Proof. For any x belonging to $\Sigma_{f} \cap \Sigma_{g}=\Sigma_{\alpha f+\beta g}$ we have

$$
(\alpha f+\beta g)_{\sigma_{n}}(x)=\alpha f_{\sigma_{n}}(x)+\beta g_{\sigma_{n}}(x)
$$

and

$$
R_{n}(\alpha f+\beta g, x)=\alpha R_{n}(f, x)+\beta R_{n}(g, x)
$$

Now, since f and g are summable, by the above relations we conclude that $R(\alpha f+\beta g, 1)=0$ and

$$
D_{\alpha f+\beta g}=D_{f} \cap D_{g} \subseteq D_{f_{\sigma}} \cap D_{g_{\sigma}} \subseteq D_{(\alpha f+\beta g)_{\sigma}}
$$

Corollary 2.7. Let $f=u+i v$ and $D_{u}=D_{v}$. The complex function f is summable if and only if the functions $u=\operatorname{Re}(f)$ and $v=\operatorname{Im}(f)$ are summable, and $f_{\sigma}=u_{\sigma}+i v_{\sigma}$.
Example 2.8. If $0<a<1$, then the real function $f(x)=c a^{x}+\log _{b} x$ is summable and we have

$$
f_{\sigma}(x)=\frac{c a}{a-1}\left(a^{x}-1\right)+\log _{b} \Gamma(x+1)
$$

$\left(D_{f_{\sigma}}=(-1,+\infty)\right)$.
Very often it is sufficient to consider the summability of a real function on an interval of length 1 . We prove this fact through a theorem preceded by the following definition.
Definition 2.9. The real function f is given. The set Σ_{f} is called concentrable if $\Sigma_{f} \backslash D_{f}$ is bounded above. In this case we set

$$
\sigma_{f}=\sup \left(\Sigma_{f} \backslash D_{f}\right) \text { if } \Sigma_{f} \backslash D_{f} \neq \emptyset
$$

and if $\Sigma_{f} \backslash D_{f}=\emptyset$, then we set $\sigma_{f}=0$. The set $\Sigma_{f} \cap\left[\sigma_{f}, \sigma_{f}+1\right)$ is called the center of Σ_{f}.

Usually, for the so called important functions, Σ_{f} is concentrable. For instance, in case the domain of f is one of the sets $(M,+\infty)$ or $[M,+\infty)$, or is a subgroup of \mathbb{R} with identity, then Σ_{f} is concentrable. However the following represents a non-concentrable Σ_{f}.

Example 2.10. Let E be a subset of \mathbb{R} that is unbounded above, contains 0 and such that the subtraction of any two distinct elements of E is not an integer. Put $D=E+\mathbb{N}$, and take the function f such that $D_{f}=D$. So $\Sigma_{f}=E \cup D$ and $\Sigma_{f} \backslash D_{f}=E$, whence Σ_{f} is non concentrable.

Theorem 2.11. Let f be a real function for which $R_{n}(1)$ is convergent and Σ_{f} is concentrable. Then f is summable on Σ_{f} if and only if it is summable on the center of Σ_{f}.

Proof. Suppose that f is summable on the center of Σ_{f} and take a $x \in \Sigma_{f}$. Consider the following cases.

Case (1) $x>\sigma_{f}$. There exists a non-negative integer m with $\sigma_{f}<x-m<$ $\sigma_{f}+1$; so we have $\{x, \cdots, x-m\} \subseteq \Sigma_{f}$, because if for a $t \in \Sigma_{f}$ the condition $t \notin \Sigma_{f} \backslash D_{f}$ holds, then $t \in \Sigma_{f} \cap D_{f}=\Sigma_{f}+1$ and hence $t-1 \in \Sigma_{f}$. Therefore $x-m \in\left(\sigma_{f}, \sigma_{f}+1\right) \cap \Sigma_{f} \subseteq D_{f_{\sigma}}$, and this yields

$$
f_{\sigma_{n}}(x)=f_{\sigma_{n}}(x-m)+\sum_{j=1}^{m}\left(f(x-m+j)+R_{n}(x-m+j)\right)
$$

