COLLECTIONS OF COMPACT SETS AND FUNCTIONS HAVING G_{δ}-GRAPHS

Abstract

We continue the investigation began in [1] of the connection between the structure of a function f defined on a subset of a space X and the Borel complexity of the set $\mathcal{C}(f)=\{C \in \mathrm{~J}(X): f \mid C$ is continuous $\}$ where $\mathrm{J}(X)$ denotes the nonempty compact subsets of X with the Hausdorff metric. Two hierarchies of functions with G_{δ}-graphs are defined. We conjecture that they coincide.

1 Introduction.

Given a Polish space X let $J(X)$ denote the collection of nonempty compact subsets of X with the Hausdorff metric. We investigate the connection between the structure of a function f defined on a subset of a space X and the Borel complexity of the set $\mathcal{C}(f)=\{C \in \mathrm{~J}(X): f \mid C$ is continuous $\}$ in $\mathrm{J}(X)$.

The following proposition allows restricting our consideration to functions with G_{δ}-graph.

Proposition 1 ([1], Theorem 5). Suppose X and Y are Polish spaces and $f: X \rightarrow Y$ is Borel. f has G_{δ}-graph in $X \times Y$ if and only if $\mathcal{C}(f)$ is Borel in $J(X)$.

Hence, functions with G_{δ}-graph may be considered as having a hierarchy of complexity based on the Borel complexity of the collection compact sets

[^0]upon which their restrictions are continuous. These collections of compact sets are rather abstract which in turn would mean that the classification of f could be difficult. Our goal here is to attempt to connect this hierarchy of functions with G_{δ}-graphs, with a hierarchy based on the structure of the graph that is much more accessible. There is a gap that remains to be filled. The results we do have seem to suggest that we the connection between the hierarchies is legitimate. We can verify the connection for functions which are not too complex. We also investigate some interesting properties of functions such that $\mathcal{C}(f)$ is an $F_{\sigma \delta}$-set.

2 Preliminaries.

Given a function $f: X \rightarrow Y$ and $A \subseteq X$ we let $f \mid A$ denote the restriction of f to A. Given a product of two sets $X \times Y$ we let π_{X} and π_{Y} denote the usual projections onto X or Y, respectively.

Suppose X is a Polish space with metric d. For a set $A \subseteq X$ we write $\mathrm{cl}_{X}(A), \operatorname{int}_{X}(A), \operatorname{bd}_{X}(A)$ for the closure, interior, and boundary of A in X, respectively. When it is understood what space we are referring to the subscript will be dropped. Given sets $A, B \subseteq X$ we define $\mathrm{d}(A, B)=\inf (\{d(x, y): x \in$ $A \& y \in B\}$). Given sets $A, B \subseteq X$ we define the Hausdorff distance between A and B to be $H_{d}(A, B)=\max (\sup (\{\mathrm{d}(\{x\}, B): x \in A\}), \sup (\{\mathrm{d}(A,\{y\}): y \in$ $B\}))$. When H_{d} is restricted to the compact subsets of X it is a metric known as the Hausdorff metric. The diameter of a nonempty set $A \subseteq X$ is defined by $\operatorname{diam}(A)=\sup \{d(x, y): x, y \in A\}$. If $A=\emptyset$, we let $\operatorname{diam}(A)=0$. It is known that if X is Polish, then $J(X)$ is Polish as well [2, 4.25]. By a Cantor set we mean a compact totally disconnected metric space with no isolated points.

Let X be a separable metric space. For $0<\alpha<\omega_{1}$ let $\Sigma_{\alpha}^{0}(X)$ and $\Pi_{\alpha}^{0}(X)$ stand for the subclasses of Borel sets defined as in [2, 11.B] (e.g., Π_{2}^{0} is G_{δ} and Σ_{2}^{0} is F_{σ}). A set $A \subseteq X$ is said to be Σ_{α}^{0}-hard provided that for any zerodimensional Polish space Y and $B \in \Sigma_{\alpha}^{0}(Y)$ there is a continuous function $f: Y \rightarrow X$ such that $f^{-1}(A)=B$. To say that A is Σ_{α}^{0}-hard is essentially saying that A is at least as complex as any Σ_{α}^{0}-set. In particular, if $A \subseteq X$ is Σ_{α}^{0}-hard, then $A \notin \Pi_{\alpha}^{0}(X)$. If A is Σ_{α}^{0}-hard and $A \in \Sigma_{\alpha}^{0}(X)$, then we say A is Σ_{α}^{0}-complete. The notions of Π_{α}^{0}-hard and Π_{α}^{0}-complete are defined analogously.

Let $W, Y, Z \subseteq X$. We say that Y separates W from Z provided that $W \subseteq Y$ and $Y \cap Z=\emptyset$.

For a function $f: X \rightarrow Y$ and $S \subseteq X$ we define the oscillation of f on a set S by $\operatorname{osc}(f, S)=\sup \{\mathrm{d}(f(x), f(y)): x, y \in S\}$. We define the oscillation of $f \mid S$ at the point $x \in S$ by $\operatorname{osc}(f, S, x)=\inf _{\delta>0} \operatorname{osc}\left(f,\left(S \cap B_{\delta}(x)\right)\right.$ where
$B_{\delta}(x)$ is the set of all points of distance less than δ from x. We say a function $f: S \rightarrow Y$ is ϵ-continuous provided that $\operatorname{osc}(f, S, x) \leq \epsilon$ for all $x \in S$.

We say $f: X \rightarrow Y$ is of Borel class α and write \mathcal{B}_{α} provided that $f^{-1}(U) \in$ $\Sigma_{\alpha+1}^{0}(X)$ for every open set $U \subseteq Y$. Indeed, when we mention the Borel complexity of a function we mean the minimal value of α such that $f \in \mathcal{B}_{\alpha}$

We say a function $f: X \rightarrow \mathbb{R}$ is lower (upper) semicontinuous in the first sense provided that f has the property that $f^{-1}(-\infty, r)\left(f^{-1}(r,+\infty)\right)$ is open for all $r \in \mathbb{R}$. By semicontinuity in the second sense we mean lower or upper semicontinuity as defined for set valued functions. Recall that a function $f: X \rightarrow \mathcal{A}$ where \mathcal{A} is a collection of compact subsets of a metric space endowed with the Hausdorff metric is said to be upper semicontinuous provided that $\lim x_{n}=x$ implies that $\lim f\left(x_{n}\right) \subseteq f(x)$. Similarly, we say $g: X \rightarrow \mathcal{A}$ is lower semicontinuous provided that $\lim x_{n}=x$ implies that $\lim f\left(x_{n}\right) \supseteq f(x)$.

3 Results.

We begin with some definitions describing the structure of graphs of functions. Complete characterizations of these structures in terms of the Borel classification of $\mathcal{C}(f)$ for very small values of $\alpha<\omega_{1}$ are given. However, the results and their proofs strongly suggest extensions for all α. For this reason we include the general definitions. It is not known if any of the results presented here for small values of α can be extended to higher values of α.

Let $2 \leq \alpha<\omega_{1}$. Let X and Y be metric spaces. If a function $f: X \rightarrow Y$ has the property that for every $x \in X$ and $\epsilon>0$ there exist open sets $U \subseteq X$ and $V \subseteq Y$ such that $x \in f^{-1}(V) \cap U$, and a $G \in \Pi_{\beta}^{0}(X)$ where $\beta<\alpha$ such that $f^{-1}(V) \cap U \subseteq G$ and oscillation $f \mid G$ not more than ϵ, then we say that $f \in \mathcal{E}_{\alpha}$. The following proposition is straight forward to verify.

Proposition 2. For $n \in \omega \backslash\{0,1\}$ we have $\mathcal{B}_{n-2} \subseteq \mathcal{E}_{n} \subseteq \mathcal{B}_{n-1}$. For a limit ordinal α we have $\bigcup_{\beta<\alpha} \mathcal{B}_{\beta} \subseteq \mathcal{E}_{\alpha} \subseteq \mathcal{B}_{\alpha}$. For a successor ordinal $\omega<\alpha$ we have $\mathcal{B}_{\alpha-1} \subseteq \mathcal{E}_{\alpha} \subseteq \mathcal{B}_{\alpha+1}$.

