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TWO-DIMENSIONAL MEAN
INEQUALITIES IN CERTAIN BANACH

FUNCTION SPACES

Abstract

Weight characterization is obtained for the Lp-Xq boundedness of
the two-dimensional Hardy operator (H2f)(x1, x2) =

R x1
0

R x2
0

f(t1, t2) dt1 dt2.
By using a limiting procedure as well as by a direct method, the corre-
sponding boundedness of the two-dimensional geometric mean operator

(G2f)(x1, x2) = exp

„
1

x1x2

R x1
0

R x2
0

ln f(t1, t2) dt1 dt2

«
is obtained.

1 Introduction.

Let Ω ⊂ Rn. A real normed linear space X = {f : ‖f‖X <∞} of measurable
functions on Ω is called a Banach function space (BFS), if in addition to the
usual norm axioms, ‖f‖X satisfies the following.
(1) ‖f‖X = ‖ |f | ‖X for all f ∈ X.
(2) 0 ≤ f ≤ g a.e. ⇒ ‖f‖X ≤ ‖g‖X .
(3) 0 < fn ↑ f a.e. ⇒ ‖fn‖X ↑ ‖f‖X .
(4) mesE <∞ ⇒ ‖χE‖X <∞.

(5) mesE <∞ ⇒
∫
E

f ≤ CE‖f‖X for some constant CE depending upon E.

Given a BFS X, its associate space X ′ is defined by

X ′ =
{
g :
∫

Ω

|fg| <∞ for all f ∈ X
}
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and is endowed with the associate norm

‖g‖X′ = sup
{∫

Ω

|fg| : f ∈ X; ‖f‖X ≤ 1
}
.

Examples of BFS are Lebesgue Lp-spaces, Lorentz spaces, Orlicz spaces etc.
It is known that the second associate space of X; i.e., (X ′)′ = X ′′ coincides
with X itself and consequently, the norm of the function in X can be written
in terms of functions in X ′, i.e.,

‖f‖X = sup
{∫

Ω

|fg| : g ∈ X ′; ‖g‖X′ ≤ 1
}
.

The idea of BFS was introduced by Luxemburg [8]. A good treatment of
the theory of such spaces can be found, e.g., in [1].

Throughout the paper, we shall take Ω = (0,∞)×(0,∞). We are concerned
here with the space Xp, −∞ < p < ∞, p 6= 0 which is the space of all

measurable functions f on Ω for which ‖f‖Xp := ‖ |f |p ‖
1
p

X <∞, X being the
underlying BFS. For X = L1, the space Xp coincides with the Lp-space. It is
known, see e.g., [9], [11] that for 1 ≤ p <∞, Xp is a BFS,

In this paper, we are concerned with the two-dimensional Hardy operator

(H2f)(x1, x2) =
∫ x1

0

∫ x2

0

f(t1, t2) dt1 dt2 (1.1)

and the two-dimensional geometric mean operator

(G2f)(x1, x2) = exp
(

1
x1x2

∫ x1

0

∫ x2

0

ln f(t1, t2) dt1 dt2

)
. (1.2)

In fact, we obtain necessary and sufficient conditions for the Lp-Xq bounded-
ness of these operators; i.e., we characterize the weighted inequalities

∥∥(H2f)qu
∥∥ 1
q

X
≤ C

(∫ ∞
0

∫ ∞
0

fp(x1, x2)v(x2, x2) dx1 dx2

) 1
p

(1.3)

and

∥∥(G2f)qu
∥∥ 1
q

X
≤ C

(∫ ∞
0

∫ ∞
0

fp(x1, x2)v(x1, x2) dx1 dx2

) 1
p

. (1.4)

When X = L1, 1 < p ≤ q <∞, the inequality (1.3) has been characterized
by Sawyer [13] giving three conditions. It was shown by Wedestig [16] (see
also [14]) that if we take v(x2, x2) = v(x1)v(x2), then only one condition is
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required for the corresponding inequality to hold. We extend this result of
Wedestig for the Lp-Xq boundedness (See Theorem 1). We also discuss the
corresponding boundedness of the conjugate Hardy operator

(H∗2f)(x1, x2) =
∫ ∞
x1

∫ ∞
x2

f(t1, t2) dt1 dt2,

which is new even for Lp-Lq case.
As regards the inequality (1.4), we study it in two different ways. The first

is to use the fact

lim
α→0

( 1
x1x2

∫ x1

0

∫ x2

0

fα(t1, t2) dt1 dt2
) 1
α

= exp
(

1
x1x2

∫ x1

0

∫ x2

0

ln f(t1, t2) dt1 dt2

)
in (1.3). Another is a direct way without using the limiting procedure. More-
over, in the later case, we study a more general inequality than (1.4) where
the functions f are defined on (0, b1) × (0, b2), 0 < b1, b2 ≤ ∞. Also, in this
case, the weight on the R.H.S. of the corresponding inequality need not be of
the product type (see Theorem 4). The corresponding Lp-Lq case has been
proved for the case p = q = 1 by Heinig, Kerman and Krebec [2] and Jain and
Hassija [5] while for the case 0 < p ≤ q <∞ by Wedestig [14], [16].

