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INFORMATION PARAMETERS AND
LARGE DEVIATION SPECTRUM OF

DISCONTINUOUS MEASURES

Abstract

Let ν be a finite Borel measure on [0, 1]d. Consider the Lq-spectrum
of ν: τν(q) = lim infn→∞−n−1 logb

P
Q∈Gn ν(Q)q (q ≥ 0), where Gn is

the set of b-adic cubes of generation n (b integer ≥ 2). Let qτ = inf{q :
τν(q) = 0} and Hτ = τ ′ν(q−τ ). When ν is a mono-dimensional continuous
measure of information dimension D, (qτ , Hτ ) = (1, D). When ν is
purely discontinuous, its information dimension is D = 0, but the pair
(qτ , Hτ ) may be non-trivial and contains relevant information on the
distribution of ν. Intrinsic characterizations of (qτ , Hτ ) are found, as
well as sharp estimates for the large deviation spectrum of ν on [0, Hτ ].
We exhibit the differences between the cases qτ = 1 and qτ ∈ (0, 1).
We conclude that the large deviation spectrum’s properties observed for
specific classes of measures are true in general.

1 Introduction.

During the last fifteen years, the multifractal behavior of purely discontinuous
measures, i.e., constituted only by Dirac masses, has been precisely described
for several classes of well-structured objects. Equivalently, the behavior of
non-decreasing functions whose derivative is a purely discontinuous measure
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has also been widely investigated. Examples of such objects are Lévy subordi-
nators [20] and homogeneous sums of Dirac masses studied in [1, 13, 19], Lévy
subordinators in multifractal time [8] and more generally heterogeneous sums
of Dirac masses governed by a self-similar measure [31, 4, 5]. Nevertheless,
few general results are known about the fine structure of purely discontinuous
measures. For instance, all the possible classical information dimensions van-
ish for such measures. One of the motivations of the present work is the need
for other relevant parameters.

From the multifractal standpoint, a common feature between the above
examples is that all their multifractal spectra are linear on a non trivial interval
whose left-end point is 0. It is natural to ask whether this property is shared
by all or at least by a large class of the purely discontinuous measures. This
is particularly important for the large deviation spectrum since it is the most
numerically tractable spectrum among the several multifractal spectra. Hence,
a priori estimates are of great importance for practical purposes. We focus on
this spectrum and find that under a weak assumption it is indeed linear on a
non trivial interval I whose left-end point is 0 (see Theorem 1.3). The slope
of this linear part and the right-end point of I are related to new information
parameters deduced from the so-called Lq-spectrum of the measure.

Let us start by recalling the notions of information dimension, multifractal
and large deviation spectra. We then expose the achievements of this paper.

1.1 Multifractal Spectra and Information Parameters.

Let d ∈ N. In the context of fractal sets and dynamical systems, it is usual
to describe the geometry and the distribution at small scales of a finite Borel
measure ν on [0, 1]d thanks to its (lower and upper) Hausdorff, packing and
entropy dimensions. In general these dimensions differ from one another, but
when they coincide, they determine without ambiguity the dimension of the
measure. This situation arises when there exists D ∈ [0, d] such that

lim
r→0+

log ν(B(x, r))
log(r)

= D ν-a.e. (1)

The dimension of ν is equal to D [32, 15], and ν is said to be mono-dimensional.
Let b ≥ 2 be an integer and let Gn be the partition of [0, 1]d into b-adic

boxes of generation n written as
∏d
i=1[b−nki, b−n(ki + 1)) with (k1, . . . , kd) ∈

{0, 1, . . . , bn − 1}d.
Let us introduce on R the Lq-spectrum of ν

τν(q) = lim inf
n→∞

− 1
n

logb sn(q) where sn(q) =
∑

Q∈Gn, ν(Q)6=0

ν(Q)q. (2)
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It is easy to see that τν is a concave function which does not depend on b ≥ 2
when q ∈ R+ or when q ∈ R and Supp (ν) = [0, 1]d (Supp (ν) stands for the
support of the measure ν). Property (1) holds with D = τ ′ν(1) for instance
as soon as τ ′ν(1) exists, and the dimensions mentioned above always lie in
[τ ′ν(1+), τ ′ν(1−)] (see Section 2 and [25, 27, 15, 9, 16]).

The behavior of ν at small scales may be more generally geometrically
described by the Hausdorff and packing singularity spectra defined as follows
(see [10, 26] and references therein). For x ∈ Supp (ν), the pointwise Hölder
exponent of ν at x is defined by

hν(x) = lim inf
r→0+

log ν(B(x, r))
log r

. (3)

Then, one considers the level sets of the pointwise Hölder exponent of ν

Eνh = {x ∈ Supp (ν) : hν(x) = h} (h ≥ 0). (4)

Finally, the Hausdorff and packing spectra of ν are respectively

dν : h ≥ 0 7→ dimEνh and Dν : h ≥ 0 7→ DimEνh ,

where dim and Dim stand for the Hausdorff and the packing dimension.
Another description of the distribution of ν is given by the following sta-

tistical (rather than geometrical) approach. For ε > 0, h ≥ 0, n ∈ N, let

Sνn(h, ε) =
{
Q ∈ Gn : b−n(h+ε) ≤ ν(Q) ≤ b−n(h−ε)

}
. (5)

The large deviation spectrum fν of ν is the upper semi-continuous function

h ≥ 0 7→ fν(h) = lim
ε→0+

lim sup
n→∞

1
n

logb #Sνn(h, ε).

The following Proposition, which follows from [10, 26, 29, 22, 30] and also
Theorem 2.1 hereafter, gathers properties of these several spectra.

Recall that if g is a function from R to R∪ {−∞}, its Legendre transform
is the mapping g∗ : h 7→ infq∈R(hq − g(q)) ∈ R ∪ {−∞}.

The Legendre spectrum of ν is the concave function h ≥ 0 7→ τ∗ν (h).
For a subset E of [0, 1]d, dim E < 0 means that E is empty.

Proposition 1.1. Let ν be a finite positive Borel measure on [0, 1]d.
1. For every h ≥ 0, dν(h) ≤ fν(h) ≤ f∗∗ν (h) = τ∗ν (h) and Dν(h) ≤ τ∗ν (h).

The multifractal formalism is said to hold at h if dν(h) = τ∗ν (h).
2. For every h ∈ {τ ′ν(q+) : q ∈ R} ∪ {τ ′ν(q−) : q ∈ R}, fν(h) = f∗∗ν (h).
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When D = τ ′ν(1) exists or (1) holds, the multifractal formalism holds at
D and ν is carried by the set EνD ([25]). Examples of continuous measures
for which this arises are provided by classes of measures possessing scaling
invariance properties (see [23, 24, 21, 28, 10, 14, 18, 16, 3] for a non-exhaustive
list). For these measures, D > 0; hence D is relevant as information dimension
since it takes in general different values for two distinct such measures.

On the other hand, it is proved in [11] that in the Baire generic sense, in
the one-dimensional case (d = 1), quasi-all Borel continuous measures ν on
[0, 1] are concentrated on the set EνD with D = 0, and neither τ ′ν(1) exists
nor (1) holds. This naturally leads to consider the extremal situation when
ν is purely discontinuous. In this case, (1) holds with D = 0, and all the
Hausdorff, packing and entropy dimensions equal 0, whatever the behavior of
τν at 1 is. Consequently, the classical dimension parameters are not relevant
in this case.

We thus look for other natural information parameters related to the dis-
tribution of a measure. Of course, these parameters must coincide in some
sense with the dimension τ ′ν(1) when it is defined and positive. We consider

qτ (ν) = inf {q : τν(q) = 0} and Hτ (ν) = τ ′ν
(
qτ (ν)−

)
.

