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LIMIT SUMMABILITY OF REAL
FUNCTIONS

Abstract

Let f be a real (or complex) function with domain Df containing
the positive integers. We introduce the functional sequence {fσn(x)}
as follows:fσn(x) = xf(n) +

Pn
k=1(f(k) − f(x + k)) and say that the

function f limit summable at the point x0 if the sequence {fσn(x0)} is
convergent, (fσn(x0) → fσ(x0)) as n → ∞, and we call the function
fσ(x) as the limit summand function (of f). In this article, we first
give a necessary condition for the limit summability of functions and
present some elementary properties. Then we prove some tests about
limit summability of functions and consider the relation between f(x)
and fσ(x). One of the main theorems in this paper gives a uniqueness
conditions for a function to be a limit summand function. Finally, as a
consequence of this theorem we deduce a generalization of a result due
to Bohr-Mollerup [1].

1 Preliminaries

Definitions and theorems in this article are for complex functions, except when
the real case is explicitly mentioned. In general we assume f : Df → C, where
Df ⊆ C. In the real case we take the function f : Df → R, where Df ⊆ R.
For a function with domain Df ,we put

Σf = {x|x+ N∗ ⊆ Df};
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so x ∈ Σf if and only if {x+ 1, x+ 2, · · · } ⊆ Df . If N∗ ⊆ Df (or equivalently
0 ∈ Σf ) for any positive integer n and x ∈ Σf , set

Rn(f, x) = Rn(x) = f(n)− f(x+ n),

fσn(x) = xf(n) +
n∑
k=1

Rk(x).

When x ∈ Df , we may use the notation σn(f(x)) instead of fσn(x).

Definition 1.1. The function f is called limit summable at x0 ∈ Σf if the
functional sequence {fσn(x)} is convergent at x = x0. The function f is called
limit summable on the set S ⊆ Σf if it is limit summable at all the points of
S.

Convention: For brevity we use the term summable for limit summable, and
restrict ourselves to the assumption N∗ ⊆ Df .

Now, put Dfσ = {x ∈ Σf |f is summable at x}. The function fσ is the same
limit function fσn with domain Dfσ . We represent also, the limit function
Rn(f, x) as R(f, x) or R(x). Clearly fσ(0) = 0, 0 ∈ Dfσ . If 0 ∈ Df , then
−1 ∈ Dfσ , and we have fσ(−1) = −f(0). Regarding the relations

fσn(1) = f(1) +Rn(1),
fσn(x)− fσn−1(x) = Rn(x)− xRn−1(1),

we get 1 ∈ Dfσ if and only if the sequence {Rn(1)} is convergent, and if
R(1) = 0, then fσ(1) = f(1) (e.g. if {f(n)} is convergent, then R(1) = 0
and so fσ(1) = f(1)). Also it is inferred that a necessary condition for the
summability of f at x is limn→∞(Rn(x)−xRn−1(1)) = 0. Therefore if 1 ∈ Dfσ ,
then the functional sequence {Rn(x)} is convergent on Dfσ and R(x) = R(1)x
(for all x ∈ Dfσ ). Now it is not difficult to show that

Df ∩ Σf = Σf + 1 = {x+ 1|x ∈ Σf}.

An interesting fact is the similarities between the properties of Dfσ and those
of Σf . The next theorem shows a corresponding relation for Dfσ .

Theorem 1.2. If Rn(1, f) is convergent, then Df ∩Dfσ = Dfσ + 1.

Proof. Take an x in Df ∩Dfσ . Then x ∈ Σf + 1 and so, both x and x − 1
belong to Σf and we have

fσn(x− 1) = fσn(x)− f(x)−Rn(x).
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From x ∈ Dfσ andRn(1)→ R(1) we conclude thatR(x) = R(1)x; so fσn(x−1)
is convergent; that is, x− 1 ∈ Dfσ and so x ∈ Dfσ + 1.

Now if x ∈ Dfσ + 1, then x ∈ Df ∩ Σf , and Rn(x) is convergent, because
Rn(x) = Rn(1) + Rn+1(x− 1), and x− 1 ∈ Dfσ . Hence fσn(x) is convergent
and fσ(x) = f(x) + fσ(x− 1) +R(1)x; so that x ∈ Dfσ ∩Df .

Remark. The converse of the above theorem is clearly true.

Corollary 1.3. If R(1) = 0, then

(a) fσ(x) = f(x) + fσ(x− 1), for all x ∈ Dfσ + 1.