Let us mention that all the results cited or proved in this paper are known
in the one dimensional situation. The Lp-Lq boundedness of the one dimen-
sional Hardy operator (Hf)(x) =

∫ x
0
f(t)dt and geometric mean operator

(Gf)(x) = exp
(

1
x

∫ x
0

ln f(t)dt
)

have been largely settled for all parameters,
see [6], [7], [10], [12] and the references therein. While the corresponding
Lp-Xq boundedness has recently been studied in [3], [4].

Throughout, all functions will be Lebesgue measurable. By a weight func-
tion, we shall mean a function which is measurable, positive and finite a.e.
on the appropriate domain. We shall be using two-dimensional version of the
Minkowski’s integral inequality from [14], [15] stated below.

Proposition A. Let r > 1, −∞ ≤ a1 < b1 ≤ ∞, −∞ ≤ a2 < b2 ≤ ∞ and
Φ,Ψ be positive measurable functions on [a1, b1]× [a2, b2]. Then∫ b1

a1

∫ b2

a2

Φ(x1, x2)
(∫ x1

a1

∫ x2

a2

Ψ(y1, y2) dy1 dy2

)r
dx1 dx2

≤
∫ b1

a1

∫ b2

a2

Ψ(y1, y2)

(∫ b1

y1

∫ b2

y2

Φ(x1, x2) dx1 dx2

)1/r

dy1 dy2.

(1.5)
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2 The Operators H2 and H∗
2 .

In this section, we give necessary and sufficient conditions for the Lp-Xq

boundedness of the two-dimensional Hardy operator H2 defined in (1.1) and
its conjugate

(H∗2f)(x1, x2) =
∫ ∞
x1

∫ ∞
x2

f(t1, t2) dt1 dt2.

We begin with the following precise result concerning H2 .

Theorem 1. Let 1 < p ≤ q <∞, s1, s2 ∈ (1, p), u be a weight function on R2
+

and v1, v2 be weight functions on R+. Let Vi(ti) =
∫ ti

0

v1−p′
i (xi)dxi, i = 1, 2

and assume that Vi(ti) <∞, 0 < ti <∞. Then the inequality

∥∥(H2f)qu
∥∥ 1
q

X
≤ C

{∫ ∞
0

∫ ∞
0

fp(x1, x2)v1(x1)v2(x2) dx1 dx2

} 1
p

(2.1)

holds for all measurable functions f ≥ 0 if and only if sup
t1,t2>0

A(s1, s2) < ∞,

where

A(s1,s2) :=V
s1−1
p

1 (t1)V
s2−1
p

2 (t2)

×
∥∥χ

[t1,∞)(x1)χ[t2,∞)(x2)u(x1, x2)V
q(p−s1)

p

1 (x1)V
q(p−s2)

p

2 (x2)
∥∥ 1
q

X

and the best constant C in (2.1) has the estimates

sup
1<s1,s2<p


(

p

p− s1

)p
(

p

p− s1

)p
+
(

1
s1 − 1

)


1
p


(
p

p− s2

)p
(

p

p− s2

)p
+
(

1
s2 − 1

)


1
p

A(s1, s2)

≤ C ≤ inf
1<s1,s2<p

(
p− 1
p− s1

) 1
p′
(
p− 1
p− s2

) 1
p′

A(s1, s2) .

Proof. The key step here is to use the following expression for the norm on
X ∥∥(H2f)qu

∥∥ 1
q

X
= sup

h>0

{∫ ∞
0

∫ ∞
0

(∫ x1

0

∫ x2

0

f(s, t)dsdt
)q

× u(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1
} 1
q

.
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Now, if we take fp(x1, x2)v1(x1)v2(x2) = g(x1, x2), then (2.1) becomes equiv-
alent to

sup
h>0

{∫ ∞
0

∫ ∞
0

(∫ x1

0

∫ x2

0

g
1
p (t1, t2)v

− 1
p

1 (t1)v
− 1
p

2 (t2) dt1 dt2

)q
u(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1

} 1
q

≤C
{∫ ∞

0

∫ ∞
0

g(x1, x2) dx1 dx2

} 1
p

(2.2)

We prove the necessity first. For fixed t1, t2 > 0, consider the test function

g(x1, x2) =
(

p

p− s1

)p(
p

p− s2

)p
V −s11 (t1)v1−p′

1 (x1)V −s22 (t2)v1−p′
2 (x2)

× χ
(0,t1)(x1)χ(0,t2)(x2) +

(
p

p− s1

)p
V −s11 (t1)v1−p′

1 (x1)