Let us list some of the properties of these parameters (see also Theorem 2.1).
• If dim Supp (ν) > 0 and if τν is continuous at 0+, then one always has

0 < qτ (ν) ≤ 1 and Hτ (ν) ≤ d/qτ (ν).
• If τ ′ν(1) exists and is positive, then qτ (ν) = 1 and Hτ (ν) = τ ′ν(1). More-

over, this real number is in this case the only fixed point of fν .
• From Proposition 1.1, Hτ (ν) is always the largest solution of the equation
fν(h) = qτ (ν)h, while τ ′ν(qτ (ν)+) is the smallest solution of the same
equation. In particular, fν(Hτ (ν)) = τ∗ν (Hτ (ν)).

1.2 Sharper Estimates for the Large Deviation Spectrum of ν on
[0, Hτ (ν)] When ν is a Purely Discontinuous Measure.

In the sequel, we focus on purely discontinuous measures of the form

ν =
∑
k≥1

mkδxk (6)

for a sequence of masses m̃ = (mk)k≥1 ∈ (R+)N∗ such that
∑
kmk < ∞ and

a sequence of pairwise distinct points x̃ = (xk)k≥1 ∈ ([0, 1]d)N∗ .
Under weak assumptions on the sequences m̃ and x̃ (see assumption (H)

in Definition 1.2 below), we have

0 = τ ′ν(qτ (ν)+) < τ ′ν(qτ (ν)−) = Hτ (ν).



Information Parameters of Discontinuous Measures 433

As a consequence of Proposition 1.1 and the third property pointed out above,
for such measures ν, fν(0) = 0, fν(Hτ (ν)) = qτ (ν)Hτ (ν) and for every h ∈
(0, Hτ (ν)), fν(h) ≤ qτh.

Moreover, for all the purely discontinuous measures mentioned in the in-
troduction, fν(h) = qτ (ν)h on [0, Hτ (ν)]. The main purpose of the following
work is to understand whether this equality holds true in general.

First, two intrinsic parameters qg(ν) and Hg(ν), depending only on the
geometrical repartition of m̃ and x̃, are proposed in (7) and (8). We investigate
them in details. In particular, their relationships with qτ (ν) and Hτ (ν) are of
great interest and are the subject of a large part of the paper (Sections 3-4).

For every n ≥ 1, let

Kn =
{
k : mk ∈ [b−n, b−(n−1))

}
and Xn = {xk : k ∈ Kn} .

The set Xn contains the locations of the Dirac masses of size approximately
equal to b−n. When #Kn = 0, we set q(n) = 0 and J (n) = 1, otherwise when
#Kn > 0, we define the quantities

q(n) =
logb #Kn

n
and J (n) = min

{
n′ : sup

Q∈Gn′
#(Q ∩Xn) ≤ 1

}
.

Thus, provided that Xn is not empty, we have #Kn = bnq(n), and J (n) is
the first generation which ”separates” the elements of Xn. Then let

qg(ν) = lim sup
n→∞

q(n) and Hg(ν) = lim inf
n→∞

n

J (n)
. (7)

Let α > 0 and n ≥ 1. When #Kn = 0, we set J (n, α) = 1. Otherwise, when
#Kn > 0, we set

J (n, α)=min

{
n′ ∈ N :

{
there is a set X ′n ⊂ Xn of cardinality ≥ bn(q(n)−α)

such that supQ∈Gn′ #(Q ∩X ′n) ≤ 1

}
.

Provided that Xn 6= ∅ and α small enough, J (n, α) is the first generation
which separates a large proportion of the elements of Xn. Let us denote by U
the set of positive sequences of real numbers converging to 0. When qg(ν) > 0,
let

∀ε > 0, Hg,ε(ν) = sup
(αn)n∈U

lim sup
n→∞,

q(n)≥qg(ν)−ε

n

J (n, αn)

and
Hg(ν) = lim

ε→0+
Hg,ε(ν). (8)
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Heuristically, asymptotically when n → +∞, there is no more than bqg(ν)n

Dirac masses with a weight∼ b−n involved in the sum (6), whileHg(ν) depends
on the proximity between Dirac masses of same order.

Definition 1.2. A measure ν of the form (6) is said to satisfy assumption
(H) when qg(ν) > 0 and Hg(ν) > 0.

Theorem 1.3. Let m̃ = (mk)k≥1 ∈ (R+)N∗ such that
∑
kmk < ∞ and con-

sider a sequence of pairwise distinct points x̃ = (xk)k≥1 ∈ ([0, 1]d)N∗ . Assume
that the purely discontinuous measure ν defined by (6) satisfies (H). Then:

1. If qτ (ν) ∈ (0, 1), then qg(ν) = qτ (ν), Hτ (ν) = Hg(ν) and fν(h) = qτ (ν)h
for every h ∈ [0, Hτ (ν)].

2. If qτ (ν) = 1, then qg(ν) = qτ (ν) and Hg(ν) ≤ Hτ (ν). Moreover, fν(h) =
qτ (ν)h for every h ∈ [0, Hg(ν)] and fν(Hτ (ν)) = qτ (ν)Hτ (ν) (i.e., the
large deviation spectrum may exhibit a gap between Hg(ν) and Hτ (ν)).

3. When qτ (ν) = 1, the exponent Hg(ν) is optimal in the following sense:
(a) For every exponents 0 < h0 ≤ h1 ≤ d, there exists a measure ν of

the form (6) such that qτ (ν) = 1, Hg(ν) = h0, Hτ (ν) = h1 and
fν(h) = h for every h ∈ [0, h1].

(b) For every exponents 0 < h0 < h1 ≤ d, there is a measure ν of
the form (6) such that qτ (ν) = 1, Hg(ν) = h0, Hτ (ν) = h1 and
fν(h) < h on (h0, h1).

4. Assume that for all ε > 0 there is an increasing sequence of integers
(nj)j≥1 such that q(nj) converges to 1 and

dim
(

lim sup
j→∞

⋃
k∈Knj

B(xk, b−nj(Hτ (ν)
−1−ε))

)
≥ Hτ (ν).

Then Hg(ν) = Hτ (ν).

When (H) is satisfied, Theorem 1.3 yields an intrinsic and geometrical
interpretation of (qτ (ν), Hτ (ν)). This theorem also implies that the large
deviation spectrum of any measure ν of the form (6) satisfying (H) always
starts with a straight line, of slope qτ (ν).

The reader can check that for most of the measures mentioned in the very
beginning of this section, assumption (H) holds true and Hg(ν) = Hτ (ν) (see
the comments in Section 1.3). Consequently, Theorem 1.3 allows us to recover
the linear increasing part of the large deviation spectrum of these measures.

The case where qg(ν) > 0 but Hg(ν) = 0 is also interesting (though excep-
tional) and arises for instance if qτ (ν) > 0 and Hτ (ν) = 0. Examples of such
measures are constructed in [4]. We do not consider this situation hereafter.
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Figure 1: For a discontinuous measure ν with qτ (ν) < 1: Left: scaling function
τν and Right: typical Legendre spectrum. The Legendre and large deviation
spectra coincide for every h ≤ Hτ (ν) = Hg(ν).
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Figure 2: For a discontinuous measure ν with qτ (ν) = 1: Left: scaling function
τν and Right: typical Legendre and large deviation spectra. They coincide
when h ≤ Hg(ν) and when h = Hτ (ν).
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1.3 Remarks and Related Works.

