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A BIRKHOFF TYPE INTEGRAL AND THE
BOURGAIN PROPERTY IN A LOCALLY

CONVEX SPACE

Abstract

An integral, called the Bk-integral, for functions taking values in a
locally convex space is defined. Properties of Bk-integrable functions
are considered and the relations with other integrals are studied. Mo-
reover the Bk-integrability of bounded functions is compared with the
Bourgain property.

1 Introduction.

In this paper we consider an integral, called the Bk-integral, which is an
extension to locally convex spaces of the Birkhoff integral of [2]. Properties
of the Bk-integral are considered, and it is compared with other kinds of
integrals.

In §3, we present some properties of the Bk-integral. The Cauchy criterion
for Bk-integrability is proved (Proposition 1).

In §4, we compare the Bk-integral with other types of integrals, and we
establish that the Bk-integral lies between the Bochner integral and the Pettis
integral. When the range is a Banach space, a measurable and Pettis integrable
function f is also Birkhoff integrable. We prove that the same result holds for
functions whose range is a Hausdorff locally convex topological vector space
(Theorem 3), if we consider the measurability by seminorm instead of the
measurability.
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In §5, the Bk-integrability of a function is compared with the Bourgain
property of a suitable family of functions. Applying a Lemma in [4], the Bk-
integrability of a bounded function is compared with the Bourgain property
of a family of real valued functions.

2 Definitions and Notations.

Let X be a Hausdorff locally convex topological vector space (briefly a locally
convex space) with its topology T and topological dual X∗. P(X) denotes a
family of T -continuous seminorms on X so that the topology is generated by
P(X).

Let (Ω,F , µ) be a non-empty finite measure space. Unless specified other-
wise, the terms “measure”, “measurable” and “almost everywhere” (briefly
“a.e.”) refer to the measure µ. For a set E ∈ F , we denote by χ

E the char-
acteristic function of E. A partition of Ω is a countable family of disjoint
measurable sets (Ei)i∈N such that Ω =

⋃
iEi.

A function f : Ω → X is called weakly-measurable if the function x∗f is
measurable for every x∗ ∈ X∗.

We recall that a function f : Ω→X is called simple if there exist x1, x2, . . . ,
xn ∈ X and E1, E2, . . . , En ∈ F such that f =

∑n
i=1 xi

χ
Ei . If s =

∑n
i=1 xi

χ
Ei

and A ∈ F , then
∫
A
s =

∑n
i=1 µ(A ∩ Ei)xi.

We recall the following definitions (see [3], Definition 2.4).

Definition 1. A function f : Ω → X is said to be strongly (or Bochner)
integrable if there exists a sequence (fn)n of simple functions such that:

(i) fn(t)→ f(t) a.e.; i.e., f is strongly measurable;

(ii) p(f(t)− fn(t)) ∈ L1(Ω) for each n ∈ N and p ∈ P(X), and
limn→∞

∫
Ω
p(f(t)− fn(t))dt = 0 for each p ∈ P(X);

(iii)
∫
A
fn converges in X for each measurable subset A of Ω.

In this case we put (B)
∫
A
f = limn→∞

∫
A
fn.

Definition 2. A function f : Ω → X is said to be integrable by seminorm
if for any p ∈ P(X) there exist a sequence (fpn)n of simple functions and a
subset Xp

0 ⊂ Ω, with µ(Xp
0 ) = 0, such that:

(i) limn→∞ p(fpn(t) − f(t)) = 0 for all t ∈ Ω \ Xp
0 ; i.e., f is measurable by

seminorm;

(ii) p(f(t)−fpn(t)) ∈ L1(Ω) for each n ∈ N, and limn→∞
∫

Ω
p(f(t)−fpn(t))dt =

0;
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(iii) for each measurable subset A of Ω there exists an element yA ∈ X such
that limn→∞ p(

∫
A
fpn(t)− yA) = 0.

Then we put
∫
A
f = yA.

Clearly a Bochner integrable function is integrable by seminorm, and the
two definitions coincide in a Banach space.

Definition 3. A function f : Ω → X is said to be Pettis integrable if x∗f
is Lebesgue integrable on Ω for each x∗ ∈ X∗ and for every measurable set
E ⊂ Ω there is a vector νf (E) ∈ X such that x∗νf (E) =

∫
E
x∗f(t) dt for all

x∗ ∈ X∗.

The set function νf : F → X is called the indefinite Pettis integral of
f . It is known (see for example [16], p. 65) that νf is a countably additive
vector measure, continuous with respect to the measure µ (in the sense that
if µ(E) = 0, then νf (E) = 0).

