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COLLECTIONS OF COMPACT SETS AND
FUNCTIONS HAVING Gδ-GRAPHS

Abstract

We continue the investigation began in [1] of the connection between
the structure of a function f defined on a subset of a space X and
the Borel complexity of the set C(f) = {C ∈ J(X) : f |C is continuous}
where J(X) denotes the nonempty compact subsets of X with the Haus-
dorff metric. Two hierarchies of functions with Gδ-graphs are defined.
We conjecture that they coincide.

1 Introduction.

Given a Polish space X let J(X) denote the collection of nonempty compact
subsets ofX with the Hausdorff metric. We investigate the connection between
the structure of a function f defined on a subset of a space X and the Borel
complexity of the set C(f) = {C ∈ J(X) : f |C is continuous} in J(X).

The following proposition allows restricting our consideration to functions
with Gδ-graph.

Proposition 1 ([1], Theorem 5). Suppose X and Y are Polish spaces and
f : X → Y is Borel. f has Gδ-graph in X × Y if and only if C(f) is Borel in
J(X).

Hence, functions with Gδ-graph may be considered as having a hierarchy
of complexity based on the Borel complexity of the collection compact sets
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upon which their restrictions are continuous. These collections of compact
sets are rather abstract which in turn would mean that the classification of
f could be difficult. Our goal here is to attempt to connect this hierarchy
of functions with Gδ-graphs, with a hierarchy based on the structure of the
graph that is much more accessible. There is a gap that remains to be filled.
The results we do have seem to suggest that we the connection between the
hierarchies is legitimate. We can verify the connection for functions which are
not too complex. We also investigate some interesting properties of functions
such that C(f) is an Fσδ-set.

2 Preliminaries.

Given a function f : X → Y and A ⊆ X we let f |A denote the restriction of f
to A. Given a product of two sets X × Y we let πX and πY denote the usual
projections onto X or Y , respectively.

Suppose X is a Polish space with metric d. For a set A ⊆ X we write
clX(A), intX(A), bdX(A) for the closure, interior, and boundary of A in X, re-
spectively. When it is understood what space we are referring to the subscript
will be dropped. Given sets A,B ⊆ X we define d(A,B) = inf({d(x, y) : x ∈
A & y ∈ B}). Given sets A,B ⊆ X we define the Hausdorff distance between
A and B to be Hd(A,B) = max(sup({d({x}, B) : x ∈ A}), sup({d(A, {y}) : y ∈
B})). When Hd is restricted to the compact subsets of X it is a metric known
as the Hausdorff metric. The diameter of a nonempty set A ⊆ X is defined by
diam(A) = sup{d(x, y) : x, y ∈ A}. If A = ∅, we let diam(A) = 0. It is known
that if X is Polish, then J(X) is Polish as well [2, 4.25]. By a Cantor set we
mean a compact totally disconnected metric space with no isolated points.

Let X be a separable metric space. For 0 < α < ω1 let Σ0
α(X) and Π0

α(X)
stand for the subclasses of Borel sets defined as in [2, 11.B] (e.g., Π0

2 is Gδ
and Σ0

2 is Fσ). A set A ⊆ X is said to be Σ0
α-hard provided that for any zero-

dimensional Polish space Y and B ∈ Σ0
α(Y ) there is a continuous function

f : Y → X such that f−1(A) = B. To say that A is Σ0
α-hard is essentially

saying that A is at least as complex as any Σ0
α-set. In particular, if A ⊆ X

is Σ0
α-hard, then A /∈ Π0

α(X). If A is Σ0
α-hard and A ∈ Σ0

α(X), then we
say A is Σ0

α-complete. The notions of Π0
α-hard and Π0

α-complete are defined
analogously.

Let W,Y,Z ⊆ X. We say that Y separates W from Z provided that
W ⊆ Y and Y ∩ Z = ∅.

For a function f : X → Y and S ⊆ X we define the oscillation of f on a
set S by osc(f, S) = sup{d(f(x), f(y)) : x, y ∈ S}. We define the oscillation
of f |S at the point x ∈ S by osc(f, S, x) = infδ>0 osc(f, (S ∩ Bδ(x)) where
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Bδ(x) is the set of all points of distance less than δ from x. We say a function
f : S → Y is ε-continuous provided that osc(f, S, x) ≤ ε for all x ∈ S.

We say f : X → Y is of Borel class α and write Bα provided that f−1(U) ∈
Σ0
α+1(X) for every open set U ⊆ Y . Indeed, when we mention the Borel

complexity of a function we mean the minimal value of α such that f ∈ Bα
We say a function f : X → R is lower (upper) semicontinuous in the first

sense provided that f has the property that f−1(−∞, r) (f−1(r,+∞)) is open
for all r ∈ R. By semicontinuity in the second sense we mean lower or upper
semicontinuity as defined for set valued functions. Recall that a function
f : X → A where A is a collection of compact subsets of a metric space
endowed with the Hausdorff metric is said to be upper semicontinuous provided
that limxn = x implies that lim f(xn) ⊆ f(x). Similarly, we say g : X → A is
lower semicontinuous provided that limxn = x implies that lim f(xn) ⊇ f(x).

3 Results.

We begin with some definitions describing the structure of graphs of functions.
Complete characterizations of these structures in terms of the Borel classifica-
tion of C(f) for very small values of α < ω1 are given. However, the results and
their proofs strongly suggest extensions for all α. For this reason we include
the general definitions. It is not known if any of the results presented here for
small values of α can be extended to higher values of α.

Let 2 ≤ α < ω1. Let X and Y be metric spaces. If a function f : X → Y
has the property that for every x ∈ X and ε > 0 there exist open sets U ⊆ X
and V ⊆ Y such that x ∈ f−1(V ) ∩ U , and a G ∈ Π0

β(X) where β < α such
that f−1(V ) ∩ U ⊆ G and oscillation f |G not more than ε, then we say that
f ∈ Eα. The following proposition is straight forward to verify.

Proposition 2. For n ∈ ω \ {0, 1} we have Bn−2 ⊆ En ⊆ Bn−1. For a limit
ordinal α we have

⋃
β<α Bβ ⊆ Eα ⊆ Bα. For a successor ordinal ω < α we

have Bα−1 ⊆ Eα ⊆ Bα+1.