(note that $\sum_{j=1}^{0} a_{j}=0$). Now, since $(x-m) \in D_{f_{\sigma}}$ and $R_{n}(1) \rightarrow R(1)$ as $n \rightarrow \infty$ and since $R_{n}(x-m+j)=R_{n}(j)+R_{n+j}(x-m)$, for $j=1, \ldots, m$, we see that

$$
R_{n}(x-m+j) \rightarrow R(1)(x-m+j)
$$

as $n \rightarrow \infty$ for each $j=1, \cdots, m$, and so $\left\{f_{\sigma_{n}}(x)\right\}_{n \geq 1}$ is convergent.
Case (2) $x \leq \sigma_{f}$. There exists an non-negative integer m with $\sigma_{f} \leq x+m<$ $\sigma_{f}+1$. Since $x \in \Sigma_{f}$, and since $m \geq 0$, we have $\{x, \cdots, x+m\} \subseteq \Sigma_{f}$, and therefore

$$
f_{\sigma_{n}}(x)=f_{\sigma_{n}}(x+m)-\sum_{j=0}^{m-1}\left(f(x+m-j)+R_{n}(x+m-j)\right)
$$

(note that $\sum_{j=0}^{-1} a_{j}=0$). Now the verification of the convergence of $f_{\sigma_{n}}(x)$ is rendered as in case (1).

Corollary 2.12. Let f be a real function for which $R(1)=0, D_{f} \subseteq D_{f}-1$ and Σ_{f} is concentrable. If f is summable on the center of Σ_{f}, then f is summable.

Corollary 2.13. If $\{1, x\} \subseteq D_{f_{\sigma}}$, then $x+\mathbb{N}^{*} \subseteq D_{f_{\sigma}},\left(x+\mathbb{Z}^{-}\right) \cap \Sigma_{f} \subseteq D_{f_{\sigma}}$ and for any integer m

$$
f_{\sigma}(x+m)=\left\{\begin{array}{l}
\sum_{j=1}^{m} f(x+j)+f_{\sigma}(x)+R(1) m x+R(1) \frac{m^{2}+m}{2} \\
\text { if } m \in \mathbb{N}^{*} \\
-\sum_{j=0}^{-m-1} f(x-j)+f_{\sigma}(x)+R(1) m x+R(1) \frac{m^{2}+m}{2} \\
\text { if } m \in \mathbb{Z}^{-}
\end{array}\right.
$$

3 A Test for Summability of Real Functions and Uniqueness Conditions for a Summand Function

Let E be a subset of \mathbb{R} (not necessarily an interval) and suppose that a real function f is defined on E. The function f is called convex on E if for every three elements x_{1}, x_{2}, x_{3} of E with $x_{1}<x_{2}<x_{3}$

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \leq \frac{f\left(x_{3}\right)-f\left(x_{1}\right)}{x_{3}-x_{1}} \leq \frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}}
$$

If the above inequalities are reversed, then f is called concave. Therefore a function f is concave if and only if the function $-f$ is convex. If f is convex on E, then it is so on each subset of E. For example if f^{\prime} is increasing on (a, b), then f is convex on each subset of (a, b).

Theorem 3.1. Let f be a real function for which $R_{n}(f, 1)$ is convergent. Suppose there exists a function λ such that

$$
(\star) \quad \lambda(x)=f(x)+\lambda(x-1) \text { for all } x \in \Sigma_{f}+1
$$

(a) If $R(1) \geq 0$ and λ is convex on $\Sigma_{f}+1$ from a number on, then f is summable on Σ_{f}.
(b) If $R(1) \leq 0$ and λ is concave on $\Sigma_{f}+1$ from a number on, then f is summable on Σ_{f}.
In each of the above cases we have

$$
f_{\sigma}(x)=\lambda(x)+R(1) \frac{x^{2}+x}{2}-\lambda(0) \text { for all } x \in \Sigma_{f}+1
$$