If a function $f: X \rightarrow Y$ has the property that for every $x \in X$ there exist open sets $U \subseteq X$ and $V \subseteq Y$ such that $x \in U, f(x) \in V$, and $f \mid\left(f^{-1}(V) \cap U\right)$ is continuous, then we say $f \in \mathcal{F}_{2}$. The class \mathcal{F}_{2} is what was called T_{1} in [1]. In the case when $3 \leq \alpha<\omega_{1}$ we say $f \in \mathcal{F}_{\alpha}$ provided that for every $x \in X$ there exist open sets $U \subseteq X$ and $V \subseteq Y$ such that $x \in f^{-1}(V) \cap U$, and $\left.f \mid\left(f^{-1}(V) \cap U\right)\right)$ is \mathcal{E}_{β} for some $\beta<\alpha$. Notice that a function in \mathcal{F}_{2} does not have to be measurable or have the Baire property since every characteristic function is in \mathcal{F}_{2}. Of course, if $f \in \mathcal{F}_{\alpha}$ and has G_{δ}-graph, we might expect to get control over the Borel complexity of f. How much control? Again we
know the answer for small values of α but not in general. This is our first problem.

Problem 1. If $f \in \mathcal{F}_{\alpha}$ and has G_{δ}-graph in $X \times Y$, what is the Borel complexity of f ?

The next two theorems relate the classes \mathcal{E}_{α} and \mathcal{F}_{α} to the Borel complexity of $\mathcal{C}(f)$ for general α.
Theorem 3. Suppose X and Y are Polish, $M \subseteq X$ is Borel, $f: M \rightarrow Y$ is Borel, and that $2 \leq \alpha<\omega_{1}$. Each of the following statements implies the next.
(i) $\mathcal{C}(f) \in \Pi_{\alpha+1}^{0}(\mathrm{~J}(X))$
(ii) $\mathcal{C}(f \mid K)$ is not $\Sigma_{\alpha+1}^{0}$-hard for all compact $K \subseteq M$.
(iii) $f \in \mathcal{E}_{\alpha}$.

Theorem 4. Suppose X and Y are Polish, $M \subseteq X$ is Borel, $f: M \rightarrow Y$ is Borel, and that $2 \leq \alpha<\omega_{1}$.
(i) If α is a successor ordinal and $\mathcal{C}(f) \in \Sigma_{\alpha+1}^{0}(\mathrm{~J}(X))$, then $f \in \mathcal{F}_{\alpha}$.
(ii) If α is a limit ordinal and $\mathcal{C}(f) \in \Sigma_{\alpha}^{0}(\mathrm{~J}(X))$, then $f \in \mathcal{F}_{\alpha}$.

If the converses of these theorems could be established for functions with G_{δ}-graph in $X \times Y$, then we would have a good correspondence between the types of complexity.

The following three results verify the converses of Theorem 3 and Theorem 4 for small values of α.

Theorem 5. Let X and Y be Polish, $A \subseteq X$, and $\alpha \in\{2,3\}$. A function $f: A \rightarrow Y$ with G_{δ}-graph in $X \times Y$ is in \mathcal{F}_{α} if and only if $\mathcal{C}(f) \in \Sigma_{\alpha+1}^{0}(\mathrm{~J}(X))$.

In [1] functions in \mathcal{F}_{2} are called T_{1}. In that paper the equivalence of Theorem 5 is proven in the case when $\alpha=2$ and f is defined on all of X. The argument presented there works for partial functions as well and mirrors the argument that is presented in this paper for $\alpha=3$.
Theorem 6. Let X and Y be Polish. A Borel function $f: X \rightarrow Y$ is in \mathcal{E}_{3} if and only if $\mathcal{C}(f) \in \Pi_{4}^{0}(\mathrm{~J}(X))$.

Notice that Theorem 6 is not an exact converse since we assume f is defined on all of X. Getting an argument proving Theorem 6 for partial functions would probably show how one could prove the general equivalence that is conjectured, this should be clear from the proof of Theorem 5. We have a true converse and more detailed results for the class \mathcal{E}_{2}.

Theorem 7. Let X, Y be Polish, Y^{*} be a separable Banach space containing Y and $A \subseteq X$ be Borel. The each of the following conditions implies the next for $f: A \rightarrow Y$.
(i) $\mathcal{C}(f) \in \Pi_{3}^{0}(\mathrm{~J}(X))$
(ii) $f \in \mathcal{E}_{2}$
(iii) there is sequence of continuous functions $\left\{f_{k}\right\}_{k \in \omega}$ from A into Y^{*} such that $f_{k} \rightarrow f$ pointwise and for any $P \in \mathrm{~J}(A)$ we have that $f \mid P$ is continuous if and only if $\left\{f_{k} \mid P\right\}_{k \in \omega}$ is uniformly convergent.
Moreover, if $A \in \Pi_{2}^{0}(X)$ or f has G_{δ}-graph in $X \times Y$, then the conditions are equivalent.

We conjecture that the above theorems and corollaries may be extended to all $1 \leq \alpha$ if we assume functions to have G_{δ}-graphs.

Functions that are in \mathcal{E}_{2} can be seen as generalizing and unifying the two senses of semicontinuity mentioned in Section 2.

Let $f: X \rightarrow \mathbb{R}$ be a semicontinuous (in the first sense) function. Now f is the pointwise limit of an increasing or decreasing sequence of continuous functions. So, by Dini's Theorem, f satisfies condition (iii) of Theorem 7. Hence, every semicontinuous (in the first sense) function satisfies all the conditions of Theorem 7.

We will show that every semicontinuous (in the second sense) function satisfies the conditions of Theorem 7 in Section 6.

Generally, the conditions of Theorem 7 do not imply semicontinuity in either sense as is shown by the following function which is easily checked to be in \mathcal{E}_{2}.

$$
g(x)= \begin{cases}\sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

A natural question that arises at this point is whether the Borel complexity of $\mathcal{C}(f)$ is bounded in ω_{1} for functions with G_{δ}-graph in $X \times Y$. It is well known that for an uncountable Polish space X there are functions defined on X with G_{δ}-graph that have arbitrarily high Borel complexity. So, to find a function f defined on X such that $\mathcal{C}(f)$ is Borel but not Π_{β}^{0} in $\mathrm{J}(X)$ it is enough, by Proposition 1, Proposition 2 and Theorem 3, to take any $f: X \rightarrow Y$ with G_{δ} graph that is not in \mathcal{B}_{β}.

4 Proof of Theorem 3.

Obviously, (i) implies (ii).
We know show that (ii) implies (iii) The next two Propositions are essentially Exercise 23.5(i) of [2].

Proposition 8. Suppose α is a limit ordinal. If $\left\{X_{k}\right\}_{k \in \omega}$ are Polish and $\left\{A_{k}\right\}_{k \in \omega}$ is such that A_{k} is $\Sigma_{\alpha_{k}}^{0}$-complete in X_{k} and $\alpha_{k}<\alpha$ for all $k \in \omega$ and
$\lim _{k \in \omega} \alpha_{k}=\alpha$ and

$$
D=\left\{\sigma \in \prod_{k \in \omega} X_{k}:(\exists n \in \omega)(\forall k \geq n)\left(\sigma(k) \in A_{k}\right)\right\}
$$

then D is a $\Sigma_{\alpha+1}^{0}$-complete subset of $\prod_{k \in \omega} X_{k}$.
Proposition 9. Suppose $\alpha=\beta+1$. If $\left\{X_{k}\right\}_{k \in \omega}$ are Polish and $\left\{A_{k}\right\}_{k \in \omega}$ is such that A_{k} is Σ_{β}^{0}-complete in X_{k} and

$$
D=\left\{\sigma \in \prod_{k \in \omega} X_{k}:(\exists n \in \omega)(\forall k \geq n)\left(\sigma(k) \in A_{k}\right)\right\}
$$

then D is a $\Sigma_{\alpha+1}^{0}$-complete subset of $\prod_{n \in \omega} X_{k}$.
Lemma 10. Suppose $2 \geq \alpha$ is a successor ordinal, X and Y are Polish, $M \subseteq X$ is Borel, and $f: M \rightarrow Y$ is Borel. If $\mathcal{C}(f \mid K) \in \Pi_{\alpha+1}^{0}(\mathrm{~J}(X))$ for every compact set $K \subseteq M$, then $f \in \mathcal{E}_{\alpha}$.