If a function f : X → Y has the property that for every x ∈ X there exist
open sets U ⊆ X and V ⊆ Y such that x ∈ U , f(x) ∈ V , and f |(f−1(V ) ∩U)
is continuous, then we say f ∈ F2. The class F2 is what was called T1 in [1].
In the case when 3 ≤ α < ω1 we say f ∈ Fα provided that for every x ∈ X
there exist open sets U ⊆ X and V ⊆ Y such that x ∈ f−1(V ) ∩ U , and
f |(f−1(V ) ∩ U)) is Eβ for some β < α. Notice that a function in F2 does not
have to be measurable or have the Baire property since every characteristic
function is in F2. Of course, if f ∈ Fα and has Gδ-graph, we might expect
to get control over the Borel complexity of f . How much control? Again we
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know the answer for small values of α but not in general. This is our first
problem.

Problem 1. If f ∈ Fα and has Gδ-graph in X × Y , what is the Borel com-
plexity of f?

The next two theorems relate the classes Eα and Fα to the Borel complexity
of C(f) for general α.

Theorem 3. Suppose X and Y are Polish, M ⊆ X is Borel, f : M → Y is
Borel, and that 2 ≤ α < ω1. Each of the following statements implies the next.
(i) C(f) ∈ Π0

α+1(J(X))
(ii) C(f |K) is not Σ0

α+1-hard for all compact K ⊆M .
(iii) f ∈ Eα.

Theorem 4. Suppose X and Y are Polish, M ⊆ X is Borel, f : M → Y is
Borel, and that 2 ≤ α < ω1.
(i) If α is a successor ordinal and C(f) ∈ Σ0

α+1(J(X)), then f ∈ Fα.
(ii) If α is a limit ordinal and C(f) ∈ Σ0

α(J(X)), then f ∈ Fα.

If the converses of these theorems could be established for functions with
Gδ-graph in X × Y , then we would have a good correspondence between the
types of complexity.

The following three results verify the converses of Theorem 3 and Theo-
rem 4 for small values of α.

Theorem 5. Let X and Y be Polish, A ⊆ X, and α ∈ {2, 3}. A function
f : A→ Y with Gδ-graph in X×Y is in Fα if and only if C(f) ∈ Σ0

α+1(J(X)).

In [1] functions in F2 are called T1. In that paper the equivalence of
Theorem 5 is proven in the case when α = 2 and f is defined on all of X. The
argument presented there works for partial functions as well and mirrors the
argument that is presented in this paper for α = 3.

Theorem 6. Let X and Y be Polish. A Borel function f : X → Y is in E3 if
and only if C(f) ∈ Π0

4(J(X)).

Notice that Theorem 6 is not an exact converse since we assume f is
defined on all of X. Getting an argument proving Theorem 6 for partial
functions would probably show how one could prove the general equivalence
that is conjectured, this should be clear from the proof of Theorem 5. We
have a true converse and more detailed results for the class E2.

Theorem 7. Let X, Y be Polish, Y ∗ be a separable Banach space containing
Y and A ⊆ X be Borel. The each of the following conditions implies the next
for f : A→ Y .
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(i) C(f) ∈ Π0
3(J(X))

(ii) f ∈ E2
(iii) there is sequence of continuous functions {fk}k∈ω from A into Y ∗ such

that fk → f pointwise and for any P ∈ J(A) we have that f |P is con-
tinuous if and only if {fk|P}k∈ω is uniformly convergent.

Moreover, if A ∈ Π0
2(X) or f has Gδ-graph in X × Y , then the conditions are

equivalent.

We conjecture that the above theorems and corollaries may be extended
to all 1 ≤ α if we assume functions to have Gδ-graphs.

Functions that are in E2 can be seen as generalizing and unifying the two
senses of semicontinuity mentioned in Section 2.

Let f : X → R be a semicontinuous (in the first sense) function. Now f is
the pointwise limit of an increasing or decreasing sequence of continuous func-
tions. So, by Dini’s Theorem, f satisfies condition (iii) of Theorem 7. Hence,
every semicontinuous (in the first sense) function satisfies all the conditions of
Theorem 7.

We will show that every semicontinuous (in the second sense) function
satisfies the conditions of Theorem 7 in Section 6.

Generally, the conditions of Theorem 7 do not imply semicontinuity in
either sense as is shown by the following function which is easily checked to
be in E2.

g(x) =

{
sin(1/x) if x 6= 0
0 if x = 0.

A natural question that arises at this point is whether the Borel complexity
of C(f) is bounded in ω1 for functions with Gδ-graph in X×Y . It is well known
that for an uncountable Polish space X there are functions defined on X with
Gδ-graph that have arbitrarily high Borel complexity. So, to find a function
f defined on X such that C(f) is Borel but not Π0

β in J(X) it is enough, by
Proposition 1, Proposition 2 and Theorem 3, to take any f : X → Y with Gδ
graph that is not in Bβ .

4 Proof of Theorem 3.

Obviously, (i) implies (ii).
We know show that (ii) implies (iii) The next two Propositions are essen-

tially Exercise 23.5(i) of [2].

Proposition 8. Suppose α is a limit ordinal. If {Xk}k∈ω are Polish and
{Ak}k∈ω is such that Ak is Σ0

αk
-complete in Xk and αk < α for all k ∈ ω and
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limk∈ω αk = α and

D =
{
σ ∈

∏
k∈ω

Xk : (∃n ∈ ω)(∀k ≥ n)(σ(k) ∈ Ak)
}
,

then D is a Σ0
α+1-complete subset of

∏
k∈ωXk.

Proposition 9. Suppose α = β + 1. If {Xk}k∈ω are Polish and {Ak}k∈ω is
such that Ak is Σ0

β-complete in Xk and

D =
{
σ ∈

∏
k∈ω

Xk : (∃n ∈ ω)(∀k ≥ n)(σ(k) ∈ Ak)
}
,

then D is a Σ0
α+1-complete subset of

∏
n∈ωXk.

Lemma 10. Suppose 2 ≥ α is a successor ordinal, X and Y are Polish,
M ⊆ X is Borel, and f : M → Y is Borel. If C(f |K) ∈ Π0

α+1(J(X)) for every
compact set K ⊆M , then f ∈ Eα.