Proof. (Notice that since $R_{n}(f, 1)$ is convergent, f is summable on the integer points of Σ_{f}.)
(a) Firstly, assume that $R(1)=0$ and $\lambda(1)=f(1)$. There exists an M such that λ is convex on $\Sigma_{f}+1 \cap(M,+\infty)$. Now for a fixed non-integer $x \in \Sigma_{f}$ and every natural number n with $n>\max \{[x], M\}+1$, we have

$$
\{n-1, n, n+x-[x], n+1\} \subseteq\left(\Sigma_{f}+1\right) \cap(M,+\infty)
$$

and so the convexity of λ gives

$$
\lambda(n)-\lambda(n-1) \leq \frac{\lambda(n+x-[x])-\lambda(n)}{x-[x]} \leq \lambda(n+1)-\lambda(n)
$$

Condition (\star) with $\lambda(1)=f(1)$ implies the equalities

$$
\lambda(n)=\sum_{j=1}^{n} f(j), \text { and } \lambda(x+n-[x])=\lambda(x)+\sum_{j=1}^{n-[x]} f(x+j)
$$

From the latter we deduce that, if $[x] \geq 0$,

$$
0 \leq \lambda(x)-f_{\sigma_{n}}(x)+\sum_{j=1}^{[x]} R_{n}(x-[x]+j) \leq([x]-x) R_{n}(1)
$$

and if $[x] \leq-1$,

$$
0 \leq \lambda(x)-f_{\sigma_{n}}(x)-\sum_{j=1}^{-[x]} R_{n}(x+j) \leq([x]-x) R_{n}(1)
$$

When $[x] \geq 0$ we write

$$
f_{\sigma_{n-[x]}}(x)=f_{\sigma_{n}}(x)-x R_{n}(-[x])-\sum_{j=0}^{[x]-1} R_{n-j}(x)
$$

and if $[x] \leq-1$,

$$
f_{\sigma_{n-[x]}}(x)=f_{\sigma_{n}}(x)-x R_{n}(-[x])+\sum_{j=1}^{-[x]} R_{n+j}(x) .
$$

Combining these with previous inequalities, we have if $[x] \geq 0$,

$$
\begin{aligned}
x R_{n}(-[x])+\sum_{j=0}^{[x]-1} R_{n-j}(j) & \leq \lambda(x)-f_{\sigma_{n-[x]}}(x) \\
& \leq([x]-x) R_{n}(1)+x R_{n}(-[x])+\sum_{j=0}^{[x]-1} R_{n-j}(j)
\end{aligned}
$$

and if $[x] \leq-1$

$$
\begin{aligned}
x R_{n}(-[x])-\sum_{j=1}^{-[x]} R_{n}(j) & \leq \lambda(x)-f_{\sigma_{n-[x]}}(x) \\
& \leq([x]-x) R_{n}(1)+x R_{n}(-[x])-\sum_{j=1}^{-[x]} R_{n}(j)
\end{aligned}
$$

Letting $n \rightarrow \infty$ and using the fact that $R_{n}(1) \rightarrow 0$, one sees that the right and left hand sides of the above inequalities tend to 0 , and consequently f is summable at x with $f_{\sigma}(x)=\lambda(x)$.

Now to prove (a) in general put

$$
f^{*}(x)=f(x)+R(1) x \text { and } \lambda^{*}(x)=\lambda(x)+R(1) \frac{x^{2}+x}{2}-\lambda(0)
$$

The conditions on f and λ imply that

$$
\lambda^{*}(x)=f^{*}(x)+\lambda^{*}(x-1) \text { for all } x \in \Sigma_{f^{*}}+1=\Sigma_{f}+1
$$

On the other hand, since $R(1) \geq 0, \lambda^{*}$ is convex (from a number on) and $R\left(f^{*}, 1\right)=0, \lambda^{*}(1)=f^{*}(1)$. Thus, by the previous part we conclude that f^{*} is summable at x and $f_{\sigma}^{*}(x)=\lambda^{*}(x)$. But from $f_{\sigma_{n}}(x)=f_{\sigma_{n}}^{*}(x)$ we derive the summability of f at x, and we have

$$
f_{\sigma}(x)=f_{\sigma}^{*}(x)=\lambda(x)+R(1) \frac{x^{2}+x}{2}-\lambda(0) \text { for all } x \in \Sigma_{f}
$$