3 The Bk-integral.

From now on X is a complete locally convex space. We denote by Γ a partition
of Ω. The notation Γ1 ≥ Γ2 for two partitions Γ1 and Γ2 of Ω means that Γ1

is finer than Γ2; that is, every set γ1 of Γ1 is a subset of some γ2 of Γ2. For a
given set γ ⊂ Ω, we set f(γ) = {f(t) : t ∈ γ}; clearly f(γ) ⊂ Ω. Moreover, if
Γ = (σi) is a partition of Ω, by the symbol Σ(f,Γ) we denote the formal series∑
i µ(σi)f(σi). Let p ∈ P(X) be given. Then p−1(0) is a vector subspace and

p defines a norm on X/p−1(0). If B ⊂ X is bounded with respect to p, we use
the notation p(B) = sup{p(x) : x ∈ B}. Given a sequence B1, B2, . . . of sets
in X, the series

∑∞
n=1Bn is said to be p-convergent provided that for every

choice of bn ∈ Bn, n ∈ N, the series
∑∞
n=1 bn is convergent in the normed space

X/p−1(0). The series
∑∞
n=1Bn is said to be p-convergent to z ∈ X provided

that for every choice of bn ∈ Bn, n ∈ N, the series
∑∞
n=1 bn is convergent

to z in the normed space X/p−1(0). Let f : Ω → X. We say that f is p-
unconditionally summable on Γ = (σi) if, for each i ∈ N, f � σi is bounded
with respect to p whenever µ(σi) > 0 and the series Σ(f,Γ) is p-convergent.

Definition 4. A function f : Ω→ X is said to be Bk-integrable with integral
z ∈ X if for every p ∈ P(X) and ε > 0 there exists a partition Γp = (σi) of Ω
for which f is p-unconditionally summable on Γp and

p
(∑
i∈N

µ(σi)f(ti)− z
)
< ε, (1)
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for all ti ∈ σi. The vector z is called the value of the integral on the set Ω,
and we set z = (Bk)

∫
Ω
f .

We denote by Bk(Ω, X) the family of all Bk-integrable functions on Ω.
In order to prove the Cauchy criterion for the Bk-integral, we need the

following lemma.

Lemma 1. Let f : Ω → X be a function. Assume that, given p ∈ P(X)
and ε > 0 there is a partition Γp = (σi) of Ω such that f � σi is bounded
with respect to p and the series Σ(f,Γp) is p-convergent to z ∈ X. Then, for
any partition Γ′p = (βk), Γ′p ≥ Γp; also, the series Σ(f,Γ′p) is p-convergent to
z ∈ X.

Proof. Let p ∈ P(X) and ε > 0 be fixed. Let Γp = (σi) be a partition
so that the series Σ(f,Γp) is p-convergent to z ∈ X and let Γ′p = (σi,j) be
a subpartition of Γp with ∪jσi,j = σi for each i ∈ N. Set Bi = µ(σi)f(σi)
and Bi,j = µ(σi,j)f(σi,j). We show that

∑
i,j Bi,j is p-convergent to z. Since∑

iBi is p-convergent to z, for each ε > 0 there is N ∈ N, such that for each
m > N

p
( m∑
n=1

Bn − z
)
<
ε

2
, (2)

and for each finite set Q ⊂ N \ {1, . . . N},

p
(∑
n∈Q

Bn

)
<
ε

2
. (3)

Take M = max{p(f(σ1)), . . . , p(f(σN )) : µ(σi) > 0, i = 1, . . . N}. Since
µ(Ω) <∞ and µ(Ω) =

∑
i,j µ(σi,j), there is K big enough such that

N∑
n=1

∑
k>K

µ(σn,k) <
ε

2M
. (4)

We want to prove that

p
( ∑

(n,k)∈S

Bn,k

)
< ε,

for each finite subset S of T = N×N\({1, . . . , N}×{1, . . . ,K}. Indeed for such
a set S, let S′ = {(n, k) ∈ S : 1 ≤ n ≤ N} and S′′ = {(n, k) ∈ S : n > N}. By
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(4), we get

p
( ∑

(n,k)∈S′
Bn,k

)
= p
( ∑

(n,k)∈S′
µ(σn,k)f(σn,k)

)

≤
∑

(n,k)∈S′
p(µ(σn,k)f(σn,k)) ≤

N∑
n=1

∑
k>K

Mµ(σn,k) < M
ε

2M
=
ε

2
.

(5)

Define N ′ = max{n > N : there is k with (n, k) ∈ S}. Then by (3) we obtain

p
( ∑

(n,k)∈S′′
Bn,k

)
= p
( ∑

(n,k)∈S′′
µ(σn,k)f(σn,k)

)
=p
( ∑

(n,k)∈S′′

µ(σn,k)
µ(σn)

µ(σn)f(σn,k)
)
≤ p
( ∑
N<n≤N ′

co(Bn ∪ {0})
)

=p
(

co
( ∑
N<n≤N ′

Bn ∪ {0}
))

= p
( ∑
N<n≤N ′

Bn ∪ {0}
)

= sup
F⊂{N+1,...,N ′}

p
(∑
k∈F

Bk

)
<
ε

2
,

(6)

where 0 is the null vector in X and co(B) is the convex hull of B. Therefore,
by (5) and (6) we get

p
( ∑

(n,k)∈S

Bn,k

)
< ε. (7)

By (3) there is N ∈ N such that

p
( ∑
n>N

Bn

)
<
ε

2
, (8)

and by (7) there is K ∈ N such that if T = N×N \ ({1, . . . , N} × {1, . . . ,K},

p
( ∑

(n,k)∈T

Bn,k

)
< ε. (9)
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Let r > N and s > K. By (2), (8) and (9) we have

p
( r∑
n=1

s∑
k=1

Bn,k − z
)

= p
( r∑
n=1

s∑
k=1

Bn,k −
∑
n

Bn

)
+p
(∑

n

Bn − z
)
≤ p
( N∑
n=1

K∑
k=1

Bn,k −
N∑
n=1

Bn

)
+p
( ∑
n>N

Bn

)
+ p
( r∑
n=N+1

s∑
k=K+1

Bn,k +
N∑
n=1

∑
k>K

Bn,k

)
+ p
(∑

n

Bn − z
)

<p
( N∑
n=1

K∑
k=1

Bn,k −
N∑
n=1

Bn

)
+ 2ε.