Proof. Let β + 1 = α. Suppose f /∈ Eα. There is an p ∈ M and an ε > 0
such that for every pair of open sets such that p ∈ U and f(p) ∈ V we have
osc(f,G) ≥ ε for any G ∈ Π0

β(M) containing f−1(V ) ∩ U ∩M .
Let {Vn}n∈ω be a decreasing sequence of open subsets of Y such that f(p) ∈

Vn and Hd(Vn, f(p)) < 1/2n for every n ∈ ω. Let {Un}n∈ω be a decreasing
sequence of open subsets of X such that Hd(Un, p) < 1/2n and p ∈ Un for
every n ∈ ω. Fix n ∈ ω such that 1/2n < ε. Since osc(f,G) ≥ ε for every
G ∈ Π0

β(M) containing f−1(Vn)∩Un∩M , we conclude that f−1(Vn)∩Un∩M
cannot be separated from the set {x ∈ Un ∩ M : d(f(x), f(p)) ≥ ε/2} by
a Π0

β-subset of Un. Indeed, if such a set did exist its intersection with M

would be a relative Π0
β-subset of M and contradict our choice of n. Since

M is Borel and f : M → Y is Borel, the non-separable sets are Borel in X.
Now, [2, 22.13, 24.20] guarantees that there is a compact set Kn ⊆ Un and
a Σ0

β-complete Dn ⊆ Kn such that Dn = Kn ∩ (f−1(Vn) ∩ Un ∩ M) and
Kn \Dn = Kn ∩ {x ∈ Un ∩M : d(f(x), f(p)) ≥ ε/2}. Notice that Kn ⊆M .

Let K = {p} ∪
⋃
n∈ωKn ⊆ M . Let h :

∏
n∈ωKn → J(K) be defined by

h(σ) = {σ(n) : n ∈ ω}∪{p}. Notice that h is continuous and that h−1(C(f |K))
is precisely the set of all σ ∈

∏
n∈ωKn such that σ(n) ∈ Dn for all n suffi-

ciently large. Since each Dn is Σ0
β-complete, Proposition 9 guarantees that

h−1(C(f |K)) is Σ0
β+2-complete. Thus, C(f |K) is Σ0

α+1-hard in J(K).

A similar argument using Proposition 8 establishes the limit case.
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Lemma 11. Suppose α is a limit ordinal, X and Y are Polish, M ⊆ X is
Borel, and f : M → Y is Borel. If C(f |K) ∈ Π0

α+1(J(X)) for every compact
K ⊆M , then f ∈ Eα.

Lemma 10 and Lemma 11 proves that (ii) implies (iii).

5 Proof of Theorem 4.

The following lemmas are slight variations of [2, 23.3].

Lemma 12. If {Xn}n∈ω are Polish spaces and {An}n∈ω is such that An is
Σ0
α-hard in Xn for every n ∈ ω, then

∏
n∈ω An is Π0

α+1-hard in
∏
n∈ωXn.

Lemma 13. Let α be a limit ordinal and αn < α for every n and limn∈ω αn =
α. If {Xn}n∈ω are Polish spaces and {An}n∈ω is such that An is Σ0

αn
-hard in

Xn for every n ∈ ω. Then
∏
n∈ω An is Π0

α-hard in
∏
n∈ωXn.

Proof of Theorem 4. The case α = 2 is Lemma 11 of [1]. Notice the
argument there is valid for any function in F2 defined on any set.

Suppose 2 < α = β + 1. Suppose f /∈ Fα. Let x ∈ X be such that
for every pair of open sets U ⊆ X and V ⊆ Y with x ∈ U and f(x) ∈ V
we have f |(f−1(V ) ∩ U) is not Eβ . Let {Vn}n∈ω be a decreasing sequence of
open subsets of Y such that Hd(Vn, f(x)) < 1/2n and f(x) ∈ Vn for every
n ∈ ω. Let {Un}n∈ω be a decreasing sequence of open subsets of X such
that Hd(Un, x) < 1/2n and x ∈ Un for every n ∈ ω. Fix n ∈ ω. Since
f |(f−1(Vn) ∩ Un) is not Eβ , there is by Theorem 3, a compact set Ln ⊆
f−1(Vn)∩Un such that C(f |Ln) is Σ0

β+1-hard in J(Ln). By our choices of Ln,
the set L = {x}∪ (

⋃
n∈ω Ln) is compact. Notice that limn∈ω f |Ln = (x, f(x)).

Define h :
∏
n∈ω J(Ln) → J(L) by h(σ) = {x} ∪

(⋃
n∈ω σ(n)

)
. Notice that h

is continuous and that σ ∈ h−1(C(f |L)) if and only if σ ∈
∏
n∈ω C(f |Ln). By

Lemma 12,
∏
n∈ω C(f |Ln) is Π0

β+2(J(L))-hard. Thus, C(f |L) /∈ Σ0
β+2(J(X)) =

Σ0
α+1(J(X)).

A similar argument, using Lemma 13 takes care of the case when α is a
limit ordinal.

6 Proof of Theorem 7 and its Corollaries.

We begin with a combinatorial lemma.

Lemma 14. Let M be a finite collection of nonempty sets. There exist a
partition {M0, . . . ,Mn} of the set {L ⊆ M :

⋂
L 6= ∅} such that, for every
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0 ≤ l ≤ n if N,K ∈Ml are distinct and
⋂

(N ∪K) 6= ∅, then there is a j < l
such that N ∪K ∈Mj.

Proof. Let M0 be the set of ⊆-maximal elements of {N ⊆ M :
⋂
N 6= ∅}.

Assume we have defined Mk. We define Mk+1 to be the collection of all
⊆-maximal elements of {N ⊆ M : (∃L ∈ Mk)(N ( L)}. Clearly, there is a
minimal n ∈ ω such that Mn+1 = {∅}. We will show that {M0, . . . ,Mn}
is as desired. We show that {M0, . . . ,Mn} partitions {L ⊆ M :

⋂
L 6= ∅}.

It is clear from the construction that the sets {M0, . . . ,Mn} are mutually
disjoint. Let L ⊆ M and

⋂
L 6= ∅. Since

⋂
L 6= ∅, there is a R ∈ M0 such

that L ⊆ R. Let k be the largest integer such that L ⊆ S for some S ∈ Mk.
Clearly, 0 ≤ k ≤ n. We claim that L = S. By way of contradiction assume
that L ( S. By definition of Mk+1, there is a T ∈ Mk+1 such that L ⊆ T
which contradicts our choice of k.