Proof. Let $\beta+1=\alpha$. Suppose $f \notin \mathcal{E}_{\alpha}$. There is an $p \in M$ and an $\epsilon>0$ such that for every pair of open sets such that $p \in U$ and $f(p) \in V$ we have $\operatorname{osc}(f, G) \geq \epsilon$ for any $G \in \Pi_{\beta}^{0}(M)$ containing $f^{-1}(V) \cap U \cap M$.

Let $\left\{V_{n}\right\}_{n \in \omega}$ be a decreasing sequence of open subsets of Y such that $f(p) \in$ V_{n} and $H_{d}\left(V_{n}, f(p)\right)<1 / 2^{n}$ for every $n \in \omega$. Let $\left\{U_{n}\right\}_{n \in \omega}$ be a decreasing sequence of open subsets of X such that $H_{d}\left(U_{n}, p\right)<1 / 2^{n}$ and $p \in U_{n}$ for every $n \in \omega$. Fix $n \in \omega$ such that $1 / 2^{n}<\epsilon$. Since $\operatorname{osc}(f, G) \geq \epsilon$ for every $G \in \Pi_{\beta}^{0}(M)$ containing $f^{-1}\left(V_{n}\right) \cap U_{n} \cap M$, we conclude that $f^{-1}\left(V_{n}\right) \cap U_{n} \cap M$ cannot be separated from the set $\left\{x \in U_{n} \cap M: \mathrm{d}(f(x), f(p)) \geq \epsilon / 2\right\}$ by a Π_{β}^{0}-subset of U_{n}. Indeed, if such a set did exist its intersection with M would be a relative Π_{β}^{0}-subset of M and contradict our choice of n. Since M is Borel and $f: M \rightarrow Y$ is Borel, the non-separable sets are Borel in X. Now, $[2,22.13,24.20]$ guarantees that there is a compact set $K_{n} \subseteq U_{n}$ and a Σ_{β}^{0}-complete $D_{n} \subseteq K_{n}$ such that $D_{n}=K_{n} \cap\left(f^{-1}\left(V_{n}\right) \cap U_{n} \cap M\right)$ and $K_{n} \backslash D_{n}=K_{n} \cap\left\{x \in U_{n} \cap M: \mathrm{d}(f(x), f(p)) \geq \epsilon / 2\right\}$. Notice that $K_{n} \subseteq M$.

Let $K=\{p\} \cup \bigcup_{n \in \omega} K_{n} \subseteq M$. Let $h: \prod_{n \in \omega} K_{n} \rightarrow \mathrm{~J}(K)$ be defined by $h(\sigma)=\{\sigma(n): n \in \omega\} \cup\{p\}$. Notice that h is continuous and that $h^{-1}(\mathcal{C}(f \mid K))$ is precisely the set of all $\sigma \in \prod_{n \in \omega} K_{n}$ such that $\sigma(n) \in D_{n}$ for all n sufficiently large. Since each D_{n} is Σ_{β}^{0}-complete, Proposition 9 guarantees that $h^{-1}(\mathcal{C}(f \mid K))$ is $\Sigma_{\beta+2}^{0}$-complete. Thus, $\mathcal{C}(f \mid K)$ is $\Sigma_{\alpha+1}^{0}$-hard in $\mathrm{J}(K)$.

A similar argument using Proposition 8 establishes the limit case.

Lemma 11. Suppose α is a limit ordinal, X and Y are Polish, $M \subseteq X$ is Borel, and $f: M \rightarrow Y$ is Borel. If $\mathcal{C}(f \mid K) \in \Pi_{\alpha+1}^{0}(\mathrm{~J}(X))$ for every compact $K \subseteq M$, then $f \in \mathcal{E}_{\alpha}$.

Lemma 10 and Lemma 11 proves that (ii) implies (iii).

5 Proof of Theorem 4.

The following lemmas are slight variations of [2, 23.3].
Lemma 12. If $\left\{X_{n}\right\}_{n \in \omega}$ are Polish spaces and $\left\{A_{n}\right\}_{n \in \omega}$ is such that A_{n} is Σ_{α}^{0}-hard in X_{n} for every $n \in \omega$, then $\prod_{n \in \omega} A_{n}$ is $\Pi_{\alpha+1}^{0}$-hard in $\prod_{n \in \omega} X_{n}$.

Lemma 13. Let α be a limit ordinal and $\alpha_{n}<\alpha$ for every n and $\lim _{n \in \omega} \alpha_{n}=$ α. If $\left\{X_{n}\right\}_{n \in \omega}$ are Polish spaces and $\left\{A_{n}\right\}_{n \in \omega}$ is such that A_{n} is $\Sigma_{\alpha_{n}}^{0}$-hard in X_{n} for every $n \in \omega$. Then $\prod_{n \in \omega} A_{n}$ is Π_{α}^{0}-hard in $\prod_{n \in \omega} X_{n}$.

Proof of Theorem 4. The case $\alpha=2$ is Lemma 11 of [1]. Notice the argument there is valid for any function in \mathcal{F}_{2} defined on any set.

Suppose $2<\alpha=\beta+1$. Suppose $f \notin \mathcal{F}_{\alpha}$. Let $x \in X$ be such that for every pair of open sets $U \subseteq X$ and $V \subseteq Y$ with $x \in U$ and $f(x) \in V$ we have $f \mid\left(f^{-1}(V) \cap U\right)$ is not \mathcal{E}_{β}. Let $\left\{V_{n}\right\}_{n \in \omega}$ be a decreasing sequence of open subsets of Y such that $H_{d}\left(V_{n}, f(x)\right)<1 / 2^{n}$ and $f(x) \in V_{n}$ for every $n \in \omega$. Let $\left\{U_{n}\right\}_{n \in \omega}$ be a decreasing sequence of open subsets of X such that $H_{d}\left(U_{n}, x\right)<1 / 2^{n}$ and $x \in U_{n}$ for every $n \in \omega$. Fix $n \in \omega$. Since $f \mid\left(f^{-1}\left(V_{n}\right) \cap U_{n}\right)$ is not \mathcal{E}_{β}, there is by Theorem 3, a compact set $L_{n} \subseteq$ $f^{-1}\left(V_{n}\right) \cap U_{n}$ such that $\mathcal{C}\left(f \mid L_{n}\right)$ is $\Sigma_{\beta+1}^{0}$-hard in $\mathrm{J}\left(L_{n}\right)$. By our choices of L_{n}, the set $L=\{x\} \cup\left(\bigcup_{n \in \omega} L_{n}\right)$ is compact. Notice that $\lim _{n \in \omega} f \mid L_{n}=(x, f(x))$. Define $h: \prod_{n \in \omega} \mathrm{~J}\left(L_{n}\right) \rightarrow \mathrm{J}(L)$ by $h(\sigma)=\{x\} \cup\left(\bigcup_{n \in \omega} \sigma(n)\right)$. Notice that h is continuous and that $\sigma \in h^{-1}(\mathcal{C}(f \mid L))$ if and only if $\sigma \in \prod_{n \in \omega} \mathcal{C}\left(f \mid L_{n}\right)$. By Lemma 12, $\prod_{n \in \omega} \mathcal{C}\left(f \mid L_{n}\right)$ is $\Pi_{\beta+2}^{0}(\mathrm{~J}(L))$-hard. Thus, $\mathcal{C}(f \mid L) \notin \Sigma_{\beta+2}^{0}(\mathrm{~J}(X))=$ $\Sigma_{\alpha+1}^{0}(\mathrm{~J}(X))$.

A similar argument, using Lemma 13 takes care of the case when α is a limit ordinal.

6 Proof of Theorem 7 and its Corollaries.

We begin with a combinatorial lemma.
Lemma 14. Let M be a finite collection of nonempty sets. There exist a partition $\left\{\mathcal{M}_{0}, \ldots, \mathcal{M}_{n}\right\}$ of the set $\{L \subseteq M: \bigcap L \neq \emptyset\}$ such that, for every
$0 \leq l \leq n$ if $N, K \in \mathcal{M}_{l}$ are distinct and $\bigcap(N \cup K) \neq \emptyset$, then there is a $j<l$ such that $N \cup K \in \mathcal{M}_{j}$.