Consider the first term in the last inequality. Applying (5), we have

p

(
N∑
n=1

K∑
k=1

Bn,k −
N∑
n=1

Bn

)
= p

(
N∑
n=1

(
K∑
k=1

µ(σn,k)f(σn,k)− µ(σn)f(σn)

))

≤p

(
N∑
n=1

(
K∑
k=1

µ(σn,k)(f(σn,k)− f(σn))

))
+ p

(
N∑
n=1

∑
k>K

µ(σn,k)f(σn)

)

<p

(
N∑
n=1

(
K∑
k=1

µ(σn,k)
µ(σn)

µ(σn)(f(σn,k)− f(σn))

))
+
ε

2

≤p

(
N∑
n=1

co((Bn −Bn) ∪ {0})

)
+
ε

2
= p

(
co(

N∑
n=1

(Bn −Bn) ∪ {0})

)
+
ε

2

=p

(
N∑
n=1

Bn −
N∑
n=1

Bn ∪ {0}

)
+
ε

2
< ε+

ε

2
=

3
2
ε.

(10)

Thus, we get that the series Σ(f,Γ′p) is p-convergent to z ∈ X and the
assertion holds true.

The following proposition is a version of the Cauchy criterion.

Proposition 1. Let f : Ω → X. Then f is Bk-integrable if and only if for
every p ∈ P(X) and for every ε > 0 there exists a partition Γp = (σi) of Ω for
which f is p-unconditionally summable on Γp and

p
( ∞∑
i=1

µ(σi)f(ti)−
∞∑
i=1

µ(σi)f(vi)
)
< ε,
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for all ti, vi ∈ σi.
Proof. Necessity is obvious. To prove sufficiency, let p ∈ P(X) and ε > 0
be fixed. Then there exists a partition Γp = (σi) of Ω for which f is p-
unconditionally summable on Γp and

p

( ∞∑
i=1

µ(σi)f(ti)−
∞∑
i=1

µ(σi)f(vi)

)
< ε,

for all ti, vi ∈ σi. Let D = {(L,m) : L is a finite subset of P(X) and m ∈ N}
and define for (L,m) and (K, n) ∈ D, (L,m) � (K, n) if and only if L ⊂ K
and m ≤ n. Now let L = {p1, . . . , pk} be a finite subset of P(X). Since P(X)
is filtering, we can find a seminorm pL ∈ P(X) and a constant cL ≥ 1 such
that for every i ∈ {1, . . . , k} and x ∈ X

pi(x) ≤ cLpL(x). (11)

For each (L,m) ∈ D, let ΓLm = (σL,mi ) be the partition corresponding by
hypothesis to pL and to ε = 1

cLm
. Then f is p-unconditionally summable on

ΓLm and

pL

( ∞∑
i=1

µ(σL,mi )f(tL,mi )−
∞∑
i=1

µ(σL,mi )f(vL,mi )
)
<

1
cLm

, (12)

for tL,mi , vL,mi ∈ σL,mi . By Lemma 1 we may assume that ΓLm is finer than
Γpj
m , j = 1, . . . k, where Γpj

m is the partition corresponding, by hypothesis,
to the seminorm pj and to ε = 1

m . Moreover, applying again Lemma 1 we
may assume that, for each fixed L, the partition ΓLm is finer than ΓLn for
m > n. Also, if (L,m) � (K,m), we may assume that ΓKm is finer than ΓLm.
For any (L,m) ∈ D, let {(tL,mi , σL,mi )i} be a fixed family of couples, where
tL,mi ∈ σL,mi . Set QLm =

∑
i∈N µ(σL,mi )f(tL,mi ). Then (QLm)(L,m) is a Cauchy

net. Indeed let p ∈ P(X) and ε > 0 be fixed. Choose N ∈ N such that
1
N < ε

2 . Let (L,m)� ({p}, N) and (K, n)� ({p}, N). Take a couple (Q, N ′)
such that Q = L ∪ K and N ′ = max{m,n}. Then the partition ΓQN ′ is finer
than both ΓLm and ΓKn . Therefore, by Lemma 1, and applying (11) and (12) it
follows that

p
(∑

i

µ(σL,mi )f(tL,mi )−
∑
j

µ(σK,nj )f(tK,nj )
)

≤cLpL
(∑

i

µ(σL,mi )f(tL,mi )−
∑
l

µ(σQ,N
′

l )f(tQ,N
′

l )
)

+cKpK
(∑

l

µ(σQ,N
′

l )f(tQ,N
′

l )−
∑
j

µ(σK,nj )f(tK,nj )
)
<

1
m

+
1
n
< ε.