We now show the other condition holds. By maximality, if N,K ∈ M0

are distinct, then
⋂

(N ∪ K) = ∅. Suppose that N,K are distinct members
of Ml where l > 0 and

⋂
(N ∪K) 6= ∅. Since {M0, . . .Mn} partitions {L ⊆

M :
⋂
L 6= ∅}, there is a 0 ≤ j ≤ n such that N ∪ K ∈ Mj . Since N and

K are distinct, N ( (N ∪K). So, there is a T1 ∈ Mj+1 such that N ⊆ T1.
If N ( T1, then there is a T2 ∈ Mj+2 such that N ⊆ T2. Continuing in this
manner we may find, since Mn+1 = ∅, a 0 < k such that N = Tk ∈ Mj+k.
Thus, j < j + k = l.

Lemma 15. Suppose Y is a Banach space, X is a separable metric space and
f : X → Y . If M is a finite collection of closed subsets of X and osc(f,m) ≤ ε
for every m ∈ M , then there is a continuous function g such that for all
x ∈

⋃
M we have d(g(x), f(x)) ≤ ε .

Proof. Let {M0,M1, . . .Mp} be a partition of M as in Lemma 14. For each
K ∈M0 pick xK ∈

⋂
K. Define g on

⋂
K so that g[

⋂
K] = {f(xK)}. Notice

that g|(
⋃
{
⋂
K : K ∈ M0}) is continuous. Moreover, since f(xK) = g(xK),

for any K ∈M0. We have sup{d(g(w), f(x)) : x ∈
⋃
K & w ∈

⋂
K} ≤ ε.

Suppose 1 ≤ i+ 1 ≤ p and we have extended g to
⋃
{
⋂
K : K ∈

⋃
j≤iMj}

so that g is continuous and for every K ∈
⋃
j≤iMj we have

sup
{

d(g(w), f(x)) : x ∈
⋃
K & w ∈

⋂
K
}
≤ ε. (1)

We now show how to extend g to
⋃
{
⋂
K : K ∈

⋃
j≤i+1Mj}. We consider

two cases.
Suppose i + 1 < p. Let L ∈ Mi+1. Let A be the closed subset of

⋂
L

where g is already defined. There are K1, . . . ,Kn ∈Mi such that L ( Kt for
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1 ≤ t ≤ n. Let x ∈
⋃
L and w ∈ A. Since g(w) has been defined, w ∈

⋂
Kt

for some 1 ≤ t ≤ n. Let l ∈ L be such that x ∈ l. Since l ∈ L ⊆ Kt, we have
x ∈

⋃
Kt. By (1) and Kt ∈Mi, d(g(w), f(x)) ≤ ε. It follows that,

sup
{

d(g(w), f(x)) : x ∈
⋃
L & w ∈ A

}
≤ ε.

Continuously extend g from A to
⋂
L in such a way that g[

⋂
L] is contained in

the convex hull of g[A]. Hence, sup{d(g(w), f(x)) : x ∈
⋃
L & w ∈

⋂
L} ≤ ε.

Notice we may do this for every L ∈Mi+1 and still have g well defined, since,
by Lemma 14 for distinct L1, L2 ∈ Mi+1 we have

⋂
L1 ∩

⋂
L2 ⊆

⋂
K where

K ∈
⋃
j≤iMj . So, now g is continuous on the set

⋃
{
⋂
K : K ∈

⋃
j≤i+1Mj}.

Suppose now that i+ 1 = p. In this case,
⋃
{
⋂
K : K ∈

⋃
j≤iMj} =

⋃
M

and we may take any continuous extension of g|M to all of X. It is easily
verified that g : X → Y has the desired properties.

Proposition 16. ([3, 23.1]) Every lower semicontinuous map F from a metric
spaceX into the collection of convex closed subsets of a Banach space Y admits
a continuous selector (i.e., a continuous f : X → Y such that f(x) ∈ F (x) for
all x).

Lemma 17. Let X be a metric space and Y be a Banach space. If A ⊆ X is
closed and there are continuous functions f : A→ Y and g : X → Y such that
d(f |A, g|A) ≤ ε, then f may be extended to a continuous function h : X → Y
so that d(h, g) ≤ ε.

Proof. Let F be the function on X which assigns to each x ∈ X\A the closed
ε-ball about g(x) in Y and assigns to each x ∈ A the set {f(x)}. It is easily
checked that F is a lower semicontinuous function from X into the collection of
closed convex subsets of Y . By Proposition 16, there is a continuous h : X → Y
such that h(x) ∈ F (x) for every x ∈ X. Clearly, h|A = f |A and d(h, g) ≤ ε.
So, h is the desired extension.

Lemma 18. Let X be a separable metric space and Y be a separable Banach
space. If f : X → Y is in E2, then f satisfies condition (iii) of Theorem 7.

Proof. For every x ∈ X there are open sets U0
x ⊆ X and V 0

x ⊆ Y such that
(x, f(x)) ∈ U0

x×V 0
x and osc(f, cl(f−1(U0

x)∩V 0
x )) ≤ 1/20. Let {U0

n×V 0
n }n∈ω be

a countable subcover of {U0
x×V 0

x }x∈X . Suppose now that we have constructed
countable covers {{U in × V in}n∈ω}i<k of f such that:
(a) osc(f, cl(f−1(V in) ∩ U in)) ≤ 1/2i for all n ∈ ω,
(b) for every i < j < k and n ∈ ω we have cl(f−1(V jn ) ∩ U jn) ⊆ f−1(V il ) ∩ U il

and cl(U jn) ⊆ U il for some l ≤ n,
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(c) diam(U in) < 1/2i for every n ∈ ω,
(d) for every i < j < k we have cl(U jn) ⊆ U in.

We show how to construct {Ukn × V kn }n∈ω.

Let m ∈ ω. For each x ∈ Uk−1
m ∩ f−1(V k−1

m ) pick open sets Ux,m ⊆ Uk−1
m

and Vx,m ⊆ V k−1
m such that:

(i) (x, f(x)) ∈ Ux,m × Vx,m, osc(f, cl(f−1(Vx,m) ∩ Ux,m)) ≤ 1/2k,
(ii) cl(f−1(Vx,m) ∩ Ux,m) ⊆ f−1(V k−1

m ) ∩ Uk−1
m and cl(Ux,m) ⊆ Uk−1

m

(iii) diam(Ux,m) ≤ 1/2k.