Proof. Let \mathcal{M}_{0} be the set of \subseteq-maximal elements of $\{N \subseteq M: \bigcap N \neq \emptyset\}$. Assume we have defined \mathcal{M}_{k}. We define \mathcal{M}_{k+1} to be the collection of all \subseteq-maximal elements of $\left\{N \subseteq M:\left(\exists L \in \mathcal{M}_{k}\right)(N \subsetneq L)\right\}$. Clearly, there is a minimal $n \in \omega$ such that $\mathcal{M}_{n+1}=\{\emptyset\}$. We will show that $\left\{\mathcal{M}_{0}, \ldots, \mathcal{M}_{n}\right\}$ is as desired. We show that $\left\{\mathcal{M}_{0}, \ldots, \mathcal{M}_{n}\right\}$ partitions $\{L \subseteq M: \bigcap L \neq \emptyset\}$. It is clear from the construction that the sets $\left\{\mathcal{M}_{0}, \ldots, \mathcal{M}_{n}\right\}$ are mutually disjoint. Let $L \subseteq M$ and $\bigcap L \neq \emptyset$. Since $\bigcap L \neq \emptyset$, there is a $R \in \mathcal{M}_{0}$ such that $L \subseteq R$. Let k be the largest integer such that $L \subseteq S$ for some $S \in \mathcal{M}_{k}$. Clearly, $0 \leq k \leq n$. We claim that $L=S$. By way of contradiction assume that $L \subsetneq S$. By definition of \mathcal{M}_{k+1}, there is a $T \in \mathcal{M}_{k+1}$ such that $L \subseteq T$ which contradicts our choice of k.

We now show the other condition holds. By maximality, if $N, K \in \mathcal{M}_{0}$ are distinct, then $\bigcap(N \cup K)=\emptyset$. Suppose that N, K are distinct members of \mathcal{M}_{l} where $l>0$ and $\bigcap(N \cup K) \neq \emptyset$. Since $\left\{\mathcal{M}_{0}, \ldots \mathcal{M}_{n}\right\}$ partitions $\{L \subseteq$ $M: \bigcap L \neq \emptyset\}$, there is a $0 \leq j \leq n$ such that $N \cup K \in \mathcal{M}_{j}$. Since N and K are distinct, $N \subsetneq(N \cup K)$. So, there is a $T_{1} \in \mathcal{M}_{j+1}$ such that $N \subseteq T_{1}$. If $N \subsetneq T_{1}$, then there is a $T_{2} \in \mathcal{M}_{j+2}$ such that $N \subseteq T_{2}$. Continuing in this manner we may find, since $\mathcal{M}_{n+1}=\emptyset$, a $0<k$ such that $N=T_{k} \in \mathcal{M}_{j+k}$. Thus, $j<j+k=l$.

Lemma 15. Suppose Y is a Banach space, X is a separable metric space and $f: X \rightarrow Y$. If M is a finite collection of closed subsets of X and $\operatorname{osc}(f, m) \leq \epsilon$ for every $m \in M$, then there is a continuous function g such that for all $x \in \bigcup M$ we have $\mathrm{d}(g(x), f(x)) \leq \epsilon$.

Proof. Let $\left\{\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots \mathcal{M}_{p}\right\}$ be a partition of M as in Lemma 14. For each $K \in \mathcal{M}_{0}$ pick $x_{K} \in \bigcap K$. Define g on $\bigcap K$ so that $g[\bigcap K]=\left\{f\left(x_{K}\right)\right\}$. Notice that $g \mid\left(\bigcup\left\{\bigcap K: K \in \mathcal{M}_{0}\right\}\right)$ is continuous. Moreover, since $f\left(x_{K}\right)=g\left(x_{K}\right)$, for any $K \in \mathcal{M}_{0}$. We have $\sup \{\mathrm{d}(g(w), f(x)): x \in \bigcup K \& w \in \bigcap K\} \leq \epsilon$.

Suppose $1 \leq i+1 \leq p$ and we have extended g to $\bigcup\left\{\bigcap K: K \in \bigcup_{j \leq i} \mathcal{M}_{j}\right\}$ so that g is continuous and for every $K \in \bigcup_{j \leq i} \mathcal{M}_{j}$ we have

$$
\begin{equation*}
\sup \{\mathrm{d}(g(w), f(x)): x \in \bigcup K \& w \in \bigcap K\} \leq \epsilon \tag{1}
\end{equation*}
$$

We now show how to extend g to $\bigcup\left\{\bigcap K: K \in \bigcup_{j \leq i+1} \mathcal{M}_{j}\right\}$. We consider two cases.

Suppose $i+1<p$. Let $L \in \mathcal{M}_{i+1}$. Let A be the closed subset of $\bigcap L$ where g is already defined. There are $K_{1}, \ldots, K_{n} \in \mathcal{M}_{i}$ such that $L \subsetneq K_{t}$ for
$1 \leq t \leq n$. Let $x \in \bigcup L$ and $w \in A$. Since $g(w)$ has been defined, $w \in \bigcap K_{t}$ for some $1 \leq t \leq n$. Let $l \in L$ be such that $x \in l$. Since $l \in L \subseteq K_{t}$, we have $x \in \bigcup K_{t}$. By (1) and $K_{t} \in \mathcal{M}_{i}, \mathrm{~d}(g(w), f(x)) \leq \epsilon$. It follows that,

$$
\sup \{\mathrm{d}(g(w), f(x)): x \in \bigcup L \& w \in A\} \leq \epsilon
$$

Continuously extend g from A to $\bigcap L$ in such a way that $g[\bigcap L]$ is contained in the convex hull of $g[A]$. Hence, $\sup \{\mathrm{d}(g(w), f(x)): x \in \bigcup L \& w \in \bigcap L\} \leq \epsilon$. Notice we may do this for every $L \in \mathcal{M}_{i+1}$ and still have g well defined, since, by Lemma 14 for distinct $L_{1}, L_{2} \in \mathcal{M}_{i+1}$ we have $\bigcap L_{1} \cap \bigcap L_{2} \subseteq \bigcap K$ where $K \in \bigcup_{j \leq i} \mathcal{M}_{j}$. So, now g is continuous on the set $\bigcup\left\{\bigcap K: K \in \bigcup_{j \leq i+1} \mathcal{M}_{j}\right\}$.

Suppose now that $i+1=p$. In this case, $\bigcup\left\{\bigcap K: K \in \bigcup_{j \leq i} \mathcal{M}_{j}\right\}=\bigcup M$ and we may take any continuous extension of $g \mid M$ to all of X. It is easily verified that $g: X \rightarrow Y$ has the desired properties.

Proposition 16. ([3, 23.1]) Every lower semicontinuous map F from a metric space X into the collection of convex closed subsets of a Banach space Y admits a continuous selector (i.e., a continuous $f: X \rightarrow Y$ such that $f(x) \in F(x)$ for all x).

Lemma 17. Let X be a metric space and Y be a Banach space. If $A \subseteq X$ is closed and there are continuous functions $f: A \rightarrow Y$ and $g: X \rightarrow Y$ such that $\mathrm{d}(f|A, g| A) \leq \epsilon$, then f may be extended to a continuous function $h: X \rightarrow Y$ so that $\mathrm{d}(h, g) \leq \epsilon$.

Proof. Let F be the function on X which assigns to each $x \in X \backslash A$ the closed ϵ-ball about $g(x)$ in Y and assigns to each $x \in A$ the set $\{f(x)\}$. It is easily checked that F is a lower semicontinuous function from X into the collection of closed convex subsets of Y. By Proposition 16, there is a continuous $h: X \rightarrow Y$ such that $h(x) \in F(x)$ for every $x \in X$. Clearly, $h|A=f| A$ and $\mathrm{d}(h, g) \leq \epsilon$. So, h is the desired extension.

Lemma 18. Let X be a separable metric space and Y be a separable Banach space. If $f: X \rightarrow Y$ is in \mathcal{E}_{2}, then f satisfies condition (iii) of Theorem 7.