(13)
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As the space is complete, there is a vector L such that the net (QLm)(L,m)

converges to L. We want to prove that L is the Bk-integral of f . To do this,
fix p ∈ P(X) and ε > 0. Since (QLm)(L,m) converges to L, there is a natural
number N , with 1

N < ε
2 such that

p
(∑
i∈N

µ(σm,Li )f(tm,Li )− L
)
<
ε

2
(14)

whenever (L,m)� ({p}, N). Let vk ∈ σ{p},Nk . Since (ΓLm) is finer than Γ{p}N ,
applying once again Lemma 1, we get

p
(∑

k

µ(σN,{p}k )f(vk)− L
)

≤p
(∑

k

µ(σN,{p}k )f(vk)−
∑
i

µ(σm,Li )f(tm,Li )
)

+p
(∑

i

µ(σm,Li )f(tm,Li )− L
)
<

1
N

+
ε

2
< ε.

Proposition 2. If f : Ω → X is Bk-integrable, then for every γ ∈ F the
function f � γ is Bk-integrable.

Proof. Let p ∈ P(X) and ε > 0 be fixed. According to Proposition 1, let
Γp = (σi) be a partition of Ω for which f is p-unconditionally summable on
Γp and

p
( ∞∑
i=1

µ(σi)f(ti)−
∞∑
i=1

µ(σi)f(vi)
)
< ε,

for all ti, vi ∈ σi. Without loss of generality, by Lemma 1, we can assume that,
for each i, σi ⊂ γ or σi ∩γ = ∅. Let I = {i : σi ⊂ γ}. For all ti, vi ∈ σi, we get

p
(∑
i∈I

µ(σi)f(ti)−
∑
i∈I

µ(σi)f(vi)
)

=p
(∑
i∈I

µ(σi)f(ti) +
∑
i/∈I

µ(σi)f(ti)−
∑
i∈I

µ(σi)f(vi)−
∑
i/∈I

µ(σi)f(ti)
)

=p
( ∞∑
i=1

µ(σi)f(xi)−
∞∑
i=1

µ(σi)f(yi)
)
< ε,

where xi = ti and yi = vi if i ∈ I, while xi = yi = ti if i /∈ I. Then, by
Proposition 1, f � γ is Bk-integrable.
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The property of linearity of the Bk-integral holds and can be proved in a
standard way.

Proposition 3. Let f : Ω→ X and g : Ω→ X be two Bk-integrable functions,
then:

(i) the function f + g is Bk-integrable;
(ii) for each α ∈ R the function αf is Bk-integrable;

(iii) if x∗ ∈ X∗, the real valued function x∗f is Lebesgue integrable.

We recall that if X is a Banach space with norm || · ||, then a function f : Ω
→ X is Birkhoff integrable, with Birkhoff integral z ∈ X, if for every ε > 0
there is a partition Γ = (σi) of Ω into measurable sets such that for all ti ∈ σi∑
i∈N µ(σi)f(ti) is unconditionally convergent, and∥∥∥∑

i∈N
µ(σi)f(ti)− z

∥∥∥ < ε (15)

([8] Definition 3). Note that ifX is a Banach space, Definition 4 is equivalent to
the above definition of the Birkhoff integral. Indeed, at first we observe that T
is the norm topology and P(X) = {||·||}. Moreover, let f : Ω→X be a Birkhoff
integrable function. Then there exists a vector z satisfying that, given ε > 0
there is a partition Γ = (σi) of Ω such that

∑
i µ(σi)f(σi) is unconditionally

convergent and (15) holds. Therefore, f is unconditionally summable with
respect to the norm || · || and hence it is Bk-integrable. Conversely, assume
that f : Ω → X is Bk-integrable. Given ε > 0, for each n = 0, 1, 2, . . . there
exists Γn = (σni ), where Γn+1 ≥ Γn, and a finite set of natural numbers πn
such that if π ≥ πn, then ||

∑
π µ(σni )f(σni )− z|| < ε

2n . Let Nn be the greatest
of the integers in πn. If m, ik ≥ Nn, k = 1, . . . , l, we get for n = 0, 1, 2, . . . ,∥∥∥ m∑

i=1

µ(σni )f(σni )− z
∥∥∥ < ε

2n
and

∥∥∥ l∑
k=1

µ(σnik)f(σnik)
∥∥∥ < 2

ε

2n
.