Notice that (i) and (ii) follow from f ∈ E2. Let {Umn
×Vmn

}n∈ω be a countable
subcover of {Ux,m × Vx,m : x ∈ Uk−1

m ∩ f−1(V k−1
m )}.

Let {Sm}m∈ω be a partition of ω into infinite sets such that m ≤ min(Sm)
for all m ∈ ω. Let {Ukn×V kn }n∈ω be an enumeration (possibly with repetitions)
of {Umn

× Vmn
}m,n∈ω so that mn ∈ Sm for every n,m ∈ ω. Now for every

n ∈ ω there is an m ∈ ω (namely, m with n ∈ Sm) such that m ≤ n and
Ukn × V kn ⊆ Uk−1

m × V k−1
m and cl(Ukn) ⊆ Uk−1

m .

We show that {Ukn × V kn }n∈ω has the desired properties. Clearly, (a), (c),
and (d) are satisfied. We show (b). Let i < j < k+ 1 and n ∈ ω. By inductive
hypothesis, we may assume j = k. By the ordering of {Ukn × V kn }n∈ω, there is
a m ≤ n such that cl(f−1(V kn )∩Ukn) ⊆ f−1(V k−1

m )∩Uk−1
m and cl(Ukn) ⊆ Uk−1

m .
So, we are done if i = k−1. Assume that i < k−1. By inductive hypothesis, for
some t ≤ m we have cl(f−1(V k−1

m )∩Uk−1
m ) ⊆ f−1(V it )∩U it and cl(Uk−1

m ) ⊆ U it .
Hence, cl(f−1(V kn ) ∩ Ukn) ⊆ f−1(V it ) ∩ U it , cl(Ukn) ⊆ U it , and t ≤ n. This
completes the inductive construction.

Fix n ∈ ω. By Lemma 15, there is a continuous function f0
n : X → Y

such that d(f0
n(x), f(x)) ≤ 1 for all x ∈

⋃
i≤n cl(f−1(V 0

i ) ∩ U0
i ). Suppose

we have defined fkn : X → Y so that for every x ∈
⋃
i≤n cl(f−1(V ki ) ∩ Uki )

we have d(fkn(x), f(x)) ≤ 1/2k and d(fkn , f
k−1
n ) ≤ 1/2k−1 + 1/2k. We show

how to construct fk+1
n : X → Y . By (b),

⋃
i≤n cl(f−1(V k+1

i ) ∩ Uk+1
i ) ⊆⋃

i≤n f
−1(V ki )∩Uki . By Lemma 15, there is a continuous partial function fk+1

n

such that d(fk+1
n (x), f(x)) ≤ 1/2k+1 for all x ∈

⋃
i≤n cl(f−1(V k+1

i ) ∩ Uk+1
i ).

Since
⋃
i≤n cl(Uk+1

i ) ⊆
⋃
i≤n U

k
i , we can extend fk+1

n so that fk+1
n = fkn for

all x /∈
⋃
i≤n U

k
i . Notice that d(fk+1

n (x), fkn(x)) ≤ 1/2k + 1/2k+1 for all x for
which fk+1

n has been defined. By Lemma 17, we may extend fk+1
n to all of

X in such a way that d(fkn , f
k+1
n ) ≤ 1/2k + 1/2k+1 for all x ∈ X. Clearly,

{fkn}k∈ω converges uniformly to a continuous function fn.
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For any k ∈ ω and x ∈
⋃
i≤n cl(f−1(V ki ) ∩ Uki ) we have

d(fn(x), f(x)) ≤ d(fn(x), fkn(x)) + d(fkn(x), f(x))

≤ (
∞∑
l=k

1/2l + 1/2l+1) + 1/2k = 1/2k−2.

Suppose f |P is continuous. Let x ∈ X and ε > 0. Pick k ∈ ω such that
1/2k−2 < ε. Since f |P is compact and f |P ⊆

⋃
i∈ω U

k
i × V ki , for all m ∈

ω sufficiently large we have P ⊆
⋃
i≤m cl(f−1(V ki ) ∩ Uki ). By the previous

paragraph, d(f(x), fm(x)) ≤ 1/2k−2 < ε for all x ∈ P and large m. Thus,
{fn|P}n∈ω converges to f |P uniformly.

By Theorem 3 and Lemma 18, we have the implications (i) ⇒ (ii) ⇒ (iii)
in Theorem 7.

The next lemma shows that (iii) ⇒ (i) when A ∈ Π0
2(X).

Lemma 19. Let X and Y be Polish Y be contained in a separable Banach
space Y1 and A ∈ Π0

2(X). If f : A → Y is the pointwise limit of continu-
ous functions {fn}n∈ω where fn : A → Y1, then the collection U of compact
sets P such that {fn|P}n∈ω is uniformly convergent is a Π0

3-set in J(X). In
particular, if f satisfies (iii) of Theorem 7, then C(f) ∈ Π0

3(J(X)).

Proof. Let Mk
n = {P ∈ J(A) : (∀l ≥ k)(∀x ∈ P )(d(fk(x), fl(x)) ≤ 1/2n)}. It

is easily verified that Mk
n is closed in J(A). We show that U =

⋂
n∈ω

⋃
k∈ωM

k
n .

Suppose P ∈ U . For every n ∈ ω there is a k ∈ ω such that for all l ≥ k we
have d(f(x), fl(x)) ≤ 1/2n+1 for all x ∈ P . Hence, d(fk(x), fl(x)) ≤ 1/2n for
all l ≥ k and x ∈ P . Thus, P ∈

⋂
n∈ω

⋃
k∈ωM

k
n .

Suppose P ∈
⋂
n∈ω

⋃
k∈ωM

k
n . Let n ∈ ω. There is a k ∈ ω such that

P ∈ Mk
n . So, for all x ∈ P and l ≥ k we have d(fk(x), fl(x)) ≤ 1/2n. Hence,

d(f(x), fl(x)) ≤ 1/2n−1 for all x ∈ P and l ≥ k. Since n ∈ ω was arbitrary,
we conclude that P ∈ U .

Since U ∈ Π0
3(J(A)) and J(A) ∈ Π0

2(J(X)), U ∈ Π0
3(J(X)).

The next lemma shows that (iii) ⇒ (i) when f has Gδ-graph in X × Y .