× V −s22 (x2)v1−p′
2 (x2)χ(0,t1)(x1)χ(t2,∞)(x2)

+
(

p

p− s2

)p
V −s11 (x1)v1−p′

1 (x1)V −s22 (t2)v1−p′
2 (x2)

× χ
(t1,∞)(x1)χ(0,t2)(x2) + V −s11 (x1)v1−p′

1 (x1)

× V −s22 (x2)v1−p′
2 (x2)χ(t1,∞)(x1)χ(t2,∞)(x2) ,

using which it is easy to check as in [16] that the R.H.S. of (2.2) is not greater
than((

p

p− s1

)p
+

1
s1 − 1

) 1
p
((

p

p− s2

)p
+

1
s2 − 1

) 1
p

V
(1−s1)/p
1 (t1)V (1−s2)/p

2 (t2),

since V 1−si
i (∞) = 0 if Vi(∞) =∞ and positive if 0 < Vi(∞) <∞, i = 1, 2.

On the other hand, the L.H.S. can be estimated as follows.

sup
h>0

{∫ ∞
0

∫ ∞
0

(∫ x1

0

∫ x2

0

g
1
p (y1, y2)v

− 1
p

1 (y1)v
− 1
p

2 (y2) dy2

)q
×u(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1

} 1
q

≥ sup
h>0

{∫ ∞
t1

∫ ∞
t2

[(∫ t1

0

(
p

p− s1

)
V
− s1p
1 (t1)v1−p′

1 (y1) dy1

)
×
(∫ t2

0

(
p

p− s2

)
V
− s2p
2 (t2)v1−p′

2 (y2) dy2

)
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+
(∫ t1

0

(
p

p− s1

)
V
− s1p
1 (t1)v1−p′

1 (y1) dy1

)(∫ x2

t2

V
− s2p
2 (y2)v1−p′

2 (y2) dy2

)
+
(∫ x1

t1

V
− s1p
1 (y1)v1−p′

1 (y1) dy1

)(∫ t2

0

(
p

p− s2

)
V
− s2p
2 (t2)v1−p′

2 (y2) dy2

)
+
(∫ x1

t1

V
− s1p
1 (y1)v1−p′

1 (y1) dy1

)(∫ x2

t2

V
− s2p
2 (y2)v1−p′

2 (y2) dy2

)]q
× u(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1

} 1
q

=
(

p

p− s1

)(
p

p− s2

)
sup
h>0

{∫ ∞
t1

∫ ∞
t2

u(x1, x2)V
q(p−s1)

p

1 (x1)

× V
q(p−s2)

p

2 (x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤
} 1
q

=
(

p

p− s1

)(
p

p− s2

)∥∥χ
[t1,∞)

χ
[t2,∞)uV

q(p−s1)
p

1 V
q(p−s2)

p

2

∥∥ 1
q

X
.

Consequently, the inequality (2.2) takes the form


(

p

p− s1

)p
(

p

p− s1

)p
+

1
s1 − 1


1
p


(
p

p− s2

)p
(

p

p− s2

)p
+

1
s2 − 1


1
p

× V
(s1−1)
p

1 (t1)V
(s2−1)
p

2 (t2)
∥∥χ

[t1,∞)
χ

[t2,∞)V
q(p−s1)

p

1 (x1)V
q(p−s1)

p

2 (x2)u
∥∥ 1
q

X
≤ C;

i.e.,
(

p

p− s1

)p
(

p

p− s1

)p
+

1
s1 − 1


1
p


(
p

p− s2

)p
(

p

p− s2

)p
+

1
s2 − 1


1
p

A(s1, s2) ≤ C (2.3)

and the necessity follows.

Towards the sufficiency, first note that
d

dt1
V1(t1) = v1−p′

1 (t1),
d

dt2
V2(t2) =

v1−p′
2 (t2). Now, by applying Hölder’s inequality and Minkowski’s inequality

(1.5), the L.H.S. of (2.2) becomes

sup
h>0

{∫ ∞
0

∫ ∞
0

(∫ x1

0

∫ x2

0

g
1
p (t1, t2)V

s1−1
p

1 (t1)V
s2−1
p

2 (t2)V
−(s1−1)

p

1 (t1)v
−1
p

1 (t1)
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× V
−(s2−1)

p

2 (t2)v
−1
p

2 (t2) dt1 dt2

)q
u(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1

} 1
q

≤ sup
h>0

{∫ ∞
0

∫ ∞
0

(∫ x1

0

∫ x2

0

g(t1, t2)V (s1−1)
1 (t1)V (s2−1)