Let Mn be such that
∑∞
i=Mn

µ(σni ) < 1
2n and set Pn = max{Nn,Mn}. Define

a sequence of sets σ1, σ2, . . . inductively as follows. σ1 = σ0
1 ; if σk is in Γn

then σk+1 is the set of lowest subscript of Γn which is disjoint from any of the
previously chosen sets unless all of such sets have subscript greater than Pn.
In this case, let Rn = k and σk+1 is the set of lowest subscript of Γn+1 which is
disjoint from any of the previously chosen sets. Since

∑Rn

i=1 µ(σi) ≥ µ(Ω)− 1
2n ,

Γ = (σi) is a partition of Ω unless a set of measure 0. As Γ ≥ Γ0, there exists,
by Lemma 1, NΓ such that for n ≥ NΓ,∥∥∥ n∑

i=1

µ(σi)f(σi)− z
∥∥∥ < 4ε.
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Moreover, by the choice of (Γn), if ik > Rn, then σik is a subset of some σni ,
i ≥ Nn. Thus, there exists a finite set of integers π ⊂ N \ {1, . . . Nn} so that

∥∥∥ l∑
k=1

µ(σik)f(σik)
∥∥∥ ≤ ∥∥∥∑

π

co(µ(σni )f(σni ) + 0)
∥∥∥

≤ sup

{∥∥∥∑
π′

µ(σni )f(σni ))
∥∥∥ : π′ ≤ π

}
≤ ε

2n−1
.

Therefore,
∑
i µ(σi)f(σi) is unconditionally convergent and it follows that f

is Birkhoff integrable.

Remark 1. Observe that Definition 4 is equivalent to the extension to locally
convex spaces of the Birkhoff integral, given by Phillips and called V-integral
(see [13] Definition 2.1). In Definition 4, following the idea of [2], (see also
[4] and [8]), it is required that for each p ∈ P(X) the series

∑
i µ(σi)f(σi) is

p-convergent. Phillips’ definition, instead, requires that given a seminorm p
there exist a subdivision Γp = (σi) and a finite set of natural numbers πp, such
that

∑
πp
µ(σi)f(σi) is contained in a neighborhood of the vector z.

The following proposition, for Banach valued functions, has been proved
in [8], Lemma 9 (see also [4], Lemma 3.2).

Proposition 4. Let (Ω,F , µ) be a finite measure space, let f : Ω → X be
a function and (Si)i∈N be a cover of Ω by measurable sets. Then f is Bk-
integrable if and only if f is Pettis integrable and f � Si : Si → X is Bk-
integrable for every i ∈ N.

Proof. Assume first that f is Bk-integrable. By Proposition 2, f � S is
Bk-integrable for each S ∈ F . Moreover, if x∗ ∈ X∗, the real valued function
x∗f is Lebesgue integrable, then f is Pettis integrable. Now assume that f
is Pettis integrable and f � Si : Si → X is Bk-integrable for every i ∈ N.
Without loss of generality, we can suppose that the sets Si are disjoint. Let
p ∈ P(X) and ε > 0. Recall that νf : F → X is countably additive. For
each i ∈ N, let (σij)j∈N be a partition of Si such that

∑
j∈N µ(σij)f(tij) is

p-unconditionally convergent and

p
(∑
j∈N

µ(σij)f(tij)− (Bk)
∫
Si

f
)
<

ε

2i
. (16)

Let δ > 0 such that whenever µ(E) < δ then p(νf (E)) ≤ ε. Since µ(Ω) =∑∞
i=1 µ(Si) < ∞, there is a N ∈ N such that

∑
i>N µ(Si) = µ(

⋃
i>N Si) < δ.
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Moreover, let L be a finite subset of N and fix n ∈ N. If Bn,L =
⋃
l∈L σn,l, we

get by Proposition 2 that f � Bn,L is Bk-integrable, and

p
(∑
l∈L

µ(σnl)f(tnl)− (Bk)
∫
Bn,L

f
)
<

ε

2n
.

Thus, if Γ = (σi,j) we get that Σ(f,Γ) is p-convergent. For n > N ,

p
( n∑
i=1

∑
j∈N

µ(σij)f(tij)− νf (Ω)
)
≤

n∑
i=1

p
(∑
j∈N

µ(σij)f(tij)− νf (Si)
)

+p(νf (
⋃
i>n

Si)) ≤ 2ε+ ε = 3ε.

4 Relation Between the McShane Integral and the Bk-
integral and Other Types of Integral.

In this section we establish some relations between the Bk-integral and the
Bochner and the McShane integrals.

We prove that each integrable by seminorm function is Bk-integrable.
First, we need the following lemma.

Lemma 2. If f : Ω → X is a simple function, then f ∈ Bk(Ω, X).

Proof. Since the Bk-integral is linear, it is sufficient to consider the case
f(x) = χ

E(x) ·w where E is a measurable set in Ω and w is a non null vector
in X. Let p ∈ P(X) and ε > 0 be fixed. If Γp = (E,Ec), then Γp is a partition
of Ω and f is p-unconditionally summable on Γp. Moreover, inequality (1) is
satisfied with z = µ(E) · w. Therefore, f ∈ Bk(Ω, X) and for each γ ∈ Ω,
(Bk)

∫
γ
f = µ(E ∩ γ) · w.

Lemma 3. Let f : Ω → X be a function. Given p ∈ P(X) and ε > 0, there
is a partition Γp = (σi) of Ω into disjoint measurable sets such that

∞∑
i=1

p(f(xi))µ(σi) ≤
∫

Ω

p(f(t))dt+ ε

for all xi ∈ σi, where the integral in the last inequality is the upper Lebesgue
integral.