Lemma 20. Let X and Y be Polish spaces, A ⊆ X and Y be contained in a
separable Banach space Y1. If f : A→ Y satisfies condition (iii) of Theorem 7
and has Gδ graph in X × Y , then C(f) ∈ Π0

3(J(X)).

Proof. Let X∗ and Y ∗1 be metric compactifications of X and Y1 respectively.
Notice that f has Gδ-graph in X∗ × Y ∗1 . Let {Wi}i∈ω be open subsets of
X∗ × Y ∗1 such that f =

⋂
i∈ωWi. Construct covers {{U in × V in}n∈ω}i∈ω of f

by open rectangles of X∗ × Y ∗1 such that:
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(a) cl(U in × V in) ⊆Wi for all i, n ∈ ω,
(b) diam(V in) < 1/2i for all i, n ∈ ω.
Let {fn}n∈ω be continuous functions fn : A → Y1 which converge to f as in
(iii) of Theorem 7. We may find a G ∈ Π0

2(X) such that each fn may be
extended to a continuous function on G. For the remainder of the proof fn
will mean the extended function. For each i, k ∈ ω and finite F ⊆ ω let

ZFi,k =
{
P ∈ J(G) : (∀l ≥ k)

(
fl|P ⊆

⋃
n∈F

U in × V in
)}
.

For every i, k, and F we have ZFi,k ∈ Σ0
2(J(G)). Let

Z =
⋂
i∈ω

⋃
k∈ω

⋃
{ZFi,k : F ⊆ ω is finite}.

Clearly, Z ∈ Π0
3(J(G)). Since J(G) ∈ Π0

2(J(X)), we have Z ∈ Π0
3(J(X)). We

will be done if we show that Z = C(f).
Let P ∈ Z. We claim that P ⊆ A. Let x ∈ P . Since P ∈ Z, there exist

k0 ∈ ω and F0 ∈ [ω]<ω such that for all l ≥ k0 we have fl(x) ∈
⋃
n∈F0

U0
n×V 0

n .
Let n0 ∈ F0 be such that fl(x) ∈ U0

n0
× V 0

n0
for all l in some infinite B0 ⊆ ω.

Since P ∈ Z, there exist k ∈ ω and F1 ∈ [ω]<ω such that for all l ≥ k1 we
have fl(x) ∈

⋃
n∈F1

U1
n × V 1

n . Hence, there is an n1 ∈ F1 such that fl(x) ∈
U1
n1
× V 1

n1
for all l in some infinite B1 ⊆ B0. We may continue inductively

to find {ni}i∈ω and Bi ∈ [ω]ω such that for every i ∈ ω we have Bi+1 ⊆ Bi
and fl(x) ∈ U ini

× V ini
for all l in Bi. For each i ∈ ω pick li ∈ Bi. By

(b), d(fli(x), fli+1(x)) ≤ 1/2i. Thus, {fli(x)}i∈ω is a Cauchy sequence and
converges to some y ∈ Y ∗1 . Let j ∈ ω. Since fli(x) ∈ V jnj

for almost all i, we
have (x, y) ∈ cl(U jnj

×V jnj
) ⊆Wj by (a). Since j was arbitrary, (x, y) ∈ f . So,

x ∈ A. Hence, P ⊆ A.
We claim that f |P is continuous. Let j ∈ ω. There is a finite Fj ⊆ ω and

a k ∈ ω such that fl|P ⊆
⋃
n∈Fj

U jn × V jn for all l ≥ k. Since P ⊆ A, we have
f |P ⊆

⋃
n∈Fj

cl(U jn × V jn ) ⊆Wj . Thus,

f |P ⊆
⋂
j∈ω

( ⋃
n∈Fj

cl(U jn × V jn )
)
⊆
⋂
j∈ω

Wj = f.

So, f |P is contained in a compact subset of f which means that f |P is con-
tinuous. Thus, P ∈ C(f).

Suppose P ∈ C(f). Let j ∈ ω. Since f |P is compact, there is a finite
F ⊆ ω such that f |P ⊆

⋃
n∈F (U jn ∩ A) × V jn . Since {fn}n∈ω converges to f

as in (iii) of Theorem 7, we have {fn|P}n∈ω converging to f |P uniformly. It
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follows that for some k ∈ ω we have fl|P ⊆
⋃
n∈F (U jn ∩A)× V jn for all l ≥ k.

Since j was arbitrary, P ∈ Z.

Corollary 21. Let X and Y be metric spaces. If f : X → J(Y ) is semicon-
tinuous in the second sense, then f ∈ E2.

Proof. For the proof we say semicontinuous instead of semicontinuous in the
second sense.

Assume that f is lower semicontinuous. Let ε > 0 and x ∈ X. There is a
δ > 0 such that for every w ∈ Bδ(x) and every q ∈ f(x) there is a p ∈ f(w)
such that d(p, q) < ε/2. Let M = cl(f−1(Bε/2(f(x)))∩Bδ/2(x)). We will show
that osc(f,M) ≤ ε. Let w ∈ M . Clearly, if w ∈ f−1(Bε/2(f(x))) ∩ Bδ/2(x),
then Hd(f(x), f(w)) ≤ ε/2. Suppose w ∈ M \ f−1(Bε/2(f(x)) ∩ Bδ/2(x). Let
wn ∈ f−1(Bε/2(f(x))) ∩ Bδ/2(x) be such that limwn = w. Let p ∈ f(w).
There exist pn ∈ f(wn) such that lim pn = p. Since Hd(f(wn), f(x)) ≤ ε/2
for every n, we have d(p, f(x)) ≤ ε/2. On the other hand, since w ∈ Bδ(x),
for any q ∈ f(x) we have d(q, f(w)) ≤ ε/2. Thus, Hd(f(w), f(x)) ≤ ε/2. We
conclude that osc(f,M) ≤ ε.