Proof. For every $x \in X$ there are open sets $U_{x}^{0} \subseteq X$ and $V_{x}^{0} \subseteq Y$ such that $(x, f(x)) \in U_{x}^{0} \times V_{x}^{0}$ and osc $\left(f, \operatorname{cl}\left(f^{-1}\left(U_{x}^{0}\right) \cap V_{x}^{0}\right)\right) \leq 1 / 2^{0}$. Let $\left\{U_{n}^{0} \times V_{n}^{0}\right\}_{n \in \omega}$ be a countable subcover of $\left\{U_{x}^{0} \times V_{x}^{0}\right\}_{x \in X}$. Suppose now that we have constructed countable covers $\left\{\left\{U_{n}^{i} \times V_{n}^{i}\right\}_{n \in \omega}\right\}_{i<k}$ of f such that:
(a) $\operatorname{osc}\left(f, \operatorname{cl}\left(f^{-1}\left(V_{n}^{i}\right) \cap U_{n}^{i}\right)\right) \leq 1 / 2^{i}$ for all $n \in \omega$,
(b) for every $i<j<k$ and $n \in \omega$ we have $\operatorname{cl}\left(f^{-1}\left(V_{n}^{j}\right) \cap U_{n}^{j}\right) \subseteq f^{-1}\left(V_{l}^{i}\right) \cap U_{l}^{i}$ and $\operatorname{cl}\left(U_{n}^{j}\right) \subseteq U_{l}^{i}$ for some $l \leq n$,
(c) $\operatorname{diam}\left(U_{n}^{i}\right)<1 / 2^{i}$ for every $n \in \omega$,
(d) for every $i<j<k$ we have $\operatorname{cl}\left(U_{n}^{j}\right) \subseteq U_{n}^{i}$.

We show how to construct $\left\{U_{n}^{k} \times V_{n}^{k}\right\}_{n \in \omega}$.
Let $m \in \omega$. For each $x \in U_{m}^{k-1} \cap f^{-1}\left(V_{m}^{k-1}\right)$ pick open sets $U_{x, m} \subseteq U_{m}^{k-1}$ and $V_{x, m} \subseteq V_{m}^{k-1}$ such that:
(i) $(x, f(x)) \in U_{x, m} \times V_{x, m}, \operatorname{osc}\left(f, \operatorname{cl}\left(f^{-1}\left(V_{x, m}\right) \cap U_{x, m}\right)\right) \leq 1 / 2^{k}$,
(ii) $\operatorname{cl}\left(f^{-1}\left(V_{x, m}\right) \cap U_{x, m}\right) \subseteq f^{-1}\left(V_{m}^{k-1}\right) \cap U_{m}^{k-1}$ and $\operatorname{cl}\left(U_{x, m}\right) \subseteq U_{m}^{k-1}$
(iii) $\operatorname{diam}\left(U_{x, m}\right) \leq 1 / 2^{k}$.

Notice that (i) and (ii) follow from $f \in \mathcal{E}_{2}$. Let $\left\{U_{m_{n}} \times V_{m_{n}}\right\}_{n \in \omega}$ be a countable subcover of $\left\{U_{x, m} \times V_{x, m}: x \in U_{m}^{k-1} \cap f^{-1}\left(V_{m}^{k-1}\right)\right\}$.

Let $\left\{S_{m}\right\}_{m \in \omega}$ be a partition of ω into infinite sets such that $m \leq \min \left(S_{m}\right)$ for all $m \in \omega$. Let $\left\{U_{n}^{k} \times V_{n}^{k}\right\}_{n \in \omega}$ be an enumeration (possibly with repetitions) of $\left\{U_{m_{n}} \times V_{m_{n}}\right\}_{m, n \in \omega}$ so that $m_{n} \in S_{m}$ for every $n, m \in \omega$. Now for every $n \in \omega$ there is an $m \in \omega$ (namely, m with $n \in S_{m}$) such that $m \leq n$ and $U_{n}^{k} \times V_{n}^{k} \subseteq U_{m}^{k-1} \times V_{m}^{k-1}$ and $\operatorname{cl}\left(U_{n}^{k}\right) \subseteq U_{m}^{k-1}$.

We show that $\left\{U_{n}^{k} \times V_{n}^{k}\right\}_{n \in \omega}$ has the desired properties. Clearly, (a), (c), and (d) are satisfied. We show (b). Let $i<j<k+1$ and $n \in \omega$. By inductive hypothesis, we may assume $j=k$. By the ordering of $\left\{U_{n}^{k} \times V_{n}^{k}\right\}_{n \in \omega}$, there is a $m \leq n$ such that $\operatorname{cl}\left(f^{-1}\left(V_{n}^{k}\right) \cap U_{n}^{k}\right) \subseteq f^{-1}\left(V_{m}^{k-1}\right) \cap U_{m}^{k-1}$ and $\operatorname{cl}\left(U_{n}^{k}\right) \subseteq U_{m}^{k-1}$. So, we are done if $i=k-1$. Assume that $i<k-1$. By inductive hypothesis, for some $t \leq m$ we have $\operatorname{cl}\left(f^{-1}\left(V_{m}^{k-1}\right) \cap U_{m}^{k-1}\right) \subseteq f^{-1}\left(V_{t}^{i}\right) \cap U_{t}^{i}$ and $\operatorname{cl}\left(U_{m}^{k-1}\right) \subseteq U_{t}^{i}$. Hence, $\operatorname{cl}\left(f^{-1}\left(V_{n}^{k}\right) \cap U_{n}^{k}\right) \subseteq f^{-1}\left(V_{t}^{i}\right) \cap U_{t}^{i}, \operatorname{cl}\left(U_{n}^{k}\right) \subseteq U_{t}^{i}$, and $t \leq n$. This completes the inductive construction.

Fix $n \in \omega$. By Lemma 15, there is a continuous function $f_{n}^{0}: X \rightarrow Y$ such that $\mathrm{d}\left(f_{n}^{0}(x), f(x)\right) \leq 1$ for all $x \in \bigcup_{i \leq n} \operatorname{cl}\left(f^{-1}\left(V_{i}^{0}\right) \cap U_{i}^{0}\right)$. Suppose we have defined $f_{n}^{k}: X \rightarrow Y$ so that for every $x \in \bigcup_{i \leq n} \operatorname{cl}\left(f^{-1}\left(V_{i}^{k}\right) \cap U_{i}^{k}\right)$ we have $\mathrm{d}\left(f_{n}^{k}(x), f(x)\right) \leq 1 / 2^{k}$ and $\mathrm{d}\left(f_{n}^{k}, f_{n}^{k-1}\right) \leq 1 / 2^{k-1}+1 / 2^{k}$. We show how to construct $f_{n}^{k+1}: X \rightarrow Y$. By (b), $\bigcup_{i \leq n} \operatorname{cl}\left(f^{-1}\left(V_{i}^{k+1}\right) \cap U_{i}^{k+1}\right) \subseteq$ $\bigcup_{i \leq n} f^{-1}\left(V_{i}^{k}\right) \cap U_{i}^{k}$. By Lemma 15, there is a continuous partial function f_{n}^{k+1} such that $\mathrm{d}\left(f_{n}^{k+1}(x), f(x)\right) \leq 1 / 2^{k+1}$ for all $x \in \bigcup_{i \leq n} \operatorname{cl}\left(f^{-1}\left(V_{i}^{k+1}\right) \cap U_{i}^{k+1}\right)$. Since $\bigcup_{i \leq n} \operatorname{cl}\left(U_{i}^{k+1}\right) \subseteq \bigcup_{i \leq n} U_{i}^{k}$, we can extend f_{n}^{k+1} so that $f_{n}^{k+1}=f_{n}^{k}$ for all $x \notin \bigcup_{i \leq n} U_{i}^{k}$. Notice that $\mathrm{d}\left(f_{n}^{k+1}(x), f_{n}^{k}(x)\right) \leq 1 / 2^{k}+1 / 2^{k+1}$ for all x for which f_{n}^{k+1} has been defined. By Lemma 17, we may extend f_{n}^{k+1} to all of X in such a way that $\mathrm{d}\left(f_{n}^{k}, f_{n}^{k+1}\right) \leq 1 / 2^{k}+1 / 2^{k+1}$ for all $x \in X$. Clearly, $\left\{f_{n}^{k}\right\}_{k \in \omega}$ converges uniformly to a continuous function f_{n}.