Proof. Let p ∈ P(X). We can consider only the case
∫

Ω
p(f(t))dt < ∞,

otherwise the inequality is obvious. Choose a real-valued function g on Ω such
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that g(t) ≥ p(f(t)) for all t and
∫

Ω
g(t)dt =

∫
Ω
p(f(t))dt. Since g is Lebesgue

integrable for each fixed ε > 0, there is a decomposition Γp = (σi) of Ω into
disjoint measurable sets such that g is p-unconditionally summable on Γp.
Moreover, ∣∣∣ ∞∑

i=1

g(ti)µ(σi)−
∫

Ω

p(f(t))dt
∣∣∣ < ε

whenever ti ∈ σi. Therefore, we have
∞∑
i=1

p(f(ti))µ(σi) ≤
∞∑
i=1

g(ti)µ(σi) ≤
∫

Ω

p(f(t))dt+ ε,

as required.

Proposition 5. Let f : Ω→ X be a function which is integrable by seminorm.
Then it is Bk-integrable and the two integrals coincide.

Proof. Choose p ∈ P(X) and fix ε > 0. Let φp : Ω→ X be a simple function
such that ∫

Ω

p(f(t)− φp(t))dt <
ε

4
. (17)

According to Lemma 2, the function φp is Bk-integrable. Thus, there is a
partition Γ1

p = (σi) of Ω such that

p
( ∞∑
i=1

µ(σi)φp(ti)−
∫

Ω

φp

)
<
ε

4
(18)

for all ti ∈ σi. Moreover, by Lemma 3 there is a partition Γ2
p = (σ′i) such that

∞∑
i=1

p(f(ti)− φp(ti))µ(σ′i) ≤
∫

Ω

p(f(t)− φp(t))dt+
ε

4
(19)

for all ti ∈ σ′i. If Γp = Γ1
p ∩ Γ2

p, we get by (17), (18) and (19),

p
( ∞∑
i=1

µ(σi)f(ti)−
∫

Ω

f
)
≤ p
( ∞∑
i=1

(µ(σi)f(ti)− µ(σi)φp(ti))
)

+p
( ∞∑
i=1

µ(σi)φp(ti)−
∫

Ω

φp

)
+ p
(∫

Ω

φp −
∫

Ω

f
)

≤
∫

Ω

p(f(t)− φp(t))dt+
ε

4
+
ε

4
+
∫

Ω

p(f(t)− φp(t)) <
ε

2
+
ε

4
+
ε

4
= ε

for all ti ∈ σi. Therefore, the Bk-integrability of f follows.
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Since a Bochner integrable function is integrable by seminorm, we get,
as a consequence of the previous proposition, that each Bochner integrable
function is Bk-integrable.

We see when a Bk-integrable function is integrable by seminorm.

Theorem 1. Let f : Ω→ X be a function which is measurable by seminorm.
Then f is integrable by seminorm if and only if f is Bk-integrable and for
each p ∈ P(X), the real valued function p(f(x)) is Bk-integrable.

Proof. Necessity has been proved in Proposition 5. To prove the converse,
let f : Ω → X be a measurable by seminorm function such that for each
p ∈ P(X), the real valued function p(f(x)) is integrable. Then, the assertion
follows by ([3], Theorem 2.10).

We investigate now the relationship between the Bk-integral and the Mc-
Shane integral. Since the McShane integral involves a topology, from now on
(Ω, T ,F , µ) is a non-empty finite quasi-Radon measure space (see [7]).

A generalized McShane partition (or simply a McS-partition) in Ω is a
countable (eventually finite) set of pairs P = {(Ei, ωi) : i = 1, 2, . . . } where
(Ei)i is a disjoint family of measurable sets of finite measure and ωi ∈ Ω for
each i = 1, 2 . . . . If µ(Ω \ ∪iEi) = 0, we say that P is a McS-partition of Ω.
A gauge on Ω is a function ∆ : Ω → T such that ω ∈ ∆(ω) for each ω ∈ Ω.
We say that a McS-partition {(Ei, ωi) : i = 1, 2, . . . } is subordinate to a gauge
∆ if Ei ⊂ ∆(ωi) for i = 1, 2, . . . .

Definition 5. A function f : Ω→ X is said to be McShane integrable (briefly
McS-integrable) on Ω if there exists a vector w ∈ X satisfying the following
property. Given ε > 0 and p ∈ P(X) there exists a gauge ∆p on Ω such that
for each McS-partition P = {(Ei, ti) : i = 1, 2, . . . } of Ω subordinate to ∆p,
we have

lim sup
n→∞

p
( n∑
i=1

µ(Ei)f(ti)− w
)
< ε .

We denote by McS(Ω, X) the family of all McS-integrable functions on
Ω, and we set w = (McS)

∫
Ω
f . Definition 5 extends to locally convex spaces

Definition 1A of [6]. Properties of the McS-integral for functions defined on
a bounded subinterval of the real line and taking values in a locally convex
space have been studied in [10].

For each p ∈ P(X), let Xp be the completion of the normed linear space
X/p−1(0) and let ip be the canonical mapping of X into Xp (see [14], 0.11.1).
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Given a function f : Ω → X and a seminorm p ∈ P(X), define the function
fp : Ω→ Xp by

fp(t) = (ip ◦ f)(t) = ip(f(t)).