2 (t2) dt1 dt2

) q
p

×
(∫ x1

0

V
−(s1−1)p′

p

1 (t1)v
−p′
p

1 (t1) dt1

) q
p′
(∫ x2

0

V
−(s2−1)p′

p

2 (t2)v
−p′
p

2 (t2)dt2

) q
p′

× u(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1
} 1
q

=
(
p− 1
p− s1

) 1
p′
(
p− 1
p− s2

) 1
p′

sup
h>0

{∫ ∞
0

∫ ∞
0

(∫ x1

0

∫ x2

0

g(t1, t2)

× V
(s1−1)
1 (t1)V (s2−1)

2 (t2) dt1 dt2

) q
p

V
q(p−s1)

p

1 (x1)V
q(p−s2)

p

2 (x2)

× u(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1
} 1
q

≤
(
p− 1
p− s1

) 1
p′
(
p− 1
p− s2

) 1
p′

sup
h>0

{∫ ∞
0

∫ ∞
0

g(t1, t2)V s1−1
1 (t1)V s2−1

2 (t2)

×
(∫ ∞

t1

∫ ∞
t2

V
q(p−s1)

p

1 (x1)V
q(p−s2)

p

2 (x2)

× u(x1, x2)h(x1, x2) dx1 dx2

) p
q

dt1 dt2 : ‖h‖X′ ≤ 1
} 1
p

≤
(
p− 1
p− s1

) 1
p′
(
p− 1
p− s2

) 1
p′
{∫ ∞

0

∫ ∞
0

g(t1, t2)V s1−1
1 (t1)V s2−1

2 (t2)

×
∥∥χ

[t1,∞)
χ

[t2,∞)V
q(p−s1)

p

1 V
q(p−s2)

p

2 u
∥∥ pq
X
dt1 dt2

} 1
p

≤
(
p− 1
p− s1

) 1
p′
(
p− 1
p− s2

) 1
p′

A(s1, s2)
{∫ ∞

0

∫ ∞
0

g(t1, t2) dt1 dt2

} 1
p

, (2.4)

and, the sufficiency follows. The estimate for the best constant in (2.1) follows
from (2.3) and (2.4).

Remark 1. Theorem 1 extends a result of Wedestig [14], [15] who proved the
Lp-Lq boundedness of H2 which can be obtained by taking X = L1.

We next consider the operator H∗2 (the conjugate of H2) and character-
ize its Lp-Xq boundedness. The corresponding result for the Lp-Lq case is
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also not known. However, it is standard. Indeed, one can use either duality
arguments or variable substitution method on the Lp-Lq boundedness of H2.
In the present situation, none of the methods is applicable as the dual of Xp

is not known and also the expression of the Xp-norm does not support vari-
able substitution. Therefore, we treat this case directly. However, the proof
employs similar techniques as those in Theorem 1. We prove it below.

Theorem 2. Let 1 < p ≤ q <∞, s1, s2 ∈ (1, p), u be a weight function on R2
+

and v1, v2 be weight functions on R+. let Ṽi(ti) =
∫∞
ti
v1−p′
i (xi)dxi, i = 1, 2

and assume that Ṽi(ti) <∞, 0 < ti <∞. Then the inequality

∥∥(H∗2f)qu
∥∥ 1
q

X
≤ C

{∫ ∞
0

∫ ∞
0

fp(x1, x2)v1(x1)v2(x2) dx1 dx2

} 1
p

(2.5)

holds for all measurable functions f ≥ 0 if and only if sup
t1,t2>0

A∗(s1, s2) <∞,

where

A∗(s1, s2) := Ṽ
(s1−1)
p

1 (t1)Ṽ
(s2−1)
p

2 (t2)

×
∥∥χ

(0,t1](x1)χ(0,t2](x2)u(x1, x2)Ṽ
q(p−s1)

p

1 (x1)Ṽ
q(p−s2)

p

2 (x2)
∥∥ 1
q

X

(2.6)

and, the best possible constant C in (2.5) has the estimates

sup
1<s1,s2<p


(

p

p− s1

)p
(

p

p− s1

)p
+
(

1
s1 − 1

)


1
p


(
p

p− s2

)p
(

p

p− s2

)p
+
(

1
s2 − 1

)


1
p

A∗(s1, s2)

≤ C ≤ inf
1<s1,s2<p

(
p− 1
p− s1

) 1
p′
(
p− 1
p− s2

) 1
p′

A∗(s1, s2)

Proof. Take fp(x1, x2)v1(x1)v2(x2) = g(x1, x2) and we find that the inequal-
ity (2.5) becomes equivalent to

sup
h>0

{∫ ∞
0

∫ ∞
0

(∫ ∞
x1

∫ ∞
x2

g
1
p (t1, t2)v

− 1
p

1 (t1)v
− 1
p

2 (t2) dt1 dt2

)q
u(x1, x2)h(x1, x2) dx1 dx2

} 1
q

≤C
{∫ ∞

0

∫ ∞
0

g(x1, x2) dx1 dx2

} 1
p

(2.7)
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Assume first that (2.6) holds. Then Hölder’s inequality, Minkowski’s in-

equality (1.5) and the fact that d
dt2
Ṽ2(t2) = −v1−p′

2 (t2) = −v
−p′
p

2 (t2) , give

sup
h>0

{∫ ∞
0

∫ ∞
0

(∫ ∞
x1

∫ ∞
x2

g
1
p (t1, t2)v

−1
p

1 (t1)v
−1
p

2 (t2) dt1 dt2

)q
× u(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1

} 1
q

= sup
h>0

{∫ ∞
0

∫ ∞
0

(∫ ∞
x1

∫ ∞
x2

g
1
p (t1, t2)Ṽ

s1−1
p

1 (t1)Ṽ
s2−1
p

2 (t2)