• It is worth noticing that qg(ν), Hg(ν), qτ (ν) and Hτ (ν) do not depend
on the choice of the integer basis b (while fν clearly depends on b in general).
We have thus established that, under (H), fν is always linear with slope qτ (ν)
on the range of exponents h ∈ [0, Hg(ν)] for every choice of b ≥ 2.
• There is a strong asymmetry between the cases qg(ν) = 1 and qg(ν) ∈

(0, 1). In this latter case, the large deviation spectrum is totally determined
by Hg(ν) = Hτ (ν) on its linear part starting at (0, 0). In the case qg(ν) =
qτ (ν) = 1, it is only known for h ∈ [0, Hg(ν)] and at Hτ (ν) (which may be
strictly greater than Hg(ν)). Nevertheless, when qg(ν) = 1, item 4 of Theorem
1.3 gives a sufficient condition to have Hτ (ν) = Hg(ν), and the large deviation
spectrum increases along a straight line with slope 1 until it reaches Hτ (ν).
This condition imposes a homogeneous repartition of the Dirac masses of the
same intensity.
• The reader should keep in mind that no comparable result can hold if the

large deviation spectrum is replaced by the Hausdorff multifractal spectrum.
• For the examples of homogeneous and heterogeneous sums of discontin-

uous measures studied in [1, 20, 13, 31, 30, 4, 5, 8], it is not difficult to verify,
thanks to item 4 of Theorem 1.3, that when Hτ (ν) > 0, Hg(ν) = Hτ (ν). For
instance, the derivative νβ of a stable Lévy subordinator Lβ of index β ∈ (0, 1)
satisfies Hg(ν) = Hτ (ν) = 1/β and qτ (νβ) = β (see [20]).
• Finally, in the companion paper [6], we illustrate the important role

played by the information parameters (qτ (ν), Hτ (ν)) for the Hausdorff spec-
trum. An interesting example is provided by a class of discontinuous mea-
sures νb introduced in [6], whose atoms are located at b-adic numbers of [0, 1].
For such measures νb, Hg(νb) = Hτ (νb) even when qτ (νb) = 1. Inspired
by Proposition 3.3 of the present paper, a natural procedure is to apply a
threshold to νb by keeping only the masses which contribute to the fact that
fνb(Hτ (νb)) = qτ (νb)Hτ (νb). This yields a second measure νtb. It is shown
in [4] that νb and νtb have the same multifractal properties on [0, Hτ (νb)] in
the sense that their Hausdorff, large deviation and Legendre spectra coin-
cide. Moreover, when qτ (νb) = 1, these spectra also coincide at the exponents
h > Hτ (νb). This striking result confirms that valuable information on the lo-
cal behavior of ν are stored in the masses which are detected by (qτ (ν), Hτ (ν)).

2 Universal Bounds for the Large Deviation Spectrum.

For j ≥ 1 and x ∈ (0, 1)d, Qj(x) is the unique b-adic cube of scale j ≥ 1
containing x, and for every η ∈ {−1, 0, 1}d, Q(η)

j (x) = Qj(x) + b−jη. In the



Information Parameters of Discontinuous Measures 437

following, |B| always denotes the diameter of the set B. Eventually, for the
rest of the paper, the convention log(0) = −∞ is adopted.

2.1 Links Between (qτ (ν), Hτ (ν)) and the Large Deviation Spec-
trum.

The next result goes slightly beyond item 1 of Proposition 1.1 and it also
resumes some comments made at the end of Section 1.1.

Theorem 2.1. Let ν be a finite Borel measure on [0, 1]d. Suppose that τν is
continuous at 0+ and dim (Supp (ν)) > 0. Set H+

τ (ν) = τ ′ν(qτ (ν)+). We have:
1. qτ (ν) > 0.
2. For every h ≥ 0, dν(h) ≤ fν(h) ≤ τ∗ν (h). Moreover, τ∗ν (h) = qτ (ν)h if

h ∈ [τ ′ν(qτ (ν)+), Hτ (ν)] and τ∗ν (h) < qτ (ν)h otherwise.
3. H+

τ (ν) = min {h ≥ 0 : fν(h) = qτ (ν)h} = min {h ≥ 0 : τ∗ν (h) = qτ (ν)h}.
4. Hτ (ν) = max {h ≥ 0 : fν(h) = qτ (ν)h} = max {h ≥ 0 : τ∗ν (h) = qτ (ν)h}.
5. If Eν0 6= ∅, then τ ′ν(qτ (ν)+) = 0.

Remark 2.2. Notice that, if Eν0 6= ∅ and qτ (ν) > 0, then for every h ∈
[0, Hτ (ν)], τ∗ν (h) = qτh, while this may not be the case for fν . There may
exist 0 < h < Hτ (ν) such that fν(h) < qτh (see for instance Theorem 1.3,
item 3.(b)).

Remark 2.3. Let Êνh =
{
x : lim

j→∞

log ν(Qj(x))
−j log b

= h

}
. In item 2 of Theo-

rem 2.1, the inequality dν(h) ≤ fν(h) is a refinement of the well-known in-
equality dim Êνh ≤ fν(h) [10, 29]. For classes of continuous measures possess-
ing some self-similarity property, one often has dim Êνh = fν(h) for all h such
that fν(h) ≥ 0.

We include the inequality dν(h) ≤ fν(h) in the statement because for purely
discontinuous measures studied in [31, 20, 13, 4], or for the derivative of
a generic increasing continuous function [11], the set Êνh is empty for h ∈
(0, Hτ (ν)), while dim Eνh = τ∗ν (h) and thus dν(h) = fν(h). This emphasizes

the fact that, in general, sets like Eνh or
{
x : lim infj→∞

log ν(Qj(x))
−j log b = h

}
must

be used rather than Êνh to describe the local behavior of ν. Then fν(h) provides
a convenient upper bound estimate for dim Eνh rather than for dim Êνh.

Proof. We simply write (qτ , Hτ ) = (qτ (ν), Hτ (ν)).
1. Assume that dim (Supp (ν)) > 0 and τν is continuous at 0+. We clearly
see that dim Supp (ν) ≤ −τν(0), thus 0 < −τν(0). The continuity and mono-
tonicity of τν at 0+ and the fact that τν(1) always equals 0 yield the result.
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2. We shall need the following simple lemma, whose proof is easy and left to
the reader.

Lemma 2.4. Let ν be a positive Borel measure on [0, 1]d. For every x ∈
(0, 1)d, we have

hν(x) = min
η∈{−1,0,1}d

h(η)
ν (x), where h(η)

ν (x) = lim inf
j→∞

log ν(Q(η)
j (x))

−j log b
.

For every h ≥ 0, the fact that fν(h) ≤ τ∗ν (h) ≤ qτh is a well-known property
already mentioned in the introduction, and the comparison between τ∗ν (h)
and qτ (ν)h follows from the definition of τ∗ν . We only prove the inequality
dν(h) ≤ fν(h) for h ≥ 0 such that dν(h) > 0. Indeed, the proof of this
inequality (using the liminf in the definition of the exponent), though very fast
to obtain, has never been written entirely, according to our best knowledge.

Let ε > 0. By definition of fν(h), for every n large enough, #Sνn(h, ε) ≤
bn(fν(h)+ε) (see (5)). Let us consider the limsup set

Kν(h, ε) =
⋂
N≥1

⋃
n≥N

⋃
Q∈Sνn(h,ε)

⋃
η∈{−1,0,1}d

Q(η).

(Recall that whenQ is a b-adic cube of generation n, Q(η) = Q+ηb−j .) Let now
x ∈ Eνh . By Lemma 2.4, there exists a sequence (nxj )j≥1 such that for every

j ≥ 1, there is η ∈ {−1, 0, 1}d such that b−n(h+ε) ≤ ν(Q(η)
nxj

(x)) ≤ b−n(h−ε).
As a consequence, x ∈ Kν(h, ε), thus Eνh ⊂ Kν(h, ε).

We now find an upper bound for dimKν(h, ε). Let t > fν(h) + ε, and let
us estimate the t-Hausdorff measure of the set Kν(h, ε). For N ≥ 1, the union⋃
n≥N

⋃
Q∈Sνn(h,ε)

⋃
η∈{−1,0,1}d Q

(η) forms a covering of Kν(h, ε). Then,∑
n≥N

∑
Q∈Sνn(h,ε)

∑
η∈{−1,0,1}d

|Q(η)|t ≤
∑
n≥N

∑
Q∈Sνn(h,ε)

3db−nt

≤ 3d
∑
n≥N

b−ntbn(fν(h)+ε).