(b) f is summable on N and on Σf ∩ Z−, and we have

fσ(m) =

{∑m
j=1 f(j) if m ∈ N∗

−
∑−m−1
j=0 f(−j) if m ∈ Z− ∩ Σf .

2 Limit Summable Functions

Lemma 2.1. The followings are equivalent:

(a) Df ⊆ Dfσ , R(1) = 0.

(b) Dfσ = Σf , Df ⊆ Df − 1, R(1) = 0.

(c) fσ(x) = f(x) + fσ(x− 1), for all x ∈ Df .

Proof. (a) =⇒ (b) : Since Df ⊆ Dfσ , we have Df ⊆ Dfσ ⊆ Σf ⊆ Df − 1.
Hence Df ⊆ Df − 1, and consequently Σf = Df − 1. Now, by Theorem 1.2.
we get Σf = (Df ∩Dfσ )− 1 = Dfσ .

(b)=⇒ (c): This clearly follows from Corollary 1.3.
(c)=⇒ (a): From the assumption we conclude that Df ⊆ Dfσ . Now

putting x = 1 we get fσ(1) = f(1)+fσ(0) = f(1), and this yields R(1) = 0.

Definition 2.2. The function f is called limit summable (or more briefly
summable) if it is summable on its domain and R(1) = 0. In this case the
function fσ is referred to as the limit summand function of f (or the summand
function of f).

Because a summable function f satisfies condition (a) of Lemma 2.1, one
has Df = Df ∩Dfσ = Dfσ + 1, i.e. Dfσ = Df − 1.

Example 2.3. If |a| < 1, then the function ax is summable and we have

σ(ax) =
a

a− 1
(ax − 1).
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Example 2.4. The function f(x) = 1/x is not summable. But from the
fact that it is summable on D = Df \ Z−, the restricted function g = f |D is
summable and we have

gσ(x) =
∞∑
n=1

x

nx+ n2
.

The domain of gσ is the set C \Z− (if x is complex) or the set R \Z− (if x is
real).

Example 2.5. The real function lnx (with domain R∗+) is summable and
lnσ(x) = ln Γ(x+ 1).

Lemma 2.6. If the functions f and g are summable, then αf + βg is and we
have (αf + βg)σ = αfσ + βgσ.

Proof. For any x belonging to Σf ∩ Σg = Σαf+βg we have

(αf + βg)σn(x) = αfσn(x) + βgσn(x),

and
Rn(αf + βg, x) = αRn(f, x) + βRn(g, x).

Now, since f and g are summable, by the above relations we conclude that
R(αf + βg, 1) = 0 and

Dαf+βg = Df ∩Dg ⊆ Dfσ ∩Dgσ ⊆ D(αf+βg)σ .

Corollary 2.7. Let f = u + iv and Du = Dv. The complex function f is
summable if and only if the functions u = Re(f) and v = Im(f) are summable,
and fσ = uσ + ivσ.

Example 2.8. If 0 < a < 1, then the real function f(x) = cax + logb x is
summable and we have

fσ(x) =
ca

a− 1
(ax − 1) + logb Γ(x+ 1),

(Dfσ = (−1,+∞)).

Very often it is sufficient to consider the summability of a real function on
an interval of length 1. We prove this fact through a theorem preceded by the
following definition.

Definition 2.9. The real function f is given. The set Σf is called concentrable
if Σf \Df is bounded above. In this case we set

σf = sup(Σf \Df ) if Σf \Df 6= ∅,

and if Σf \Df = ∅, then we set σf = 0. The set Σf ∩ [σf , σf + 1) is called the
center of Σf .
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Usually, for the so called important functions, Σf is concentrable. For instance,
in case the domain of f is one of the sets (M,+∞) or [M,+∞), or is a subgroup
of R with identity, then Σf is concentrable. However the following represents
a non-concentrable Σf .

Example 2.10. Let E be a subset of R that is unbounded above, contains
0 and such that the subtraction of any two distinct elements of E is not an
integer. Put D = E + N, and take the function f such that Df = D. So
Σf = E ∪D and Σf \Df = E, whence Σf is non concentrable.

Theorem 2.11. Let f be a real function for which Rn(1) is convergent and
Σf is concentrable. Then f is summable on Σf if and only if it is summable
on the center of Σf .

Proof. Suppose that f is summable on the center of Σf and take a x ∈ Σf .
Consider the following cases.