For any $k \in \omega$ and $x \in \bigcup_{i \leq n} \operatorname{cl}\left(f^{-1}\left(V_{i}^{k}\right) \cap U_{i}^{k}\right)$ we have

$$
\begin{aligned}
\mathrm{d}\left(f_{n}(x), f(x)\right) & \leq \mathrm{d}\left(f_{n}(x), f_{n}^{k}(x)\right)+\mathrm{d}\left(f_{n}^{k}(x), f(x)\right) \\
& \leq\left(\sum_{l=k}^{\infty} 1 / 2^{l}+1 / 2^{l+1}\right)+1 / 2^{k}=1 / 2^{k-2}
\end{aligned}
$$

Suppose $f \mid P$ is continuous. Let $x \in X$ and $\epsilon>0$. Pick $k \in \omega$ such that $1 / 2^{k-2}<\epsilon$. Since $f \mid P$ is compact and $f \mid P \subseteq \bigcup_{i \in \omega} U_{i}^{k} \times V_{i}^{k}$, for all $m \in$ ω sufficiently large we have $P \subseteq \bigcup_{i \leq m} \operatorname{cl}\left(f^{-1}\left(V_{i}^{k}\right) \cap U_{i}^{k}\right)$. By the previous paragraph, $\mathrm{d}\left(f(x), f_{m}(x)\right) \leq 1 / 2^{k-2}<\epsilon$ for all $x \in P$ and large m. Thus, $\left\{f_{n} \mid P\right\}_{n \in \omega}$ converges to $f \mid P$ uniformly.

By Theorem 3 and Lemma 18, we have the implications (i) \Rightarrow (ii) \Rightarrow (iii) in Theorem 7.

The next lemma shows that (iii) \Rightarrow (i) when $A \in \Pi_{2}^{0}(X)$.
Lemma 19. Let X and Y be Polish Y be contained in a separable Banach space Y_{1} and $A \in \Pi_{2}^{0}(X)$. If $f: A \rightarrow Y$ is the pointwise limit of continuous functions $\left\{f_{n}\right\}_{n \in \omega}$ where $f_{n}: A \rightarrow Y_{1}$, then the collection U of compact sets P such that $\left\{f_{n} \mid P\right\}_{n \in \omega}$ is uniformly convergent is a Π_{3}^{0}-set in $\mathrm{J}(X)$. In particular, if f satisfies (iii) of Theorem 7, then $\mathcal{C}(f) \in \Pi_{3}^{0}(\mathrm{~J}(X))$.
Proof. Let $M_{n}^{k}=\left\{P \in \mathrm{~J}(A):(\forall l \geq k)(\forall x \in P)\left(\mathrm{d}\left(f_{k}(x), f_{l}(x)\right) \leq 1 / 2^{n}\right)\right\}$. It is easily verified that M_{n}^{k} is closed in $\mathrm{J}(A)$. We show that $U=\bigcap_{n \in \omega} \bigcup_{k \in \omega} M_{n}^{k}$. Suppose $P \in U$. For every $n \in \omega$ there is a $k \in \omega$ such that for all $l \geq k$ we have $\mathrm{d}\left(f(x), f_{l}(x)\right) \leq 1 / 2^{n+1}$ for all $x \in P$. Hence, $\mathrm{d}\left(f_{k}(x), f_{l}(x)\right) \leq 1 / 2^{n}$ for all $l \geq k$ and $x \in P$. Thus, $P \in \bigcap_{n \in \omega} \bigcup_{k \in \omega} M_{n}^{k}$.

Suppose $P \in \bigcap_{n \in \omega} \bigcup_{k \in \omega} M_{n}^{k}$. Let $n \in \omega$. There is a $k \in \omega$ such that $P \in M_{n}^{k}$. So, for all $x \in P$ and $l \geq k$ we have $\mathrm{d}\left(f_{k}(x), f_{l}(x)\right) \leq 1 / 2^{n}$. Hence, $\mathrm{d}\left(f(x), f_{l}(x)\right) \leq 1 / 2^{n-1}$ for all $x \in P$ and $l \geq k$. Since $n \in \omega$ was arbitrary, we conclude that $P \in U$.

Since $U \in \Pi_{3}^{0}(\mathrm{~J}(A))$ and $J(A) \in \Pi_{2}^{0}(\mathrm{~J}(X)), U \in \Pi_{3}^{0}(\mathrm{~J}(X))$.
The next lemma shows that (iii) \Rightarrow (i) when f has G_{δ}-graph in $X \times Y$.
Lemma 20. Let X and Y be Polish spaces, $A \subseteq X$ and Y be contained in a separable Banach space Y_{1}. If $f: A \rightarrow Y$ satisfies condition (iii) of Theorem 7 and has G_{δ} graph in $X \times Y$, then $\mathcal{C}(f) \in \Pi_{3}^{0}(J(X))$.

Proof. Let X^{*} and Y_{1}^{*} be metric compactifications of X and Y_{1} respectively. Notice that f has G_{δ}-graph in $X^{*} \times Y_{1}^{*}$. Let $\left\{W_{i}\right\}_{i \in \omega}$ be open subsets of $X^{*} \times Y_{1}^{*}$ such that $f=\bigcap_{i \in \omega} W_{i}$. Construct covers $\left\{\left\{U_{n}^{i} \times V_{n}^{i}\right\}_{n \in \omega}\right\}_{i \in \omega}$ of f by open rectangles of $X^{*} \times Y_{1}^{*}$ such that:
(a) $\operatorname{cl}\left(U_{n}^{i} \times V_{n}^{i}\right) \subseteq W_{i}$ for all $i, n \in \omega$,
(b) $\operatorname{diam}\left(V_{n}^{i}\right)<1 / 2^{i}$ for all $i, n \in \omega$.

Let $\left\{f_{n}\right\}_{n \in \omega}$ be continuous functions $f_{n}: A \rightarrow Y_{1}$ which converge to f as in
(iii) of Theorem 7. We may find a $G \in \Pi_{2}^{0}(X)$ such that each f_{n} may be extended to a continuous function on G. For the remainder of the proof f_{n} will mean the extended function. For each $i, k \in \omega$ and finite $F \subseteq \omega$ let

$$
Z_{i, k}^{F}=\left\{P \in \mathrm{~J}(G):(\forall l \geq k)\left(f_{l} \mid P \subseteq \bigcup_{n \in F} U_{n}^{i} \times V_{n}^{i}\right)\right\}
$$

For every i, k, and F we have $Z_{i, k}^{F} \in \Sigma_{2}^{0}(\mathrm{~J}(G))$. Let

$$
Z=\bigcap_{i \in \omega} \bigcup_{k \in \omega} \bigcup\left\{Z_{i, k}^{F}: F \subseteq \omega \text { is finite }\right\} .
$$

Clearly, $Z \in \Pi_{3}^{0}(\mathrm{~J}(G))$. Since $\mathrm{J}(G) \in \Pi_{2}^{0}(\mathrm{~J}(X))$, we have $Z \in \Pi_{3}^{0}(\mathrm{~J}(X))$. We will be done if we show that $Z=\mathcal{C}(f)$.

Let $P \in Z$. We claim that $P \subseteq A$. Let $x \in P$. Since $P \in Z$, there exist $k_{0} \in \omega$ and $F_{0} \in[\omega]^{<\omega}$ such that for all $l \geq k_{0}$ we have $f_{l}(x) \in \bigcup_{n \in F_{0}} U_{n}^{0} \times V_{n}^{0}$. Let $n_{0} \in F_{0}$ be such that $f_{l}(x) \in U_{n_{0}}^{0} \times V_{n_{0}}^{0}$ for all l in some infinite $B_{0} \subseteq \omega$. Since $P \in Z$, there exist $k \in \omega$ and $F_{1} \in[\omega]^{<\omega}$ such that for all $l \geq k_{1}$ we have $f_{l}(x) \in \bigcup_{n \in F_{1}} U_{n}^{1} \times V_{n}^{1}$. Hence, there is an $n_{1} \in F_{1}$ such that $f_{l}(x) \in$ $U_{n_{1}}^{1} \times V_{n_{1}}^{1}$ for all l in some infinite $B_{1} \subseteq B_{0}$. We may continue inductively to find $\left\{n_{i}\right\}_{i \in \omega}$ and $B_{i} \in[\omega]^{\omega}$ such that for every $i \in \omega$ we have $B_{i+1} \subseteq B_{i}$ and $f_{l}(x) \in U_{n_{i}}^{i} \times V_{n_{i}}^{i}$ for all l in B_{i}. For each $i \in \omega$ pick $l_{i} \in B_{i}$. By (b), $\mathrm{d}\left(f_{l_{i}}(x), f_{l_{i+1}}(x)\right) \leq 1 / 2^{i}$. Thus, $\left\{f_{l_{i}}(x)\right\}_{i \in \omega}$ is a Cauchy sequence and converges to some $y \in Y_{1}^{*}$. Let $j \in \omega$. Since $f_{l_{i}}(x) \in V_{n_{j}}^{j}$ for almost all i, we have $(x, y) \in \operatorname{cl}\left(U_{n_{j}}^{j} \times V_{n_{j}}^{j}\right) \subseteq W_{j}$ by (a). Since j was arbitrary, $(x, y) \in f$. So, $x \in A$. Hence, $P \subseteq A$.