This last sum converges, since t > fν(h)+ε, and its value goes to zero when N
goes to infinity. As a consequence, the t-Hausdorff measure of Kν(h, ε) equals
zero, and dν(h) ≤ dimKν(h, ε) ≤ fν(h) + ε. Letting ε→ 0 yields the result.
3. and 4. As we already noticed, these properties are consequences of Propo-
sition 1.1 and the definition of the Legendre transform.
5. We always have τν(qτ ) = 0. If qτ < 1, since τν is concave and positive
when q ≥ 1, then τν(q) = 0 for every q ≥ qτ , and in particular it is zero at q+τ .
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Assume that qτ = 1. Let x ∈ Eν0 . Then fix ε > 0 and (rj)j≥1 a sequence
decreasing to 0 such that ν(B(x, rj)) ≥ (rj)ε for all j ≥ 1. Let nj be the
unique integer such that b−nj ≤ 2rj ≤ b−nj+1. One of the (at most) bd b-
adic cubes of generation nj intersecting B(x, rj), say Qj , satisfies ν(Qj) ≥
rεj/b

d ≥ b−njεb−d. Let q > 1. Remembering (2), we obtain snj (q) ≥ b−njεb−d.
Taking the liminf yields τν(q) ≤ ε, which holds ∀q ≥ 1 and ε > 0. Hence the
result.

2.2 Additional Definitions and Large Deviation Bounds.

Let ν be a positive Borel measure on [0, 1]d. Before establishing Theorem 1.3,
some definitions and estimates for fν and related quantities are needed. For
x ∈ (0, 1)d, recall the definitions (3) and (4) of the Hölder exponent at x and
of the corresponding level sets Eνh , for any h ≥ 0.

Definition 2.5. Let ν be a positive Borel measure on [0, 1]d. For h ≥ 0 and
n ≥ 1, let us introduce the quantities

Nν(h, n) = #
{
Q ∈ Gn : b−nh ≤ ν(Q)

}
, f

ν
(h) = lim sup

n→∞
n−1 logbNν(h, n).

Hence, f
ν
(h) is related to the asymptotic number of b-adic cubes Q of

generation n such ν(Q) ≥ b−nh.
Using [10] and the definition of the Legendre transform, we deduce the

following useful properties (some of them were recalled in Proposition 1.1).

Proposition 2.6. Let ν be a positive Borel measure on [0, 1]d with qτ (ν) > 0.
1. For every exponent h > τ ′ν(0+), fν(h) ≤ f

ν
(h) ≤ τ∗ν (h) and f

ν
(h) ≤

qτ (ν)τ ′ν(0+) < qτ (ν)h.
2. If h ∈ [0, τ ′ν(0+)], then fν(h) ≤ f

ν
(h) ≤ τ∗ν (h) ≤ qτ (ν)h.

Moreover, if f
ν
(h) = qτ (ν)h, then fν(h) = qτ (ν)h.

3 Theorem 1.3(1-2): Characterization of (qτ (ν), Hτ (ν)).

Let m̃ = (mk)k∈N be a sequence of positive numbers such that
∑
k∈N mk <

∞ and x̃ = (xk)k∈N ∈ ([0, 1]d)N a sequence of pairwise distinct points, and
consider the purely discontinuous measure ν defined by (6).

Let us begin with a proposition relating the quantities qg(ν) and Hg(ν).

Proposition 3.1. If qg(ν) > 0, then 0 ≤ Hg(ν) ≤ d/qg(ν).
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Proof. By definition, there exists an increasing sequence of integers (nj)j≥1

and a non-increasing positive sequence going down to 0 (αj)j≥1 such that

lim
j→+∞

logb #Xnj (αj)
nj

= qg(ν) and lim
j→+∞

nj
J (nj , αj)

= Hg(ν).

Let ε > 0, small enough so that qg(ν) − 2ε > 0. There is jε ≥ 0 such that

j ≥ jε implies | logb #Xnj (αj)

nj
− qg(ν)| ≤ ε and |nj/J (nj , αj)−Hg(ν)| ≤ ε. At

scale nj (where j ≥ jε), we have

bnj(qg(ν)−ε) ≤ #Xnj (αj) ≤ bnj(qg(ν)+ε).

Let n ≤ nj((qg(ν)−2ε)/d). The cardinality of Gn is bnd ≤ bnj(qg(ν)−2ε). Hence,
at least one b-adic cube of Gn contains two points of Xnj (αj). Consequently,
we get J (nj , αj) ≥ nj((qg(ν) − 2ε)/d), and nj/J (nj , αj) ≤ d/(qg(ν) − 2ε).
By letting j go to infinity, we finally obtain that Hg(ν) ≤ d/(qg(ν)− 4ε), and
the result follows by letting ε go to zero.

3.1 An Intrinsic Characterization of qτ (ν).

Theorem 3.2. Let m̃ = (mk)k∈N be a sequence of positive numbers such that∑
k∈N mk < ∞ and x̃ = (xk)k∈N a sequence of pairwise distinct points in

[0, 1]d. Let ν =
∑
k∈N mk δxk . Then:

1. qτ (ν) ≤ qg(ν) ≤ 1.
2. If (H) is satisfied by ν, then qg(ν) = qτ (ν).

Proof. 1. We indeed have qg(ν) ≤ 1, because m̃ is summable. If qg(ν) = 1,
then qτ (ν) ≤ 1 = qg(ν) and the result is proved. We thus assume that qg(ν) <
1, and we prove that qτ (ν) ≤ qg(ν).

Let ε > 0 be such that qg(ν) + 2ε ≤ 1 and nε ≥ 1 such that #Kn ≤
bn(qg(ν)+ε) for n ≥ nε. Then, using the sub-additivity of the mapping t 7→
tqg(ν)+2ε on R+, we see that for all n ≥ 1

sn(qg(ν) + 2ε) ≤
∑
k∈N

m
qg(ν)+2ε
k

≤
∑

1≤n′<nε

∑
k∈Kn′

m
qg(ν)+2ε
k +

∑
n′≥nε

∑
k∈Kn′

m
qg(ν)+2ε
k

≤
∑

1≤n′<nε

∑
k∈Kn′

m
qg(ν)+2ε
k +

∑
n′≥nε

(#Kn′)b−(n′−1)(qg(ν)+2ε)

≤
∑

1≤n′<nε

∑
k∈Kn′

m
qg(ν)+2ε
k +

∑
n′≥nε

bn
′(qg(ν)+ε)b−(n′−1)(qg(ν)+2ε).
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The first term of the right hand side of the last inequality does not depend
on n, and the second one converges since it is upper bounded by the sum
bqg(ν)+ε

∑
n′≥nε b

−n′ε. Hence, sn(qg(ν) + 2ε) is bounded independently of n.
This yields τν(qg(ν) + 2ε) = 0, and so qτ (ν) ≤ qg(ν) + 2ε. This is true for all
ε > 0; hence the result.
2. It is enough to prove that qg(ν) ≤ qτ (ν). The fact that this inequality holds
when (H) is satisfied follows from the proof of Proposition 3.3. We prove it
here under the stronger assumption that qg(ν) > 0 and Hg(ν) > 0. (This
exponent is defined by (7).)