× Ṽ
− s1−1

p

1 (t1)v
−1
p

1 (t1)Ṽ
− s2−1

p

2 v
−1
p

2 (t2) dt1 dt2

)q
× u(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1

} 1
q

≤ sup
h>0

{∫ ∞
0

∫ ∞
0

(∫ ∞
x1

∫ ∞
x2

g(t1, t2)Ṽ (s1−1)
1 (t1)Ṽ (s2−1)

2 (t2) dt1 dt2

) q
p

×
(∫ ∞

x1

Ṽ
−(s1−1)p′

p

1 (t1)v
−p′
p

1 (t1)dt1

) q
p′
(∫ ∞

x2

Ṽ
−(s2−1)p′

p

2 (t2)v
−p′
p

2 (t2)dt2

) q
p′

× u(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1
} 1
q

=
(
p− 1
p− s1

) 1
p′
(
p− 1
p− s2

) 1
p′

sup
h>0

{∫ ∞
0

∫ ∞
0

(∫ ∞
x1

∫ ∞
x2

g(t1, t2)

× Ṽ
(s1−1)
1 (t1)Ṽ (s2−1)

2 (t2) dt1 dt2

) q
p

Ṽ
q(p−s1)

p

1 (x1)Ṽ
q(p−s2)

p

2 (x2)

× u(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1
} 1
q

≤
(
p− 1
p− s1

) 1
p′
(
p− 1
p− s2

) 1
p′

sup
h>0

{∫ ∞
0

∫ ∞
0

g(t1, t2)

× Ṽ
(s1−1)
1 (t1)Ṽ (s2−1)

2 (t2)
(∫ t1

0

∫ t2

0

Ṽ
q(p−s1)

p

1 (x1)Ṽ
q(p−s2)

p

2 (x2)

× u(x1, x2)h(x1, x2) dx1 dx2

) p
q

dt1 dt2 : ‖h‖X′ ≤ 1
} 1
p

≤
(
p− 1
p− s1

) 1
p′
(
p− 1
p− s2

) 1
p′

A∗(s1, s2)
{∫ ∞

0

∫ ∞
0

g(t1, t2) dt1 dt2

} 1
p
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and the sufficiency follows.
The necessity can be obtained by putting for fixed t1, t2 > 0, the following

test function in (2.7).

g(x1, x2) =
(

p

p− s1

)p(
p

p− s2

)p
Ṽ −s11 (t1)v1−p′

1 (x1)Ṽ −s22 (t2)

× v1−p′
2 (x2)χ(t1,∞)(x1)χ(t2,∞)(x2) +

(
p

p− s1

)p
Ṽ −s11 (t1)

v1−p′
1 (x1)Ṽ −s22 (x2)v1−p′

2 (x2)χ(t1,∞)(x1)χ(0,t2)(x2)

+
(

p

p− s2

)p
Ṽ −s11 (x1)v1−p′

1 (x1)Ṽ −s22 (t2)v1−p′
2 (x2)

× χ
(0,t1)(x1)χ(t2,∞)(x2) + Ṽ −s11 (x1)v1−p′

1 (x1)Ṽ −s22 (x2)v1−p′
2 (x2)

× χ(0,t1)(x1)χ(0,t2)(x2) .

Indeed, with the above test function, the RHS of (2.7) becomes{(
p

p− s1

)p(
p

p− s2

)p
Ṽ

(1−s1)
1 (t1)Ṽ (1−s2)

2 (t2) +
(

p

p− s1

)p( 1
s2 − 1

)
× Ṽ (1−s1)

1 (t1)
(
Ṽ

(1−s2)
2 (t2)− Ṽ (1−s2)

2 (0)
)

+
(

p

p− s2

)p( 1
s1 − 1

)
Ṽ

(1−s2)
2 (t2)

×
(
Ṽ

(1−s1)
1 (t1)− V (1−s1)

1 (0)
)

+
(

1
s1 − 1

)(
1

s2 − 1

)
×
(
Ṽ

(1−s1)
1 (t1)− Ṽ (1−s1)

1 (0)
)(

Ṽ
(1−s2)
2 (t2)− Ṽ (1−s2)

2 (0)
)} 1

p

≤
((

p

p− s1

)p
+

1
s1 − 1

) 1
p
((

p

p− s2

)p
+

1
s2 − 1

) 1
p

× Ṽ (1−s1)/p
1 (t1)Ṽ (1−s2)/p

2 (t2) ,

since Ṽ 1−si
i (0) = 0 if Ṽi(0) =∞ and positive if 0 < Ṽi(0) <∞, i = 1, 2.