Case (1) x > σf . There exists a non-negative integer m with σf < x−m <
σf + 1; so we have {x, · · · , x−m} ⊆ Σf , because if for a t ∈ Σf the condition
t /∈ Σf \Df holds, then t ∈ Σf ∩Df = Σf +1 and hence t−1 ∈ Σf . Therefore
x−m ∈ (σf , σf + 1) ∩ Σf ⊆ Dfσ , and this yields

fσn(x) = fσn(x−m) +
m∑
j=1

(f(x−m+ j) +Rn(x−m+ j)),

(note that
∑0
j=1 aj = 0). Now, since (x − m) ∈ Dfσ and Rn(1) → R(1) as

n → ∞ and since Rn(x −m + j) = Rn(j) + Rn+j(x −m), for j = 1, . . . ,m,
we see that

Rn(x−m+ j)→ R(1)(x−m+ j),

as n→∞ for each j = 1, · · · ,m, and so {fσn(x)}n≥1 is convergent.
Case (2) x ≤ σf . There exists an non-negative integerm with σf ≤ x+m <

σf + 1. Since x ∈ Σf , and since m ≥ 0, we have {x, · · · , x + m} ⊆ Σf , and
therefore

fσn(x) = fσn(x+m)−
m−1∑
j=0

(f(x+m− j) +Rn(x+m− j)),

(note that
∑−1
j=0 aj = 0). Now the verification of the convergence of fσn(x) is

rendered as in case (1).

Corollary 2.12. Let f be a real function for which R(1) = 0, Df ⊆ Df−1 and
Σf is concentrable. If f is summable on the center of Σf , then f is summable.
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Corollary 2.13. If {1, x} ⊆ Dfσ , then x + N∗ ⊆ Dfσ , (x + Z−) ∩ Σf ⊆ Dfσ

and for any integer m

fσ(x+m) =



∑m
j=1 f(x+ j) + fσ(x) +R(1)mx+R(1)

m2 +m

2
if m ∈ N∗

−
∑−m−1
j=0 f(x− j) + fσ(x) +R(1)mx+R(1)

m2 +m

2
if m ∈ Z−.

3 A Test for Summability of Real Functions and Unique-
ness Conditions for a Summand Function

Let E be a subset of R (not necessarily an interval) and suppose that a real
function f is defined on E. The function f is called convex on E if for every
three elements x1, x2, x3 of E with x1 < x2 < x3

f(x2)− f(x1)
x2 − x1

≤ f(x3)− f(x1)
x3 − x1

≤ f(x3)− f(x2)
x3 − x2

.

If the above inequalities are reversed, then f is called concave. Therefore a
function f is concave if and only if the function −f is convex. If f is convex
on E, then it is so on each subset of E. For example if f ′ is increasing on
(a, b), then f is convex on each subset of (a, b).

Theorem 3.1. Let f be a real function for which Rn(f, 1) is convergent.
Suppose there exists a function λ such that

(?) λ(x) = f(x) + λ(x− 1) for all x ∈ Σf + 1.

(a) If R(1) ≥ 0 and λ is convex on Σf + 1 from a number on, then f is
summable on Σf .
(b) If R(1) ≤ 0 and λ is concave on Σf + 1 from a number on, then f is
summable on Σf .
In each of the above cases we have

fσ(x) = λ(x) +R(1)
x2 + x

2
− λ(0) for all x ∈ Σf + 1.

Proof. (Notice that since Rn(f, 1) is convergent, f is summable on the inte-
ger points of Σf .)
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(a) Firstly, assume that R(1) = 0 and λ(1) = f(1). There exists an M such
that λ is convex on Σf + 1 ∩ (M,+∞). Now for a fixed non-integer x ∈ Σf
and every natural number n with n > max{[x],M}+ 1, we have

{n− 1, n, n+ x− [x], n+ 1} ⊆ (Σf + 1) ∩ (M,+∞),

and so the convexity of λ gives

λ(n)− λ(n− 1) ≤ λ(n+ x− [x])− λ(n)
x− [x]

≤ λ(n+ 1)− λ(n).

Condition (?) with λ(1) = f(1) implies the equalities

λ(n) =
n∑
j=1

f(j), and λ(x+ n− [x]) = λ(x) +
n−[x]∑
j=1

f(x+ j).

From the latter we deduce that, if [x] ≥ 0,

0 ≤ λ(x)− fσn(x) +
[x]∑
j=1

Rn(x− [x] + j) ≤ ([x]− x)Rn(1),

and if [x] ≤ −1,

0 ≤ λ(x)− fσn(x)−
−[x]∑
j=1

Rn(x+ j) ≤ ([x]− x)Rn(1).