Let ε ∈ (0, qg(ν)), and let (nj)j≥1 be an increasing sequence of integers
converging to ∞, and let (εj)j≥1 be a positive sequence converging to 0 such
that ∀j ≥ 1, bnj(qg(ν)−εj) ≤ #Knj . For every j ≥ 1, recall that pj = J (nj) is
the first scale which separates the elements of Knj . When j is large enough
so that εj ≤ ε/4, we have

spj (qg(ν)− ε) ≥
∑

k∈Knj

m
qg(ν)−ε
k

≥ (#Knj )b
−nj(qg(ν)−ε) ≥ bnj(qg(ν)−εj)b−nj(qg(ν)−ε),

which equals bnj(ε−εj). Thus, − log(spj (qg(ν) − ε))/pj ≤ −(ε − εj)nj/pj .
By assumption, lim infj→+∞ nj/pj ≥ Hg(ν) > 0. Taking the liminf yields
τν(qg(ν)− ε) ≤ −εHg(ν) < 0. Hence, qτ (ν) > qg(ν)− ε, for every ε > 0.

3.2 Preliminary Work for the Large Deviation Spectrum.

Proposition 3.3. Let m̃ = (mk)k∈N be a sequence of positive numbers such
that

∑
k∈N mk < 1 and x̃ = (xk)k∈N a sequence of points in [0, 1]d. Let ν =∑

k∈N mk δxk . Suppose that (H) is satisfied (this implies that qτ (ν) = qg(ν)).
Let h0 = Hτ (ν) if qτ (ν) ∈ (0, 1) and h0 = Hg(ν) if qτ (ν) = 1. There exist a
sequence (pj)j≥1 of integers going to ∞, a positive sequence (εj)j≥1 going to
0 , and a sequence of sets of b-adic boxes (Bj)j≥1 such that

1. limj→+∞
logb #Sνpj (h0,εj)

pj
= qτ (ν)h0;

2. For every j ≥ 1, Bj ⊂ Sνpj (h0, εj);

3. limj→∞
logb(#Bj)

pj
= qτ (ν)h0;

4. For every Q ∈ Bj, there exists k ∈ N such that if xQ := xk ∈ Q,

limj→∞ supQ∈Bj
∣∣∣ logbmQ−pj − h0

∣∣∣ = 0, where mQ = mk if xQ = xk.

Proposition 3.3 plays a crucial role in proving Theorem 1.3. It asserts
that, when qτ (ν) < 1, there exists a sequence εj going to 0 and infinitely
many integers j such that
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• Sνj (Hτ (ν), εj) ≈ bjqτ (ν)Hτ (ν),
• a substantial proportion of the cubes Q of generation j such that ν(Q) ≈
b−jHτ (ν) contains a point xk such that its associated mass satisfies mk ≈
b−jHτ (ν) (i.e., the ν-mass of these cubes is essentially concentrated on
one single Dirac mass).

The same general fact holds true only with Hg(ν) instead of Hτ (ν) if qτ (ν) = 1.

Proof. (i) We first prove that the result holds true with h0 = Hg(ν) and
with qg(ν) instead of qτ (ν) (whatever the value of qτ (ν) is). By definition
of Hg(ν), there is an increasing sequence of integers (nj)j≥1 and a positive

sequence (αj)j≥1 going to 0 such that limj→+∞
logb #Xnj (αj)

nj
= qg(ν) and

simultaneously limj→+∞
nj

J (nj ,αj)
= Hg(ν). Let ε0 ∈

(
0,min

(
qg(ν), Hg(ν)

))
,

and consider four positive real numbers ε1, ε2, ε3 and ε4 that all are in (0, ε0).
For some integer j1 large enough, we have:

• for every j ≥ j1,∣∣∣∣ logb #Xnj (αj)
nj

− qg(ν)
∣∣∣∣ ≤ ε1 and

∣∣∣∣ nj
J (nj , αj)

−Hg(ν)
∣∣∣∣ ≤ ε2,

• for every n ≥ nj1 ,

logb #Nν(Hg(ν)− ε4, n)
n

≤ qτ (ν)(Hg(ν)− ε4) + ε3.

The second point holds true due to items 1 and 2 of Proposition 2.6.
Let p1 = J (nj1). Consider Gp1 . By construction of p1, there are #Xnj1

(αj1)
b-adic boxes Q of Gp1 that contain a point xQ such that xQ = xk for some
xk ∈ Xnj1

(αj1) (with the associated mass denoted mQ). Each of these b-adic
boxes Q satisfies ν(Q) ≥ mQ ≥ b−nj1 , which is greater than b−p1(Hg(ν)+ε2).
We can also write that #Xnj1

(αj1) ≥ bnj1 (qτ (ν)−ε1) ≥ bp1(Hg(ν)−ε2)(qg(ν)−ε1) =
bp1(Hg(ν)qg(ν)−ε5), with ε5 = |ε1ε2 − ε1Hg(ν) − ε2qg(ν)|. By the second as-
sumption above on j1, we know that the cardinality of the set of cubes
Q ∈ Gp1 such that ν(Q) ≥ b−p1(Hg(ν)−ε4) is less than bp1(qτ (ν)Hg(ν)−ε6), with
ε6 = ε4qτ (ν)− ε3.

The reader easily verifies that (ε1, ε2, ε3, ε4) can be chosen in (0, ε0)4 so
that 0 ≤ ε5 < ε6. In this case, since qg(ν) ≥ qτ (ν), there exists η1 > 0 such
that there are at least

bp1(qg(ν)Hg(ν)−ε5) − bp1(qτ (ν)Hg(ν)−ε6) = bp1(qg(ν)Hg(ν)−η1)
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b-adic boxes of generation p1 such that b−p1(Hg(ν)+ε2) ≤ ν(Q) ≤ b−p1(Hg(ν)−ε4).
Let us set γ1 = max(ε2, ε4) ≤ ε0. We proved that there is a set of b-adic boxes
Bp1 , of cardinality bp1(Hg(ν)qg(ν)−η1) such that for every Q ∈ Bp1 ,

• Q is also included in Sp1(Hg(ν), γ1),

• there is a xQ in Q such that xQ = xk for some k ∈ N such that k verifies∣∣∣ logbmkp1
−Hg(ν)

∣∣∣ ≤ γ1.

It is obvious that there exists a constant C depending only on qg(ν) and
Hg(ν) such that η1 can be chosen so that 0 ≤ max(γ1, η1) ≤ Cε0. We then
construct the sequence (pj)j≥1 by induction, by iterating the same procedure
at each step i ≥ 1 (where the construction at step i is achieved using εi =
min(εi−1, ηi−1)

2C
instead of ε0).

(ii) When qτ (ν) = 1, qg(ν) = qτ (ν) = 1 and the result is proved.

(iii) Assume now that qτ (ν) ∈ (0, 1).

By item 1 of Theorem 3.2, qg(ν) ≥ qτ (ν). But the computations above
(essentially the item 1 of Proposition 3.3 obtained with qg(ν) instead of qτ (ν))
yield that fν(Hg(ν)) ≥ qg(ν)Hg(ν). Remembering that Proposition 2.6 implies
that fν(h) ≤ qτ (ν)h for every h ≥ 0, we get qg(ν) ≤ qτ (ν), and thus the
equality qg(ν) = qτ (ν).

(iv) We now consider the case when qτ (ν) ∈ (0, 1) and h0 = Hτ (ν). Propo-
sition 3.3 is a consequence of the following lemma.

Lemma 3.4. Suppose that qτ (ν) = qg(ν) = qτ ∈ (0, 1) and Hτ (ν) = Hτ > 0.
Let C2 >

2qτ
1−qτ and C̃2 = C2(1− qτ )− qτ . If ε > 0 is small enough, then there

exist a sequence (pj)j≥1 going to ∞, a sequence of sets of b-adic boxes (Bj)j≥1

and a constant C(ε) ∈ (0, C̃2) such that for all j ≥ 1:
1. Bj ⊂ Sνpj (Hτ , C(ε)ε) and #Bj ≥ bpjqτHτ (1−ε).
2. For every Q ∈ Bj, there exists k ≥ 1 such that xk ∈ Bj and b−pjHτ (1+C2ε)

≤ mk ≤ b−pjHτ (1−C(ε)ε).