Remark 2. We note that if f : Ω→ X is Bk-integrable then also fp : Ω→ Xp

is Bk-integrable. Indeed let z denote the Bk-integral of f . Fix p ∈ P(X) and
ε > 0. Let Γp = (σi) be a partition of Ω for which f is p-unconditionally
summable on Γp, and

p
( ∞∑
i=1

µ(σi)f(ti)− z
)
< ε (20)

for all ti ∈ σi. Since

p
( ∞∑
i=1

µ(σi)ip ◦ f(ti)− ip(z)
)

= p
( ∞∑
i=1

µ(σi)f(ti)− z
)
,

from (20), we get for ti ∈ σi,

p
( ∞∑
i=1

µ(σi)fp(ti)− ip(z)
)
< ε.

Theorem 2. Let f : Ω → X be a Bk-integrable function. Then the function
f is McS-integrable and then Pettis integrable.

Proof. By the previous remark, we get that for each p ∈ P(X) the function
fp : Ω→ Xp is Bk-integrable. Then, by [8] Proposition 4 fp is McS-integrable
with integral (McS)

∫
Ω
fp = ip((Bk)

∫
Ω
f). Let ε > 0 be fixed. Then there is

a gauge ∆p such that if P = {(Ei, ti) : i = 1, 2, . . . } is a McS-partition of Ω
subordinate to ∆p, we have for n big enough

p
( n∑
i=1

µ(Ei)fp(ti)− (McS)
∫

Ω

fp

)
< ε. (21)

Since

p
( n∑
i=1

µ(Ei)fp(ti)− (McS)
∫

Ω

fp

)
= p
(
ip

( n∑
i=1

µ(Ei)f(ti)− (Bk)
∫

Ω

f
))
,

we obtain by (21),

p
(
ip

( n∑
i=1

µ(Ei)f(ti)− (Bk)
∫

Ω

f
))

= p
( n∑
i=1

µ(Ei)f(ti)− (Bk)
∫

Ω

f
)
< ε.
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Therefore, f is McS-integrable. The proof that each McS-integrable function
is Pettis integrable follows as [10] Theorem 2.

In the case when the range X is a Banach space, each measurable Pettis
integrable function is Birkhoff integrable (see [12] Corollary 5.11). For func-
tions taking values in a locally convex space, an analogous result is true if we
consider measurability by seminorm instead of measurability.

Theorem 3. Let f : Ω → X be a function which is Pettis integrable and mea-
surable by seminorm. Then it is Bk-integrable and the two integrals coincide.

Proof. Choose p ∈ P(X) an fix ε > 0. According to ([1] Theorem 6), let
φp : Ω → X be a simple function and Xp

0 a null set such that

p(f(t)− φp(t)) <
ε

2µ(Ω)
for all t ∈ Ω \Xp

0 (22)

and
p
(∫

Ω

(f(t)− φp(t))dt
)
<
ε

2
. (23)

Let (Ei) be disjoint measurable sets with ∪Ei = Ω \Xp
0 and φp(t) = yi on Ei.

Then,
∫

Ω\Xp
0
φp =

∑
i µ(Ei)yi and the series is p-convergent. Hence, since by

(22) we have that for si ∈ Ei,
∞∑
i=1

p(µ(Ei)(f(si)− yi)) <
ε

2
, (24)

the series
∞∑
i=0

µ(Ei)f(si) =
∞∑
i=1

µ(Ei)f(si) =
∞∑
i=1

µ(Ei)(f(si)− yi) +
∞∑
i=1

µ(Ei)yi

is p-convergent, being the sum of two such series. Therefore, applying (23)
and (24), we get

p
( ∞∑
i=0

µ(Ei)f(si)−
∫

Ω

f
)

= p
( ∞∑
i=0

µ(Ei)f(si)−
∞∑
i=0

µ(Ei)φp(si)
)

+p
( ∞∑
i=1

µ(Ei)φp(si)−
∫

Ω

f
)

= p
( ∞∑
i=0

µ(Ei)f(si)−
∞∑
i=0

µ(Ei)yi
)

+p
( ∞∑
i=1

µ(Ei)yi −
∫

Ω

f
)
<
ε

2
+
ε

2
= ε.
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Proposition 6. Let f : Ω → X be a measurable by seminorm function. Then
f is McS-integrable if and only if it is Pettis integrable.

Proof. If f is McS-integrable, by Theorem 2, it is Pettis integrable. The
proof of the sufficiency part follows as in [11] Theorem 3, applying [6] Corollary
4C instead of [9] Theorem 17.

Remark 3. In separable by seminorm spaces the Pettis integral, the McShane
integral and the Bk-integral all are equivalent. Indeed, by the Pettis measu-
rability Theorem ([3] Theorem 2.2) the Pettis integral and the Bk-integral
coincide. The McShane integrability follows from Proposition 6.

5 The Bk-integral and the Property of Bourgain.

In [4], the Birkhoff integral for functions taking values in a Banach space is
considered. In particular, it is compared with the Bourgain property of the
set of compositions of the function with elements of the unit ball of the dual.
We extend this result to a locally convex space.