On the other hand, the L.H.S. can be estimated as follows:

sup
h>0

{∫ ∞
0

∫ ∞
0

(∫ ∞
x1

∫ ∞
x2

g
1
p (y1, y2)v

− 1
p

1 (y1)v
− 1
p

2 (y2) dy1 dy2

)q
×u(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1

} 1
q

≥ sup
h>0

{∫ t1

0

∫ t2

0

[(∫ ∞
t1

(
p

p− s1

)
Ṽ
− s1p
1 (t1)v1−p′

1 (y1) dy1

)
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×
(∫ ∞

t2

(
p

p− s2

)
Ṽ
− s2p
2 (t2)v1−p′

2 (y2)dy2

)
+
(∫ ∞

t1

(
p

p− s1

)
Ṽ
− s1p
1 (t1)v1−p′

1 (y1) dy1

)(∫ t2

x2

Ṽ
− s2p
2 (y2)v1−p′

2 (y2)dy2

)
+
(∫ t1

x1

Ṽ
− s1p
1 (y1)v1−p′

1 (y1) dy1

)(∫ ∞
t2

(
p

p− s2

)
Ṽ
− s2p
2 (t2)v1−p′

2 (y2)dy2

)
+
(∫ t1

x1

Ṽ
− s1p
1 (y1)v1−p′

1 (y1) dy1

)(∫ t2

x2

Ṽ
− s2p
2 (y2)v1−p′

2 (y2)dy2

)]q
× u(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1

} 1
q

=
(

p

p− s1

)(
p

p− s2

)
sup
h>0

{∫ t1

0

∫ t2

0

u(x1, x2)Ṽ
q(p−s1)

p

1 (x1)

× Ṽ
q(p−s2)

p

2 (x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤
} 1
q

=
(

p

p− s1

)(
p

p− s2

)∥∥χ
(0,t1)(x1)χ(0,t2)(x2)u(x1, x2)Ṽ

q(p−s1)
p

1 (x1)Ṽ
q(p−s2)

p

2 (x2)
∥∥ 1
q

X
.

Consequently, the inequality (2.7) takes the form

(
p

p− s1

)(
p

p− s2

)∥∥χ
(0,t1)(x1)χ(0,t2)(x2)u(x1, x2)Ṽ

q(p−s1)
p

1 (x1)Ṽ
q(p−s2)

p

2 (x2)
∥∥ 1
q

X

≤C
[(

p

p− s1

)p
+

1
s1 − 1

] 1
p
[(

p

p− s2

)p
+

1
s2 − 1

] 1
p

× Ṽ
(1−s1)
p

1 (t1)Ṽ
(1−s2)
p

2 (t2)

or,


(

p

p− s1

)p
(

p

p− s1

)p
+

1
s1 − 1


1
p


(
p

p− s2

)p
(

p

p− s2

)p
+

1
s2 − 1


1
p

× Ṽ
(s1−1)
p

1 (t1)Ṽ
(s2−1)
p

2 (t2)
∥∥χ

[(0,t1)
χ

(0,t2)Ṽ
q(p−s1)

p

1 (t1)Ṽ
q(p−s1)

p

2 (t2)u
∥∥ 1
q

X
≤ C;
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i.e., 
(

p

p− s1

)p
(

p

p− s1

)p
+

1
s1 − 1


1
p


(
p

p− s2

)p
(

p

p− s2

)p
+

1
s2 − 1


1
p

A∗(s1, s2) ≤ C

and the necessity follows.

Remark 2. The assertion of Theorem 2 is new even for the case X = L1,
which gives the Lp-Lq boundedness of H2.

3 The Operator G2 As a Limiting Case of H2.

In this section, we shall characterize the boundedness of the operator G2 de-
fined in (1.2). In fact, the idea is to use the boundedness of H2 obtained in
Theorem 1 and apply limiting arguments. The result generalizes a result of
[14], [15] who proves it for X = L1. Such technique has been used in the
one dimensional situation to derive the boundedness of the geometric mean
operator G. The corresponding Lp-Lq boundedness is obtained in [12] while
the Lp-Xq boundedness in [3].