Proof. Recall item 5 of Theorem 2.1. Fix ε ∈ (0, 1). Then let η0 > 0 such
that for all η ∈ (0, η0), there exists a sequence (pj)j≥1 going to infinity such
that

for all j ≥ 1, #Sνpj (Hτ , ηHτ ) ≥ bpjqτ (ν)Hτ (1−ε/2). (9)

Fix now η ∈
(
0,min

(
η0, C̃2ε

))
and write η = C(ε)ε. Let N0 > 0 such that

q(n) ≤ qτ +ε2 for all n ≥ N0, and J1 an integer such that pjHτ (1+C2ε) ≥ N0

for j ≥ J1. It is easily seen that there is M > 0 independent of ε and η such
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that

∀ j ≥ J1,
∑

n>pjHτ (ν)(1+C2ε)

∑
k∈Kn

mk ≤MbpjHτ (1+C2ε)(1−qτ−ε2). (10)

Let C3 ∈ (C̃(ε), C̃2) and let

Rj(C3) =
{
Q ∈ Sνpj (Hτ , ηHτ ) :

∑
n>pjHτ (1+C2ε)

∑
k∈Kn: xk∈Q

mk ≥ b−pjHτ (1+C3ε)
}
.

Also let Bj = Sνpj (Hτ , ηHτ ) \ Rj(C3). By construction, each element Q of
Bj must contain a point xk such that b−pjHτ (1+C2ε) ≤ mk ≤ b−pjHτ (1−C(ε)ε).
Moreover, due to (10), we obtain

∀ j ≥ J1, #Rj(C3) ≤MbpjHτqτ [1+[C2+(C3−C2)/qτ ]ε+O(ε2)].

It follows from our choice for C2, η and C3 that if ε > 0 is small enough, then

∀ j ≥ J1, #Rj(C3) ≤MbpjHτqτ (1−ε).

This yields #Bj ≥ bpjqτHτ (1−ε) for j large enough because of (9).

3.3 Theorem 1.3(1-2): Characterization of Hτ (ν) When qτ (ν) < 1
and Proof of the Linear Shape of the Large Deviation Spec-
trum.

Proposition 3.3 yields qg(ν) = qτ (ν) = qτ . Let h0 be as in Proposition 3.3. A
straightforward consequence of Proposition 3.3 is that f

ν
(h0 + ε) ≥ qτh0 for

all ε > 0. Using item 2 of Proposition 2.6, we get fν(h0) = qτh0 and then
h0 ≤ Hτ (ν) by item 4 of Theorem 2.1. Let us show first that fν(h) = qτh for
every h ∈ [0, Hg(ν)], and then that Hg(ν) = Hτ (ν) when qτ < 1.
• Let h ∈ (0, h0]. Consider three sequences (pj)j≥1, (εj)j≥1 and (Bj)j≥1 as

in Proposition 3.3. Let mj = [pjh0/h]. For every Q ∈ Bj , there exists a unique
b-adic box Q′ of generation mj containing xQ. Let ε ∈ (0, h). By construction,
ν(Q′) ≥ mQ ≥ b−mj(h+ε) for j large enough, and N(h + ε,mj) ≥ #Bj .
Moreover, limj→∞ logb #Bj/mj = qτ (ν)h. So, for all η > 0 if j is large
enough, N(h + ε,mj) ≥ bmj(qτ (ν)h−η). This implies, by letting j → +∞,
and then allowing ε and η go to zero, that f

ν
(h) ≥ qτ (ν)h. By item 2 of

Theorem 2.1, this yields fν(h) = qτ (ν)h.
• It remains to show that Hg(ν) = Hτ (ν) when qτ (ν) ∈ (0, 1). We adopt

the notation of Proposition 3.3. Let (εj)j≥1 be a sequence of positive real
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numbers going to 0 and such that supQ∈Bj
∣∣∣ logbmQ−pj −Hτ (ν)

∣∣∣ ≤ εj for all j.
Let (αj)j≥1 be another sequence of positive real numbers going to 0 such that
for j large enough

#Bj ≥ b · bpj(Hτ (ν)+εj)b−pj(Hτ (ν)−εj)(1−qτ (ν)−αj). (11)

Such a choice is possible thanks to Proposition 3.3. Now suppose that ∀n ∈
[pj(Hτ (ν)− εj), pj(Hτ (ν) + εj)], #Kn ∩Bj < bn(qτ (ν)−αj). This yields∑

Q∈Bj

mQ =
∑

n∈[pj(Hτ (ν)−εj),pj(Hτ (ν)+εj)]

∑
Q∈Kn∩Bj

mQ

≤
∑

n∈[pj(Hτ (ν)−εj),pj(Hτ (ν)+εj)]

b−(n−1)#(Kn ∩Bj)

< b · b−pj(Hτ (ν)−εj)
(
1−qτ (ν)−αj

)
.

(12)

On the other hand,
∑
Q∈Bj mQ ≥ b−pj(Hτ (ν)+εj)#Bj . Due to (11) and the

strict inequality in (12), there is a contradiction. Hence, there is an integer
n ∈ [pj(Hτ (ν) − εj), pj(Hτ (ν) + εj)] such that #Kn ∩ Bj ≥ bn(qτ (ν)−αj).
Moreover, by construction, J (n, αn) ≤ pj ≤ n/(Hτ (ν) − εj). This implies
Hg(ν) ≥ Hτ (ν). We saw that Hg(ν) ≤ Hτ (ν) (since fν(Hg(ν) = qτ (ν)Hg(ν)),
hence the equality is true.

4 Theorem 1.3, Item 3: Sharpness of Hg(ν) When qτ (ν) =
1.

If qτ (ν) = qg(ν) = 1 and (H) holds, then by Theorem 2.1, fν(Hτ (ν)) = Hτ (ν).
By the work achieved in the previous section, we also have fν(h) = h for
every h ∈ [0, Hg(ν)]. Hence, it is natural to ask whether the large deviation
spectrum is still linear for Hg(ν) < h < Hτ (ν). The answer is negative (as
stated by item 3 of Theorem 1.3). The optimality of Hg(ν) in item 2 of
Theorem 1.3 is a consequence of the examples below. These examples depend
on Propositions 4.1 and 4.2 whose long and technical proofs are available in [7].
However, to give the reader a flavor of the proof, we give in Section 5 a one-
dimensional measure for which 1/3 = Hg(ν) < Hτ (ν) = 1/2 and fν(h) = h
for all h ∈ [0, Hτ (ν)].

4.1 Scheme of the General Construction for Theorem 1.3, Item
3(a).

Let 0 < h0 < h1 ≤ d. In the sequel, when ρ ∈ (0, 1/2], µρ stands for the
measure on [0, 1]d obtained as the tensor product of d binomial measures of



446 Julien Barral and Stéphane Seuret

parameter ρ on [0, 1]. Recall that

τµρ(q) = −d log2(ρq + (1− ρ)q).

Let us consider two parameters ρ0 ≤ ρ1 in (0, 1/2], as well as µρ0 and µρ1
the tensor products of d binomial measures on [0, 1] of parameters ρ0 and ρ1

respectively. Recalling that τ ′µρ(1) = −d(ρ log2 ρ + (1 − ρ) log2(1 − ρ)), the
parameters ρ0 and ρ1 can be chosen so that τ ′µρ0 (1) = h0 and τ ′µρ1 (1) = h1.
Now, let (εj)j≥1 be a positive sequence going to 0 at ∞. For i ∈ {0, 1} and
any j ≥ 1, let

Eij =
⋂
j′≥j

⋃
Q∈Gj′ : 2

−j′hi(1+εj′ )≤µρi (Q)≤2
−j′hi(1−εj′ )

Q.