We claim that $f \mid P$ is continuous. Let $j \in \omega$. There is a finite $F_{j} \subseteq \omega$ and a $k \in \omega$ such that $f_{l} \mid P \subseteq \bigcup_{n \in F_{j}} U_{n}^{j} \times V_{n}^{j}$ for all $l \geq k$. Since $P \subseteq A$, we have $f \mid P \subseteq \bigcup_{n \in F_{j}} \operatorname{cl}\left(U_{n}^{j} \times V_{n}^{j}\right) \subseteq W_{j}$. Thus,

$$
f \mid P \subseteq \bigcap_{j \in \omega}\left(\bigcup_{n \in F_{j}} \operatorname{cl}\left(U_{n}^{j} \times V_{n}^{j}\right)\right) \subseteq \bigcap_{j \in \omega} W_{j}=f
$$

So, $f \mid P$ is contained in a compact subset of f which means that $f \mid P$ is continuous. Thus, $P \in \mathcal{C}(f)$.

Suppose $P \in \mathcal{C}(f)$. Let $j \in \omega$. Since $f \mid P$ is compact, there is a finite $F \subseteq \omega$ such that $f \mid P \subseteq \bigcup_{n \in F}\left(U_{n}^{j} \cap A\right) \times V_{n}^{j}$. Since $\left\{f_{n}\right\}_{n \in \omega}$ converges to f as in (iii) of Theorem 7 , we have $\left\{f_{n} \mid P\right\}_{n \in \omega}$ converging to $f \mid P$ uniformly. It
follows that for some $k \in \omega$ we have $f_{l} \mid P \subseteq \bigcup_{n \in F}\left(U_{n}^{j} \cap A\right) \times V_{n}^{j}$ for all $l \geq k$. Since j was arbitrary, $P \in Z$.

Corollary 21. Let X and Y be metric spaces. If $f: X \rightarrow \mathrm{~J}(Y)$ is semicontinuous in the second sense, then $f \in \mathcal{E}_{2}$.

Proof. For the proof we say semicontinuous instead of semicontinuous in the second sense.

Assume that f is lower semicontinuous. Let $\epsilon>0$ and $x \in X$. There is a $\delta>0$ such that for every $w \in \mathrm{~B}_{\delta}(x)$ and every $q \in f(x)$ there is a $p \in f(w)$ such that $\mathrm{d}(p, q)<\epsilon / 2$. Let $M=\operatorname{cl}\left(f^{-1}\left(\mathrm{~B}_{\epsilon / 2}(f(x))\right) \cap \mathrm{B}_{\delta / 2}(x)\right)$. We will show that $\operatorname{osc}(f, M) \leq \epsilon$. Let $w \in M$. Clearly, if $w \in f^{-1}\left(\mathrm{~B}_{\epsilon / 2}(f(x))\right) \cap \mathrm{B}_{\delta / 2}(x)$, then $H_{d}(f(x), f(w)) \leq \epsilon / 2$. Suppose $w \in M \backslash f^{-1}\left(\mathrm{~B}_{\epsilon / 2}(f(x)) \cap \mathrm{B}_{\delta / 2}(x)\right.$. Let $w_{n} \in f^{-1}\left(\mathrm{~B}_{\epsilon / 2}(f(x))\right) \cap \mathrm{B}_{\delta / 2}(x)$ be such that $\lim w_{n}=w$. Let $p \in f(w)$. There exist $p_{n} \in f\left(w_{n}\right)$ such that $\lim p_{n}=p$. Since $H_{d}\left(f\left(w_{n}\right), f(x)\right) \leq \epsilon / 2$ for every n, we have $\mathrm{d}(p, f(x)) \leq \epsilon / 2$. On the other hand, since $w \in \mathrm{~B}_{\delta}(x)$, for any $q \in f(x)$ we have $\mathrm{d}(q, f(w)) \leq \epsilon / 2$. Thus, $H_{d}(f(w), f(x)) \leq \epsilon / 2$. We conclude that $\operatorname{osc}(f, M) \leq \epsilon$.

Assume that f is upper semicontinuous. Let $\epsilon>0$ and $x \in X$. There is a $\delta>0$ such that for every $w \in \mathrm{~B}_{\delta}(x)$ and every $q \in f(w)$ there is a $p \in f(x)$ such that $\mathrm{d}(p, q)<\epsilon / 4$. Let $M=\operatorname{cl}\left(f^{-1}\left(\mathrm{~B}_{\epsilon / 4}(f(x))\right) \cap \mathrm{B}_{\delta / 2}(x)\right)$. We will show that $\operatorname{osc}(f, M) \leq \epsilon$. Let $w \in M$. Clearly, if $w \in f^{-1}\left(\mathrm{~B}_{\epsilon / 4}(f(x))\right) \cap \mathrm{B}_{\delta / 2}(x)$, then $H_{d}(f(x), f(w)) \leq \epsilon / 4 \leq \epsilon / 2$. Suppose $w \in M \backslash f^{-1}\left(\mathrm{~B}_{\epsilon / 4}(f(x))\right) \cap \mathrm{B}_{\delta / 2}(x)$. Let $w_{n} \in f^{-1}\left(\mathrm{~B}_{\epsilon / 4}(f(x))\right) \cap \mathrm{B}_{\delta / 2}(x)$ be such that $\lim w_{n}=w$. Let $p \in f(w)$. Since $\mathrm{d}(w, x)<\delta$, there is a $q \in f(x)$ such that $\mathrm{d}(p, q)<\epsilon / 4 \leq \epsilon$. Let $r \in f(x)$. Since $w_{n} \in f^{-1}\left(\mathrm{~B}_{\epsilon / 4}(f(x))\right)$ for each n, we may find $r_{n} \in f\left(w_{n}\right)$ such that $\lim \mathrm{d}\left(r_{n}, r\right) \leq \epsilon / 4$. Since $w_{n} \in \mathrm{~B}_{\delta / 2}(x)$ for all n, there are $t_{n} \in f(x)$ such that $\mathrm{d}\left(t_{n}, r_{n}\right)<\epsilon / 4$. So, $\lim \mathrm{d}\left(t_{n}, r\right) \leq \epsilon / 2$. Since $f(w)$ is compact, we may assume that there is a $t \in f(w)$ such that $\lim t_{n}=t$. So, $\mathrm{d}(r, t) \leq \epsilon / 2$. Thus, $H_{d}(f(x), f(w)) \leq \epsilon / 2$. we conclude that $\operatorname{osc}(f, M) \leq \epsilon$.

7 Proof of Theorem 5.

The case $\alpha=2$ is Theorem 4 of [1]. We now consider the case $\alpha=3$. For the remainder of this section we assume that X and Y are Polish spaces and f is a partial function defined on X.

We define an operation M on collections of subsets of product spaces as in [1]. Given a collection \mathcal{A} of subsets of $X \times Y$. Define

$$
M(\mathcal{A})=\bigcup_{x \in X}\left(\pi_{X}^{-1}(\{x\}) \cap \bigcap\left\{A \in \mathcal{A}: x \in \pi_{X}[A]\right\}\right)
$$

Lemma 22. If \mathcal{A} is a finite collection of subsets of $X \times Y$ such that $\pi_{X}[A]$ is closed for every $A \in \mathcal{A}$ and $f \mid\left(\pi_{X}[A \cap f]\right)$ is \mathcal{E}_{2} for each $A \in \mathcal{A}$, then $f \mid\left(\pi_{X}[M(\mathcal{A}) \cap f]\right)$ is \mathcal{E}_{2}.