Assume that f is upper semicontinuous. Let ε > 0 and x ∈ X. There is a
δ > 0 such that for every w ∈ Bδ(x) and every q ∈ f(w) there is a p ∈ f(x)
such that d(p, q) < ε/4. Let M = cl(f−1(Bε/4(f(x)))∩Bδ/2(x)). We will show
that osc(f,M) ≤ ε. Let w ∈ M . Clearly, if w ∈ f−1(Bε/4(f(x))) ∩ Bδ/2(x),
then Hd(f(x), f(w)) ≤ ε/4 ≤ ε/2. Suppose w ∈M\f−1(Bε/4(f(x)))∩Bδ/2(x).
Let wn ∈ f−1(Bε/4(f(x))) ∩ Bδ/2(x) be such that limwn = w. Let p ∈ f(w).
Since d(w, x) < δ, there is a q ∈ f(x) such that d(p, q) < ε/4 ≤ ε. Let
r ∈ f(x). Since wn ∈ f−1(Bε/4(f(x))) for each n, we may find rn ∈ f(wn)
such that lim d(rn, r) ≤ ε/4. Since wn ∈ Bδ/2(x) for all n, there are tn ∈ f(x)
such that d(tn, rn) < ε/4. So, lim d(tn, r) ≤ ε/2. Since f(w) is compact, we
may assume that there is a t ∈ f(w) such that lim tn = t. So, d(r, t) ≤ ε/2.
Thus, Hd(f(x), f(w)) ≤ ε/2. we conclude that osc(f,M) ≤ ε.

7 Proof of Theorem 5.

The case α = 2 is Theorem 4 of [1]. We now consider the case α = 3. For the
remainder of this section we assume that X and Y are Polish spaces and f is
a partial function defined on X.

We define an operation M on collections of subsets of product spaces as in
[1]. Given a collection A of subsets of X × Y . Define

M(A) =
⋃
x∈X

(
π−1
X ({x}) ∩

⋂
{A ∈ A : x ∈ πX [A]}

)
.
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Lemma 22. If A is a finite collection of subsets of X × Y such that πX [A]
is closed for every A ∈ A and f |(πX [A ∩ f ]) is E2 for each A ∈ A, then
f |(πX [M(A) ∩ f ]) is E2.

Proof. Let x ∈ πX [M(A)∩ f ] and ε > 0. Since A is finite and f |(πX [A∩ f ])
is E2 for each A ∈ A, there is an open neighborhood V of f(x) and a open
neighborhood U of x such that osc(f, cl(f−1(V ) ∩ U) ∩ πX [A]) ≤ ε for any
A ∈ A such that x ∈ πX [A ∩ f ]. In particular, we have

osc(f |((cl(f−1(V ) ∩ U) ∩ πX [M(A) ∩ f ])) ≤ ε.

Lemma 23. Let f ∈ F3 and B1 and B2 be countable bases for X and Y ,
respectively. If x ∈ A ⊆ X and f |A is continuous, then there exist B1 ∈ B1 and
B2 ∈ B2 such that f |(f−1(cl(B2)) ∩ cl(B1)) is E2 and f [A ∩ cl(B1)] ⊆ cl(B2).

Proof. Since f ∈ F3, there exist open sets U ⊆ X and, V ⊆ Y such that
x ∈ U , f(x) ∈ V , and f |(f−1(V ) ∩ U) is E2. Pick B1 ∈ B1 and B2 ∈ B2 so
that cl(B1) ⊆ U , cl(B2) ⊆ V , x ∈ B1, and f(x) ∈ B2. Since f−1(cl(B2)) ∩
cl(B1) ⊆ f−1(V )∩U , we have that f |(f−1(cl(B2))∩cl(B1)) is E2. Since f |A is
continuous, we may assume B1 is small enough that f [A∩cl(B1)] ⊆ cl(B2).

Proposition 24. [1, Lemma 13] If A is a finite collection of closed subsets of
X × Y such that πX [A] is closed for every A ∈ A, then M(A) ∈ Π0

2(X × Y ).

Lemma 25. If f ∈ F3 and f has Gδ-graph in X ×Y , then C(f) ∈ Σ0
4(J(X)).

Proof. Let B1 and B2 be countable bases for X and Y respectively. Let W
be the collection of all finite collections Z = {W0, . . .Wn} of sets of the form
Wi = cl(B1)×cl(B2) (where B1 ∈ B1 and B2 ∈ B2) such that f |(πX [M(Z)∩f ])
is E2. Let Z ∈ W. By Proposition 24 and the assumption that f has Gδ-graph
in X × Y , M(Z) ∩ f ∈ Π0

2(X × Y ). Since f |(πX [M(Z) ∩ f ]) is E2 and has
Gδ-graph in X×Y , Theorem 7 implies that T =

⋃
{C(f |(πX [M(Z)∩f ])) : Z ∈

W} ∈ Σ0
4(X).

The proof will be complete if we show that C(f) = T . The containment
T ⊆ C(f) is obvious. We work for the opposite containment. Let C ∈ C(f).
We will construct a finite collection W = {W1,W2, . . . ,Wn} of sets of the form
Wi = cl(B1)× cl(B2) where B1 ∈ B1 and B2 ∈ B2 such that:
(a) f |C ⊆

⋃
W ,

(b) f |(πX [f ∩Wi]) is E2 for every 1 ≤ i ≤ n, and
(c) f |(C ∩ πX(Wi)) ⊆Wi for every 1 ≤ i ≤ n.
By Lemma 23, for every x ∈ C there exist Bx1 ∈ B1 and Bx2 ∈ B2 such that
x ∈ Bx1 , f(x) ∈ Bx2 , f |(f−1(cl(Bx2 ))∩cl(Bx1 )) is E2, and f [cl(Bx1 )∩C] ⊆ cl(Bx2 ).
Since f |C is compact, we we may find a finite subcover W ∗ = {W ∗1 , . . .W ∗n}
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of {Bx1 × Bx2 : x ∈ C}. For each 1 ≤ i ≤ n let Wi = cl(W ∗i ). The collection
W = {W1 . . .Wn} clearly satisfies conditions (a), (b), and (c).

By (b), and Lemma 22, f |(πX [f ∩M(W )]) is E2. So W ∈ W. Let x ∈ C.
By (a), there is some Wi ∈ W such that 〈x, f(x)〉 ∈ Wi. By (c), for any
Wk ∈ W if x ∈ πX(Wk), then 〈x, f(x)〉 ∈ Wk. Thus, 〈x, f(x)〉 ∈ M(W ) ∩ f .
So, x ∈ πX [M(W ) ∩ f ]. So, C ⊆ πX [M(W ) ∩ f ]. Since f |C is continuous,
C ∈ C(πX [M(W ) ∩ f ]) ⊆ T .