It is well-known that µρi is carried by the set Êρihi . (See Remark 2.3 for
the definition of this set.) Thus, the sequence (εj)j≥1 can be chosen so that
µρi
(⋃

j≥1E
i
j

)
= 1 for i ∈ {0, 1}. Moreover, the sets Eij form a non-decreasing

sequence, so we can fix li, i ∈ {0, 1} such that µρi(E
i
li

) ≥ 1/2. Let us consider,

for j ≥ 1, the subset G(i)
j of intervals of Gj defined by

G(i)
j = {Q ∈ Gj : Q ∩ Eili 6= ∅}.

Notice that by construction limj→∞
log2 #G(i)

j

j = hi, for any i ∈ {0, 1}.
For n ≥ 1, we build the sequence of purely discontinuous measures

ν0
n =

∑
Q∈G(0)

n

µρ0(Q)δxQ .

Set j1 = 2, n1 = 4, and for every k ≥ 2, jk = 22nk−1 and then nk = 2jk . When
k is large, nk−1 = o(jk) and jk = o(nk). Then define

ν =
∑
k≥1

2−k
∑

Q∈G(1)
jk

µρ1(Q) ν0
nk
◦ f−1

Q ,

where fQ stands for a similitude mapping [0, 1]d onto Q. In particular, notice
that the Dirac masses used in this construction take values 2−kµρ1(Qk)µρ0(Q′k)
at xfQk (Q′k)

, with (Qk, Q′k) ∈ G(1)
jk
× G(0)

nk . Then the next assertion follows.

Proposition 4.1. We have qτ (ν) = qg(ν) = 1, Hτ (ν) = h1, Hg(ν) = h0, and
fν(h) = h for every h ∈ [0, h1].



Information Parameters of Discontinuous Measures 447

4.2 Scheme of the General Construction for Theorem 1.3, Item
3(b).

We adopt the notation of the previous section and suppose that h0 < h1.
Let (θk)k≥1 be an increasing sequence of integers such that θkjk = o(nk) as
k →∞. Then let

for k ≥ 1, µθk =
∑

Q∈Gθkjk

µρ1(Q)µp0 ◦ f−1
Q .

Now for k, n ≥ 1 consider the measure νθkn =
∑

Q∈G(0)
n

µθk(Q)δxQ . Finally let

ν =
∑
k≥1

2−k
∑

Q∈G(1)
jk

µρ1(Q) νθknk ◦ f
−1
Q .

Proposition 4.2. We have qτ (ν) = qg(ν) = 1, Hτ (ν) = h1, Hg(ν) = h0, and
fν(h) < h for every h ∈ (h0, h1).

4.3 Theorem 1.3, Item 4: A Condition to Have Hg(ν) = Hτ (ν).

Let ε ∈ (0, Hτ (ν)−1). Let (nj) be as in the item 4 of Theorem 1.3. Let
η > 0 and suppose that there exists an integer j0 such that for j ≥ j0 the set
Xnj is included in the union of less than bnj(1−η) b-adic boxes of generation
[nj(Hτ (ν)−1−ε)]. This implies that

⋃
k∈Knj

B(xk, b−nj(Hτ (ν)
−1−ε)) is covered

by at most 3dbnj(1−η) b-adic boxes of generation [nj(Hτ (ν)−1−ε)]. Elementary
computations yield

dim
(

lim sup
j→∞

⋃
k∈Knj

B(xk, b−nj(Hτ (ν)
−1−ε))

)
≤ 1− η
Hτ (ν)−1 − ε

.

If η ∈ (Hτ (ν)ε, 1), then 1−η
Hτ (ν)−1−ε < Hτ (ν). This yields a contradiction with

our assumption. Consequently, there is an increasing sequence (jp)p≥1 such
that for every p ≥ 1, the set Xnjp

is included in the union of at least bnjp (1−η)

b-adic boxes of generation [njp(Hτ (ν)−1 − ε)]. We let the reader check that
this implies Hg(ν) ≥ Hτ (ν).

5 A Simple Example Illustrating Theorem 1.3, Item 3(a).

The idea is to replace the binomial measures in Section 4 by uniform measures
on Cantor sets, which are known to be monofractal and are easier to deal with.
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(i) Preliminary step: Let us consider the Cantor set K0 defined by this
recursive scheme. Divide the interval I = [0, 1] into 8 subintervals of length
1/8, and keep only the first and last ones, denoted respectively by I0 and I1.
The same dividing scheme applied to I0 (resp. I1) yields two intervals I0,0 and
I0,1 (resp. I1,0 and I1,1) of length (1/8)2. Iterating this procedure yields, at
every generation m ≥ 1, 2m intervals of same length (1/8)n = (1/2)3n. Denote
by E0

m ⊂ G3m this set of intervals, and K0 =
⋂
m≥1E

0
m. For every m ≥ 1,

consider the probability measure µ0(m) which is uniformly distributed on E0
m;

i.e., µ0(m) has a density fµ0(m) equal to

fµ0(m) =
∑
I∈E0

m

2−m1I(x), where 1I is the indicator function of the interval I,

and the discontinuous measure ν0(m) defined by

ν0(m) =
∑
I∈E0

m

2−mδxI , where xI is the left end-point of the interval I.

Similarly, consider the Cantor set K1 where each interval is split into only
four equal parts and where the two extremal intervals are kept at each genera-
tion. Again, the m-th generation of the construction is denoted by E1

m ⊂ G2m

and K1 =
⋂
m≥1E

1
m. Finally, for every m ≥ 1 two measures µ1(m) and ν1(m)

are built using the same scheme as the one used for µ0(m) and ν0(m).
The reader can verify the next lemma, which follows from classical self-

similarity properties of the construction and of the monofractal measure on
the uniform Cantor sets we deal with.

Lemma 5.1. Set h0 = 1/3 and h1 = 1/2. For every m ≥ 2,
1. If I is a dyadic interval of generation 1 ≤ j ≤ 3m, then either ν0(m)(I) =

µ0(m)(I) = 0 or |I|h0/8 ≤ ν0(m)(I) = µ0(m)(I) ≤ 8 · |I|h0 .
The cardinality N0

j of the set {I ∈ Gj : ν0(m)(I) > 0} satisfies 2jh0/8 ≤
N0
j ≤ 8 · 2jh0 .

2. If I is a dyadic interval of generation 1 ≤ j ≤ 2m, then either ν1(m)(I) =
µ1(m)(I) = 0 or |I|h1/4 ≤ ν1(m)(I) = µ1(m)(I) ≤ 4 · |I|h1 .
The cardinality N1

j of the set {I ∈ Gj : ν1(m)(I) > 0} satisfies 2jh1/4 ≤
N1
j ≤ 4 · 2jh1 .

3. For any ε > 0, there exists an integer mε such that for every m ≥ mε,
any subset E ⊂ {xI : I ∈ E0

m} of cardinality greater than 2m(1−ε/2) =
(#E0

m)1−ε contains two points x and y such that |x− y| ≤ 2−3m(1−ε).

(ii) Construction of the measure ν: Two sequences of integers (jk)k∈N
and (nk)k∈N are needed. They are built recursively, using the same scheme as
in Section 4. Set j1 = 2, n1 = 4, and ∀k ≥ 2 jk = 22nk−1 and then nk = 2jk .
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For every dyadic interval I, we denote by fI the increasing affine mapping
which maps I onto [0, 1]. Finally we set

ν =
∑
k≥1

1
jk

∑
I∈E1

jk

2−jkν0(nk) ◦ fI . (13)

Note that:

• The Dirac masses which appear in (13) all have an intensity of order
2−(jk+nk)

jk
and when k is fixed, there are 2jk+nk such Dirac masses. Moreover, still for a
given k ≥ 1, these masses are located at dyadic points of scale 2−(2jk+3nk).
• For every k ≥ 1, the Dirac masses of generation k′ ≥ k which appear in the
sum (13) all belong to one of the intervals I ∈ E1

jk
.