Theorem 3. Let 0 < p ≤ q <∞, s1, s2 ∈ (1, p), and u, v be weight functions

defined on R2
+. Let θi(xi) = x

−si
p

i , i = 1, 2 and

w(x1, x2) =
[

exp
(

1
x1x2

∫ x1

0

∫ x2

0

log
1

v(t1, t2)
dt1 dt2

)] q
p

u(x1, x2) . (3.1)

Then the inequality∥∥(G2f)qu
∥∥ 1
q

X
≤ C

{∫ ∞
0

∫ ∞
0

fp(x1, x2)v(x1, x2) dx1 dx2

} 1
p

(3.2)

holds for all positive and measurable functions f on (0,∞)×(0,∞) if and only
if sup

y1∈(0,∞)
y2∈(0,∞)

B(s1, s2) <∞, where

B(s1, s2) := y
s1−1
p

1 y
s2−1
p

2

∥∥θ1(x1)θ2(x2)w(x1, x2)
1
q χ

[y1,∞)(x1)χ[y2,∞)(x2)
∥∥
Xq

and the best constant C in (3.2) satisfies

sup
s1,s2>1

(
es1(s1 − 1)

es1(s1 − 1) + 1

) 1
p
(

es2(s2 − 1)
es2(s2 − 1) + 1

) 1
p

B(s1, s2)r

≤ C ≤ inf
s1,s2>1

e
s1+s2−2

p B(s1, s2) .
(3.3)
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Proof. Writing fv
−1
p for f , we find that the inequality (3.2) becomes equiv-

alent to ∥∥(G2f)qw
∥∥ 1
q

X
≤ C

{∫ ∞
0

∫ ∞
0

fp(x1, x2) dx1 dx2

} 1
p

, (3.4)

with w as given by (3.1). Here, we have used the facts that G2(gh) =
G2(g)G2(h) and G2(gy) = [G2(g)]y almost everywhere on (0,∞) × (0,∞)
for all measurable functions g and h for which G2(g) and G2(h) are defined
almost everywhere on (0,∞)× (0,∞) and y ∈ R.

Let 0 < α < p. Now, writing fα, wx
−q
α

1 x
−q
α

2 , 1, 1,
p

α
,
q

α
for, respectively,

f, u, v1, v2, p, q in Theorem 1 we find that the inequality

sup
h>0

{∫ ∞
0

∫ ∞
0

(
1

x1x2

∫ x1

0

∫ x2

0

fα(t1, t2) dt1 dt2

) q
α

× w(x1, x2)h(x1, x2)dx1, dx2 : ‖h‖X′ ≤ 1
} 1
q

≤C
{∫ ∞

0

∫ ∞
0

fp(x1, x2) dx1 dx2

} 1
p

(3.5)

holds for all C > 0 and for all measurable functions f > 0 if and only if

sup
t1,t2>0

Ã := sup
t1,t2>0

t
s1−1
p

1 t
s2−1
p

2

∥∥θq1θq2wχ[t1,∞)
χ

[t2,∞)

∥∥ 1
q

X
<∞

and the constant C in (3.5) has the estimate

sup
1<s1,s2<

p
α

(
p

p− αs1

) 1
α
[(

p

p− αs1

) p
α

+
1

s1 − 1

]−1
p

×
(

p

p− αs2

) 1
α
[(

p

p− αs2

) p
α

+
1

s2 − 1

]−1
p

Ã
1
α

≤C ≤ inf
1<s2,s2<

p
α

Ã
1
α

(
p− α
p− αs1

) p−α
αp
(

p− α
p− αs2

) p−α
αp

.

(3.6)

Note that
Ã

1
α = B . (3.7)

Now, taking the limit as α → 0+, we find that the inequality (3.5) becomes
(3.2) which, in views of (3.7), holds if and only if B <∞. Also, when α→ 0+,
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the estimate (3.6) becomes (3.3). The lower bound in (3.3) can be obtained if
we use the test function

g(x1, x2) = t
−1
p

1 t
−1
p

2
χ

(0,t1)(x1)χ(0,t2)(x2) + t
−1
p

1
χ

(0,t1)(x1)
e
−s2
p t

s2−1
p

2

x
s2
p

2

× χ
(t2,∞)(x2) +

e
−s1
p t

s1−1
p

1

x
s1
p

1

χ
(t1,∞)(x1)t

−1
p

2
χ

(0,t2)(x2)

+ e
−(s1+s2)

p
t
s1−1
p

1 t
s2−1
p

2

x
s1
p

1 x
s2
p

2

χ
(t1,∞)(x1)χ(t2,∞)(x2)

in inequality (3.4) and follow similar arguments as in [16, theorem 3.1].

4 The Operator G2 Revisited.

In this section, we give another characterization for the Lp-Xq boundedness
of G2 with a different approach. In fact, we do not use here the limiting
arguments as done in Theorem 3. Also, in this case, the weight on R.H.S. of
the inequality need not be of product type. Furthermore, the functions, here,
will be defined on [0, b1] × [0, b2], 0 < bi ≤ ∞, i = 1, 2 so as to cover finite
domains as well. Precisely, we prove the following.