(b) If the two functions f and λ satisfy the said conditions, then the functions $-f$ and $-\lambda$ satisfy the conditions of (a), and so

$$
\begin{aligned}
-f_{\sigma}(x) & =(-f)_{\sigma}(x)=(-\lambda)(x)+R(-f, 1) \frac{x^{2}+x}{2}-(-\lambda)(0) \\
& =-\lambda(x)-R(f, 1) \frac{x^{2}+x}{2}+\lambda(0)
\end{aligned}
$$

which gives $f_{\sigma}(x)=\lambda(x)+R(1) \frac{x^{2}+x}{2}-\lambda(0)$, for all $x \in \Sigma_{f}$.
Corollary 3.2. Suppose f satisfies $R(f, 1)=0$ and $D_{f} \subseteq D_{f}-1$. If there exists a function λ which is convex (concave) on D_{f} such that $\lambda(x)=f(x)+$ $\lambda(x-1)$ for all $x \in D_{f}$, then f is summable, and $f_{\sigma}(x)=\lambda^{0}(x)$ for every $x \in D_{f}-1$, where $\lambda^{0}=\lambda-\lambda(0)$.

The above corollary contains a result which may be viewed as a generalization of the Bohr-Mollerup theorem about the Gamma function.

Corollary 3.3. (A generalization of the Bohr-Mollerup theorem). Let f be a positive function on $(M,+\infty)$ satisfying

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{f(n+1)}=1
$$

If there is a positive function ϕ defined on $(M-1,+\infty)$ with:
(a) $\phi(1)=f(1)$,
(b) $\phi(x)=f(x) \phi(x-1)$ for all $x \in(M,+\infty)$,
(c) $\ln \phi$ is convex on $(M,+\infty)$, from a number on
then the function $\ln f$ is summable, and

$$
\phi(x)=e^{(\ln f)_{\sigma}(x)} \text { for all } x \in(M-1,+\infty)
$$

Corollary 3.4. Let f be a summable and f_{σ} be convex (concave) on D_{f}. Then f_{σ} is the only function satisfying:
(a) $f_{\sigma}(1)=f(1)$.
(b) f_{σ} is convex (concave) on D_{f}.
(c) $f_{\sigma}(x)=f(x)+f_{\sigma}(x-1)$ for all $x \in D_{f}$.
(This means that if another function λ satisfies the above condition, then $\lambda(x)=f_{\sigma}(x)$ for all $\left.x \in D_{f_{\sigma}}=D_{f}-1\right)$.

Example 3.5. If λ is a function concave on \mathbb{R}^{+}satisfying

$$
\lambda(x)=a^{x}+\frac{1}{x}+\lambda(x-1) \text { for all } x \in \mathbb{R}^{+}
$$

then there is a constant c such that one could write

$$
\lambda(x)=\frac{a}{a-1}\left(a^{x}-1\right)+\sum_{n=1}^{\infty} \frac{x}{n x+n^{2}}+c \text { for all } x \in(-1,+\infty)
$$

This follows easily from Example 2.3 and 2.4 along with Corollary 3.2 or 3.4.

Remark. One can easily deduce Theorem 3.1 of [2] from Corollary 3.3 (by taking $\phi(x)=f(x+1), f(x)=g(x), M=0)$.

References

[1] E. Artin, The Gamma Function, Holt Rhinehart \& Wilson, New York, 1964; transl. by M. Butler from Einführung un der Theorie der Gammafonktion, Teubner, Leipzig, 1931.
[2] R. J. Webster, Log-convex solutions to the functional equation $f(x+1)=$ $g(x) f(x): \Gamma$-type functions, J. Math. Anal. Appl., 209 (1997), 605-623.

[^0]: Key Words: Limit summable function, limit summand function, concentrable set, convex function, concave function, Gamma function.

 Mathematical Reviews subject classification: 26A99,40A30,39A10
 Received by the editors January 23, 2001