• For every k ≥ 1, (recall that jk+1 = 22nk , nk−1 = o(jk) and jk = o(nk))∑
k′≥k+1

1
jk

∑
I∈E1

jk

2−jk = o(2−(jk+nk)). (14)

• The structure of ν is comparable to the one of Cantor sets with different
upper and lower box dimensions (see [12]).

(iii) Properties of ν: They follow from Propositions 5.2 and 5.3.

Proposition 5.2. We have qg(ν) = qτ (ν) = 1, Hτ (ν) = h1 and Hg(ν) = h0.

Proof. (i) At every scale j = 2jk, there are by construction 2jk intervals
whose ν-mass is larger than 2jk/jk. This holds for every k ≥ 1, and thus
f
ν
(h1) ≥ h1. By Proposition 2.6, qτ (ν) = 1 and fν(h1) = h1, and finally

Hτ (ν) ≥ h1.
In order to get Hτ (ν) = h1, it is enough to prove that τν(q) ≥ (q − 1)h1

near 1− (indeed, this clearly implies that Hτ (ν) = τ ′ν(1−) ≤ h1). Let q ∈ (0, 1)
and j ≥ 1. Let k be the unique integer such that 2jk ≤ j < 2jk+1.
- Assume 2jk ≤ j < 2jk + 3nk. Let us evaluate sj(q) (defined in (2)) for the
measure ν. There are only two types of dyadic intervals of non-zero ν-mass at
scale j.
• Those which contain a Dirac mass of the form 2−(jk′+nk′ )/jk′ for k′ ∈
{1, . . . , k − 1}. For each such k′, there are at most 2(jk′+nk′ ) of them.

• By item 1 of Lemma 5.1, if an interval at scale j does not contain a
mass of generation < k, then either its ν-mass is 0, or it is equivalent
to 2−(j−2jk)h02−jk/jk. (We implicitly use (14) which ensures that the
masses of next generations do not interfere.) Still by Lemma 5.1, the
number of such intervals is N0

j−2jk
, which is approximately 2(j−2jk)h0 .
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Due to the sub-additivity of the function x 7→ xq on R+ (q < 1), we get

sj(q) =
∑
I∈Gj

ν(I)q

≤
k−1∑
k′=1

2jk′+nk′
(2−(jk′+nk′ )

jk′

)q
+N0

j−2jk

(2−(j−2jk)(h0) · 2−jk
jk

)q
≤ C

(
2(jk−1+nk−1)(1−q) + 2(j−2jk)(1−q)−qjk

)
.

Given ε > 0, using that jk−1 +nk−1 = o(jk), taking the log and then dividing
by −j, we find that as soon as j (and thus k) is large enough,

log sj(q)
−j

≥ h0(q − 1) + q
2jk
j
− ε.

which is always greater than h0(q− 1)− ε, for every ε when k is large enough.
-Assume 2jk + 3nk ≤ j < 2jk+1. Again there are two types of intervals.
• Those which contain a Dirac mass of the form 2−(jk′+nk′ )/jk′ for k′ ∈
{1, . . . , k}. For each k′ ∈ {1, . . . , k}, there are at most 2(jk′+nk′ ) of them.

• By item 2 of Lemma 5.1, if an interval of scale j does not contain a
mass of generation ≤ k, then its ν-mass is either 0 or is equivalent to
|I|h1/jk+1 = 2−jh1/jk+1. (Again, (14) is used.) Still by Lemma 5.1, the
number of such intervals is N1

j .
Hence, the same estimates as above yield

sj(q) ≤
k∑

k′=1

2jk′+nk′
(2−(jk′+nk′ )

jk′

)q
+N1

j

(2−jh1

jk+1

)q
≤ C

(
2(jk+nk)(1−q) +

2jh1(1−q)

jqk+1

)
.

Given ε > 0, using that jk−1 +nk−1 = o(jk), taking the log and then dividing
by −j, we find that when j (and thus k) is large enough,

log sj(q)
−j

≥ (q − 1)
(
h1 +

jk + nk
j

)
+ q

log jk+1

j

≥ (q − 1)
(
h1 +

jk + 2jk

j

)
+ q

2nk

j
.

Let ε > 0. Since jk = o(nk), when k is large enough, we finally obtain

log sj(q)
−j

≥ h1(q − 1) + q
2nk(1−ε)

j
,
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which is always greater than h1(q − 1) (and actually which is equivalent to
h1(q − 1) when j is close to 2jk+1).

(ii) To conclude the proof, we need to establish that Hg(ν) = h0.
For every k ≥ 1, let us denote by lk the unique integer such that 2−lk ≤

2−(jk+nk)/jk ≤ 2−lk+1. By construction, for any integer n ≥ 1, either q(n) =
0, or there is k such that n = lk and thus q(n) = q(lk) = log2 2jk+nk

lk
, which

clearly tends to 1 when k goes to infinity. Hence qg(ν) = qτ (ν) = 1.
Let α̃ = (αk)k∈N be a positive sequence converging to 0. Let K be such that

for every k ≥ K, αk ≤ ε/4. Consider such an integer k ≥ K. Let E be any sub-
set of X(lk) of cardinality greater than (#X(lk))(1−αk) = 2(jk+nk)(1−αk). By
construction (self-similarity of the Cantor set), it is obvious that J (lk, αk) ≥
2jk + 3nk

The points of X(lk) can be separated into 2jk packets of 2nk Dirac masses,
where each packet corresponds to one term ν0(nk) ◦ fI (I ∈ E1

jk
) in the def-

inition (13) of ν. As a consequence, there is one packet such that the set
E contains (at least) 2(jk+nk)(1−αk)/2jk of the initial Dirac masses of this
packet. Since jk = o(nk), for k large enough, E contains at least 2nk(1−ε/2)

Dirac masses.
By item 3 of Lemma 5.1, any such subset E ⊂ X(lk) contains two points x

and y such that |x− y| ≤ 2−jk2−3nk(1−ε). Hence, J (lk, αk) ≤ jk + 3nk(1− ε).
Using the two bounds for J (lk, αk), we get that limk→+∞

lk
J (lk,αk)

= 1/3 = h0.
Hence Hg(ν) = h0. This ends the proof.

Proposition 5.3. For every h ∈ (h0, h1), fν(h) = h.

Proof. Let k ≥ 1 be large enough and j ≥ 1 be such that 2jk ≤ j <
2jk + 3nk. Let ε > 0. As explained above in Proposition 5.2, there are,
at scale j, at least 2(j−2jk)h0(1−ε)2−jk intervals I of length 2−j such that
ν(I) ≥ 2−(j−2jk)h02−jk/jk. But 2−(j−2jk)h02−jk/jk = 2−jh

(k)
j , where

h
(k)
j = h0 + jk/j(1− 2h0) + (log2 jk)/j = h0 + jk/j(1− 2h0) + nk−1/j.

Note that the exponents h(k)
j range in [h0, h0 + 1/2 − h0] = [h0, h1] when

j describes {2jk, . . . , 2jk + 3nk} and that any h ∈ [h0, h1] is the limit of a
sequence of such points h(k)

j fully when k → +∞.
Let h > 0 and assume that ε′ > 0 is so small that [h− ε′, h+ ε′] ⊂ (h0, h1).

Assume also that k is large enough so that there is j ∈ [2jk + 3nk, 2jk+1] such
that h(k)

j ∈ [h− ε′, h+ ε′]. As proved just above, the number of intervals I of

scale j such that ν(I) ≥ 2−jh
(k)
j is greater than 2(j−2jk)h0(1−ε)2jk ≥ 2jh

(k)
j (1−ε).

This occurs for an infinite number of scales j and for every ε′ > 0 and ε > 0,
hence f

ν
(h) ≥ h. By item 2 of Proposition 2.6, fν(h) = h.
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