When [x] ≥ 0 we write

fσn−[x](x) = fσn(x)− xRn(−[x])−
[x]−1∑
j=0

Rn−j(x),

and if [x] ≤ −1,

fσn−[x](x) = fσn(x)− xRn(−[x]) +
−[x]∑
j=1

Rn+j(x).

Combining these with previous inequalities, we have if [x] ≥ 0,

xRn(−[x]) +
[x]−1∑
j=0

Rn−j(j) ≤ λ(x)− fσn−[x](x)

≤ ([x]− x)Rn(1) + xRn(−[x]) +
[x]−1∑
j=0

Rn−j(j),
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and if [x] ≤ −1

xRn(−[x])−
−[x]∑
j=1

Rn(j) ≤ λ(x)− fσn−[x](x)

≤ ([x]− x)Rn(1) + xRn(−[x])−
−[x]∑
j=1

Rn(j),

Letting n → ∞ and using the fact that Rn(1) → 0, one sees that the right
and left hand sides of the above inequalities tend to 0, and consequently f is
summable at x with fσ(x) = λ(x).

Now to prove (a) in general put

f∗(x) = f(x) +R(1)x and λ∗(x) = λ(x) +R(1)
x2 + x

2
− λ(0).

The conditions on f and λ imply that

λ∗(x) = f∗(x) + λ∗(x− 1) for all x ∈ Σf∗ + 1 = Σf + 1.

On the other hand, since R(1) ≥ 0, λ∗ is convex (from a number on) and
R(f∗, 1) = 0, λ∗(1) = f∗(1). Thus, by the previous part we conclude that f∗

is summable at x and f∗σ(x) = λ∗(x). But from fσn(x) = f∗σn(x) we derive the
summability of f at x, and we have

fσ(x) = f∗σ(x) = λ(x) +R(1)
x2 + x

2
− λ(0) for all x ∈ Σf .

(b) If the two functions f and λ satisfy the said conditions, then the func-
tions −f and −λ satisfy the conditions of (a), and so

−fσ(x) =(−f)σ(x) = (−λ)(x) +R(−f, 1)
x2 + x

2
− (−λ)(0)

=− λ(x)−R(f, 1)
x2 + x

2
+ λ(0),

which gives fσ(x) = λ(x) +R(1)x
2+x
2 − λ(0), for all x ∈ Σf .

Corollary 3.2. Suppose f satisfies R(f, 1) = 0 and Df ⊆ Df − 1. If there
exists a function λ which is convex (concave) on Df such that λ(x) = f(x) +
λ(x − 1)for all x ∈ Df , then f is summable, and fσ(x) = λ0(x) for every
x ∈ Df − 1, where λ0 = λ− λ(0).
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The above corollary contains a result which may be viewed as a general-
ization of the Bohr-Mollerup theorem about the Gamma function.

Corollary 3.3. (A generalization of the Bohr-Mollerup theorem).
Let f be a positive function on (M,+∞) satisfying

lim
n→∞

f(n)
f(n+ 1)

= 1.

If there is a positive function φ defined on (M − 1,+∞) with:

(a) φ(1) = f(1),

(b) φ(x) = f(x)φ(x− 1) for all x ∈ (M,+∞),

(c) lnφ is convex on (M,+∞), from a number on

then the function ln f is summable, and

φ(x) = e(ln f)σ(x) for all x ∈ (M − 1,+∞).

Corollary 3.4. Let f be a summable and fσ be convex (concave) on Df . Then
fσ is the only function satisfying:

(a) fσ(1) = f(1).

(b) fσ is convex (concave) on Df .

(c) fσ(x) = f(x) + fσ(x− 1) for all x ∈ Df .

(This means that if another function λ satisfies the above condition, then
λ(x) = fσ(x) for all x ∈ Dfσ = Df − 1).

Example 3.5. If λ is a function concave on R+ satisfying

λ(x) = ax +
1
x

+ λ(x− 1) for all x ∈ R+,

then there is a constant c such that one could write

λ(x) =
a

a− 1
(ax − 1) +

∞∑
n=1

x

nx+ n2
+ c for all x ∈ (−1,+∞).

This follows easily from Example 2.3 and 2.4 along with Corollary 3.2 or
3.4.
Remark. One can easily deduce Theorem 3.1 of [2] from Corollary 3.3 (by
taking φ(x) = f(x+ 1), f(x) = g(x), M = 0).
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