Definition 6. ([4], Definition 2) A family A of real valued functions defined
on Ω is said to satisfy the Birkhoff property if for every ε > 0 there is a
partition Γ = (σn) of Ω such that for each xk, yk ∈ σk, k ∈ N, we have∣∣∣ m∑

k=1

f(xk)µ(σk)−
m∑
k=1

f(yk)µ(σk)
∣∣∣ < ε,

for every m ∈ N and f ∈ A.

In other words, a family A of real valued functions satisfies the Birkhoff
property if Cauchy criterion is satisfied uniformly for every function of the set
A.

To simplify the notation, in the following we write |x∗| ≤ p instead of
|x∗(x)| ≤ p(x) for each x ∈ X, and we let X∗p = {x∗ ∈ X∗ : |x∗| ≤ p}. We
recall that a seminorm p ∈ P(X) is called representable if

p(x) = sup
X∗p

|x∗(x)| (25)

for all x ∈ X. If equality (25) holds for all p ∈ P(X), the space X is said
to be representable by seminorm (see [5], p. 185). If a space X is separable
by seminorm, then it is representable by seminorm. We characterize the Bk-
integrability of f : Ω → X in terms of the Birkhoff property of the set of
composition of f with elements of X∗p ;

Zpf = {x∗f : x∗ ∈ X∗p}.
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Proposition 7. Let X be a representable by seminorm locally convex space
and f : Ω→ X be a function. The following conditions are equivalent:

(i) f is Bk-integrable;

(ii) for each seminorm p, f is p-unconditionally summable with respect to
some countable partition Γ0

p of Ω and Zpf has the Birkhoff property.

Proof. Assume that f is Bk-integrable. Let p ∈ P(X) and ε > 0 be fixed.
Then, the function fp : Ω → Xp is Bk-integrable. Let x∗ ∈ X∗p . By ([4],
Proposition 2.2), we have∣∣∣ m∑

k=1

x∗f(xk)µ(σk)−
m∑
k=1

x∗f(yk)µ(σk)
∣∣∣

=
∣∣∣x∗( m∑

k=1

f(xk)µ(σk)−
m∑
k=1

f(yk)µ(σk)
)∣∣∣

≤p
( m∑
k=1

µ(σk)f(xk)−
m∑
k=1

µ(σk)f(yk)
)
< ε.

Conversely, fix p ∈ P(X) and ε > 0. Since Zpf has the Birkhoff property, there
is a partition Γ1

p = (σi) such that for all xk, yk ∈ σk and all m ∈ N,

∣∣∣ m∑
k=1

x∗f(xk)µ(σk)−
m∑
k=1

x∗f(yk)µ(σk)
∣∣∣ < ε

2

for every m ∈ N and x∗ ∈ X∗p . If Γp = (αk) is finer than Γ0
p and Γ1

p, we get
that f is p-unconditionally summable with respect to Γp, and for all x∗ ∈ X∗p ,

∣∣∣ s∑
k=1

(x∗f(xk)− x∗f(yk))µ(αk)
∣∣∣ ≤ ∣∣∣ m∑

i=1

∑
αk⊂σi

(x∗f(xk)− x∗f(yk))µ(αk)
∣∣∣

≤
m∑
i=1

∣∣∣x∗f(xi)− x∗f(yi)
∣∣∣µ(σi) < ε.

Since the space X is representable by seminorm, we get

p
( s∑
k=1

µ(αk)f(xk)−
s∑

k=1

µ(αk)f(yk)
)
< ε.

Therefore, by Proposition 1, it follows that f is Bk-integrable.
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Definition 7. (see [15], Definition 10) A family A of real valued functions
defined on Ω is said to satisfy the Bourgain property if for each set K of
positive measure and for every ε > 0 there is a finite collection F of subsets
of positive measure of K such that for every f ∈ A, the inequality

sup f(B)− inf f(B) < ε

holds for some member B ∈ F .

In order to link the Bk-integrability with the Bourgain property of the set
Zpf , we need the following lemma.

Lemma 4 ([4] Lemma 2.3). Let A be a family of real valued functions defined
on Ω. The following statements hold:

(i) if A has the Birkhoff property, then A has the Bourgain property;

(ii) if A is uniformly bounded and has the Bourgain property, then A has the
Birkhoff property.

Theorem 4. Let X be a representable by seminorm locally convex space and
f : Ω → X be a bounded function. Then the following conditions are equiva-
lent:

(i) f is Bk-integrable;

(ii) for each seminorm p, f is p-unconditionally summable with respect to
some countable partition Γ0

p of Ω and Zpf has the Bourgain property.

Proof. Let p ∈ P(X). If f : Ω → X is a bounded function, then the set
Zpf = {x∗f : x∗ ∈ X∗p} is a family of uniformly bounded functions. If f is Bk-
integrable, by Proposition 7 the set Zpf = {x∗f : x∗ ∈ X∗p} has the Birkhoff
property, therefore by Lemma 4, it has the Bourgain property. Conversely
if the set Zpf = {x∗f : x∗ ∈ X∗p} has the Bourgain property, applying again
Lemma 4 we get that Zpf has the Birkhoff property, and the assertion follows
by Proposition 7.
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