The theorem now follows from Theorem 4 and Lemma 25.

8 Proof of Theorem 6.

Lemma 26. Let f ∈ E3, ε > 0 and B1 and B2 be countable bases for X and Y ,
respectively. If x ∈ A ⊆ X and f |A is continuous, then there exist B1 ∈ B1 and
B2 ∈ B2 such that there is a G ∈ Π0

2(X) such that f−1(cl(B2)) ∩ cl(B1) ⊆ G
and osc(f,G) ≤ ε and f [A ∩ cl(B1)] ⊆ cl(B2).

Proof. Since f ∈ E3, there exist open sets U ⊆ X and V ⊆ Y such that
x ∈ U , f(x) ∈ V , and there is a G ∈ Π0

2(X) such that f−1(V ) ∩ U ⊆ G and
osc(f,G) ≤ ε. Pick B1 ∈ B1 and B2 ∈ B2 so that cl(B1) ⊆ U , cl(B2) ⊆ V ,
x ∈ B1, and f(x) ∈ B2. Now f−1(cl(B2)) ∩ cl(B1) ⊆ f−1(V ) ∩ U ⊆ G, and
osc(f,G) ≤ ε. Since f |A is continuous, we may assume B1 is small enough
that f [A ∩ cl(B1)] ⊆ cl(B2).

Lemma 27. Suppose f : X → Y . Let ε > 0 and A be a finite collection of
closed boxes in X × Y such that for every A ∈ A: diam(πY [A]) ≤ ε/5, there
is a GA ∈ Π0

2(X) such that πX [A ∩ f ] is subset of GA and osc(f,GA) ≤ ε/5.
There is a G ∈ Π0

2(X) such that πX [M(A) ∩ f ] ⊆ G and f |G is ε-continuous.

Proof. Let G1 =
⋃
A∈A(GA ∩ cl(πX [A ∩ f ])). Clearly, G1 ∈ Π0

2(X) and
πX [M(A) ∩ f ] ⊆

⋃
A∈A πX [A ∩ f ] ⊆ G1 ⊆

⋃
A∈A πX [A]. Let

G = G1 \
(⋃
{πX [A] ∩ πX [B] : A,B ∈ A and πY [A] ∩ πY [B] = ∅}

)
.

Now G ∈ Π0
2(X) and πX [M(A) ∩ f ] ⊆ G ⊆ πX [M(A)]. We now show that

f |G is ε-continuous. Let x ∈ G and xn ∈ G be such that limn∈ω xn = x. Pick
A ∈ A and B ∈ A such that x ∈ GA ∩ πX [A] and {xn : n ∈ ω} ⊆ GB ∩ πX [B].
Since πX [B] is closed, x ∈ πX [B]. Since x ∈ πX [M(A)], we have A ∩ B 6= ∅.
Since diam(πY [A] ∪ πY [B]) < 2ε/5 and max{osc(f,GB), osc(f,GA)} < ε/5,
we have lim supn∈ω d(f(xn), f(x)) < 4ε/5. Thus, f |G is ε-continuous.

Lemma 28. If f is E3, then C(f) ∈ Π0
4(J(X)).
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Proof. Let n ∈ ω. Let B1 = {Bk1 : k ∈ ω} and B2 = {Bk2 : k ∈ ω} be
countable bases for X and Y respectively. Let W be the collection of all
finite collections Z = {W0, . . .Wm} of sets of the form Wk = cl(Bk1 )× cl(Bk2 )
such that diam(Bk2 ) ≤ 1/(2n · 5) and there is a Gk ∈ Π0

2(X) such that πX [f ∩
(cl(Bk1 ))×cl(Bk2 )] ⊆ Gk and osc(f,Gk) ≤ 1/(2n·5). Let Z ∈ W. By Lemma 27,
there is a HZ ∈ Π0

2(X) such that πX [M(Z) ∩ f ] ⊆ HZ and f |HZ is 1/2n-
continuous. Let Tn =

⋃
Z∈W J(HZ). Clearly, Tn ∈ Σ0

3(J(X)) and f |C is
1/2n-continuous for all C ∈ Tn. The set T =

⋂
n∈ω Tn is in Π0

4(J(X)). Since
C ∈ T implies that f |C is 1/2n continuous for all n, we have T ⊆ C(f).

Let C ∈ C(f) and n ∈ ω be arbitrary. We will construct a finite collection
W = {W1,W2, . . . ,Wm} of sets of the form Wi = cl(Bi1)× cl(Bi2) such that
(a) f |C ⊆

⋃
W ,

(b) there is a Gi ∈ Π0
2(X) such that πX [f ∩ Wi] ⊆ Gi and osc(f,Gi) <

1/(2n · 5),
(c) diam(Bi2) < 1/(2n · 5), and
(d) f |(C ∩ πX(Wi)) ⊆Wi for every 1 ≤ i ≤ m.
By Lemma 26, for every x ∈ C there exist Bx1 ∈ B1 and Bx2 ∈ B2 such that
x ∈ Bx1 , f(x) ∈ Bx2 , diam(Bx2 ) < 1/(2n · 5), f [cl(Bx1 ) ∩C] ⊆ cl(Bx2 ), and there
is a G ∈ Π0

2(X) such that f−1(cl(Bx2 ))∩cl(Bx1 ) ⊆ G and osc(f,G) < 1/(2n ·5).
Since f |C is compact, we we may find a finite subcover W ∗ = {W ∗1 , . . .W ∗m}
of {Bx1 × Bx2 : x ∈ C}. For each 1 ≤ i ≤ m let Wi = cl(W ∗i ). The collection
W = {W1 . . .Wm} clearly satisfies conditions (a), (b), (c), and (d).

By (b) and (c), W ∈ W. Let x ∈ C. By (a), there is some Wi ∈ W
such that 〈x, f(x)〉 ∈ Wi. By (d), for any Wk ∈ W if x ∈ πX(Wk), then
〈x, f(x)〉 ∈ Wk. Thus, 〈x, f(x)〉 ∈ M(W ) ∩ f . So, x ∈ πX [M(W ) ∩ f ].
Therefore, C ⊆ πX [M(W ) ∩ f ]. Thus, C(f) ⊆ Tn.

It now follows that C(f) ⊆ T . Thus C(f) ∈ Π0
4(J(X)).

The theorem now follows from Lemma 28 and Theorem 3.
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