Theorem 4. Let 0 < p ≤ q < ∞, 0 < b1, b2 ≤ ∞, s1, s2 > 1 and u, v be
weight functions defined on R2

+ . Then the inequality

∥∥(G2f)quχ(0,b1)
χ

(0,b2)

∥∥ 1
q

X
≤ C

{∫ b1

0

∫ b2

0

fp(x1, x2)v(x1, x2) dx1 dx2

} 1
q

(4.1)

holds for all measurable functions f > 0 on [0, b1] × [0, b2] if and only if
sup

y1∈(0,b1)
y2∈(0,b2)

B̃(s1, s2) <∞, where

B̃(s1, s2) := y
s1−1
p

1 y
s2−1
p

2

∥∥θ1(x1)θ2(x2)w(x1, x2)
1
q χ

[y1,b1)(x1)χ[y2,b2)(x2)
∥∥
Xq
,

where θi are as used in Theorem 3 and w is given by (3.1). Moreover, the best
constant C in (4.1) has the estimate

sup
s1,s2>1

(
es1(s1 − 1)

es1(s1 − 1) + 1

) 1
p
(

es2(s2 − 1)
es2(s2 − 1) + 1

) 1
p

B̃(s1, s2)

≤C ≤ inf
s1,s2>1

e
s1+s2−2

p B̃(s1, s2)
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Proof. Taking g(x1, x2) = fp(x1, x2)v(x1, x2), the inequality in (4.1) be-
comes

sup
h>0

{∫ b1

0

∫ b2

0

[
exp

(
1

x1x2

∫ x1

0

∫ x2

0

log g(y1, y2) dy1 dy2

)] q
p

× w(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1
} 1
q

≤C
{∫ b1

0

∫ b1

0

g(x1, x2) dx1 dx2

} 1
p

,

(4.2)

where w is as given in (3.1). For fixed t1 and t2, 0 < t1 < b1, 0 < t2 < b2, we
choose the test function

g(x1, x2) = t−1
1 t−1

2
χ

(0,t1)(x1)χ(0,t2)(x2) + t−1χ
(0,t1)(x1)

e−s2ts2−1
2

xs22

× χ
(t2,∞)(x2) +

e−s1ts1−1
1

xs11

χ
(t1,∞)(x1)t−1

2
χ

(0,t2)(x2)

+
e−(s2+s1)ts1−1

1 ts2−1
2

xs11 x
s2
2

χ
(t1,∞)(x1)χ(t2,∞)(x2).

The necessity can now be obtained if we use the above test function in (4.2)
and follow the arguments similar to [15, Theorem 4.1].

In order to prove the sufficiency, take y1 = x1t1 and y2 = x2t2 so that (4.2)
becomes

sup
h>0

{∫ b1

0

∫ b2

0

[
exp

(∫ 1

0

∫ 1

0

log g(x1t1, x2t2) dt1 dt2

)] q
p

× w(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1
} 1
q

≤C
{∫ b1

0

∫ b2

0

g(x1, x2) dx1 dx2

} 1
p

.

(4.3)

By using the fact(
exp

∫ 1

0

∫ 1

0

log t(s1−1)
1 t

(s2−1)
2 dt1 dt2

) q
p

= e
−(s1+s2−2)q

p

and by Jensen’s inequality, the L.H.S. of (4.3) becomes

e
(s1+s2−2)

p sup
h>0

{∫ b1

0

∫ b2

0

[
exp
(∫ 1

0

∫ 1

0

log(t(s1−1)
1 t

(s2−1)
2 g(x1t1, x2t2)) dt1 dt2

)] q
p
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× w(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1
} 1
q

≤ e
(s1+s2−2)

p sup
h>0

{∫ b1

0

∫ b2

0

(∫ 1

0

∫ 1

0

t
(s1−1)
1 t

(s2−1)
2

× g(x1t1, x2t2) dt1 dt2

) q
p

w(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1
} 1
q

= e
(s1+s2−2)

p sup
h>0

{∫ b1

0

∫ b2

0

[ ∫ x1

0

∫ x2

0

ys1−1
1 ys2−1

2 g(y1, y2) dy1 dy2

] q
p

× w(x1, x2)

x
s1q
p

1 x
s2q
p

2

h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1
} 1
q

≤ e
(s1+s2−2)

p sup
h>0

{∫ b1

0

∫ b2

0

ys1−1
1 ys2−1

2 g(y1, y2)
(∫ b1

y1

∫ b2

y2

x
−s1q
p

1 x
−s2q
p

2

× w(x1, x2)h(x1, x2) dx1 dx2 : ‖h‖X′ ≤ 1
) p
q

dy1 dy2

} 1
p

≤ e
(s1+s2−2)

p B̃(s1, s2)
{∫ b1

0

∫ b2

0

g(y1, y2) dy1 dy2

} 1
p

and we are done.

Theorem 4 extends a result of [14], [16] who proved it for X = L1.
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