Proof. Let $x \in \pi_{X}[M(\mathcal{A}) \cap f]$ and $\epsilon>0$. Since \mathcal{A} is finite and $f \mid\left(\pi_{X}[A \cap f]\right)$ is \mathcal{E}_{2} for each $A \in \mathcal{A}$, there is an open neighborhood V of $f(x)$ and a open neighborhood U of x such that $\operatorname{osc}\left(f, \operatorname{cl}\left(f^{-1}(V) \cap U\right) \cap \pi_{X}[A]\right) \leq \epsilon$ for any $A \in \mathcal{A}$ such that $x \in \pi_{X}[A \cap f]$. In particular, we have

$$
\operatorname{osc}\left(f \mid\left(\left(\operatorname{cl}\left(f^{-1}(V) \cap U\right) \cap \pi_{X}[M(A) \cap f]\right)\right) \leq \epsilon\right.
$$

Lemma 23. Let $f \in \mathcal{F}_{3}$ and \mathcal{B}_{1} and \mathcal{B}_{2} be countable bases for X and Y, respectively. If $x \in A \subseteq X$ and $f \mid A$ is continuous, then there exist $B_{1} \in \mathcal{B}_{1}$ and $B_{2} \in \mathcal{B}_{2}$ such that $f \mid\left(f^{-1}\left(\operatorname{cl}\left(B_{2}\right)\right) \cap \operatorname{cl}\left(B_{1}\right)\right)$ is \mathcal{E}_{2} and $f\left[A \cap \operatorname{cl}\left(B_{1}\right)\right] \subseteq \operatorname{cl}\left(B_{2}\right)$.

Proof. Since $f \in \mathcal{F}_{3}$, there exist open sets $U \subseteq X$ and, $V \subseteq Y$ such that $x \in U, f(x) \in V$, and $f \mid\left(f^{-1}(V) \cap U\right)$ is \mathcal{E}_{2}. Pick $B_{1} \in \mathcal{B}_{1}$ and $B_{2} \in \mathcal{B}_{2}$ so that $\operatorname{cl}\left(B_{1}\right) \subseteq U, \operatorname{cl}\left(B_{2}\right) \subseteq V, x \in B_{1}$, and $f(x) \in B_{2}$. Since $f^{-1}\left(\operatorname{cl}\left(B_{2}\right)\right) \cap$ $\operatorname{cl}\left(B_{1}\right) \subseteq f^{-1}(V) \cap U$, we have that $f \mid\left(f^{-1}\left(\operatorname{cl}\left(B_{2}\right)\right) \cap \operatorname{cl}\left(B_{1}\right)\right)$ is \mathcal{E}_{2}. Since $f \mid A$ is continuous, we may assume B_{1} is small enough that $f\left[A \cap \operatorname{cl}\left(B_{1}\right)\right] \subseteq \operatorname{cl}\left(B_{2}\right)$.

Proposition 24. [1, Lemma 13] If \mathcal{A} is a finite collection of closed subsets of $X \times Y$ such that $\pi_{X}[A]$ is closed for every $A \in \mathcal{A}$, then $M(\mathcal{A}) \in \Pi_{2}^{0}(X \times Y)$.

Lemma 25. If $f \in \mathcal{F}_{3}$ and f has G_{δ}-graph in $X \times Y$, then $\mathcal{C}(f) \in \Sigma_{4}^{0}(J(X))$.
Proof. Let \mathcal{B}_{1} and \mathcal{B}_{2} be countable bases for X and Y respectively. Let \mathcal{W} be the collection of all finite collections $Z=\left\{W_{0}, \ldots W_{n}\right\}$ of sets of the form $W_{i}=\operatorname{cl}\left(B_{1}\right) \times \operatorname{cl}\left(B_{2}\right)$ (where $B_{1} \in \mathcal{B}_{1}$ and $\left.B_{2} \in \mathcal{B}_{2}\right)$ such that $f \mid\left(\pi_{X}[M(Z) \cap f]\right)$ is \mathcal{E}_{2}. Let $Z \in \mathcal{W}$. By Proposition 24 and the assumption that f has G_{δ}-graph in $X \times Y, M(Z) \cap f \in \Pi_{2}^{0}(X \times Y)$. Since $f \mid\left(\pi_{X}[M(Z) \cap f]\right)$ is \mathcal{E}_{2} and has G_{δ}-graph in $X \times Y$, Theorem 7 implies that $\mathcal{T}=\bigcup\left\{\mathcal{C}\left(f \mid\left(\pi_{X}[M(Z) \cap f]\right)\right): Z \in\right.$ $\mathcal{W}\} \in \Sigma_{4}^{0}(X)$.

The proof will be complete if we show that $\mathcal{C}(f)=\mathcal{T}$. The containment $\mathcal{T} \subseteq \mathcal{C}(f)$ is obvious. We work for the opposite containment. Let $C \in \mathcal{C}(f)$. We will construct a finite collection $W=\left\{W_{1}, W_{2}, \ldots, W_{n}\right\}$ of sets of the form $W_{i}=\operatorname{cl}\left(B_{1}\right) \times \operatorname{cl}\left(B_{2}\right)$ where $B_{1} \in \mathcal{B}_{1}$ and $B_{2} \in \mathcal{B}_{2}$ such that:
(a) $f \mid C \subseteq \bigcup W$,
(b) $f \mid\left(\pi_{X}\left[f \cap W_{i}\right]\right)$ is \mathcal{E}_{2} for every $1 \leq i \leq n$, and
(c) $f \mid\left(C \cap \pi_{X}\left(W_{i}\right)\right) \subseteq W_{i}$ for every $1 \leq i \leq n$.

By Lemma 23, for every $x \in C$ there exist $B_{1}^{x} \in \mathcal{B}_{1}$ and $B_{2}^{x} \in \mathcal{B}_{2}$ such that $x \in B_{1}^{x}, f(x) \in B_{2}^{x}, f \mid\left(f^{-1}\left(\operatorname{cl}\left(B_{2}^{x}\right)\right) \cap \operatorname{cl}\left(B_{1}^{x}\right)\right)$ is \mathcal{E}_{2}, and $f\left[\operatorname{cl}\left(B_{1}^{x}\right) \cap C\right] \subseteq \operatorname{cl}\left(B_{2}^{x}\right)$. Since $f \mid C$ is compact, we we may find a finite subcover $W^{*}=\left\{W_{1}^{*}, \ldots W_{n}^{*}\right\}$
of $\left\{B_{1}^{x} \times B_{2}^{x}: x \in C\right\}$. For each $1 \leq i \leq n$ let $W_{i}=\operatorname{cl}\left(W_{i}^{*}\right)$. The collection $W=\left\{W_{1} \ldots W_{n}\right\}$ clearly satisfies conditions (a), (b), and (c).

By (b), and Lemma 22, $f \mid\left(\pi_{X}[f \cap M(W)]\right)$ is \mathcal{E}_{2}. So $W \in \mathcal{W}$. Let $x \in C$. By (a), there is some $W_{i} \in W$ such that $\langle x, f(x)\rangle \in W_{i}$. By (c), for any $W_{k} \in W$ if $x \in \pi_{X}\left(W_{k}\right)$, then $\langle x, f(x)\rangle \in W_{k}$. Thus, $\langle x, f(x)\rangle \in M(W) \cap f$. So, $x \in \pi_{X}[M(W) \cap f]$. So, $C \subseteq \pi_{X}[M(W) \cap f]$. Since $f \mid C$ is continuous, $C \in \mathcal{C}\left(\pi_{X}[M(W) \cap f]\right) \subseteq \mathcal{T}$.

The theorem now follows from Theorem 4 and Lemma 25.

8 Proof of Theorem 6.

Lemma 26. Let $f \in \mathcal{E}_{3}, \epsilon>0$ and \mathcal{B}_{1} and \mathcal{B}_{2} be countable bases for X and Y, respectively. If $x \in A \subseteq X$ and $f \mid A$ is continuous, then there exist $B_{1} \in \mathcal{B}_{1}$ and $B_{2} \in \mathcal{B}_{2}$ such that there is a $G \in \Pi_{2}^{0}(X)$ such that $f^{-1}\left(\operatorname{cl}\left(B_{2}\right)\right) \cap \operatorname{cl}\left(B_{1}\right) \subseteq G$ and $\operatorname{osc}(f, G) \leq \epsilon$ and $f\left[A \cap \operatorname{cl}\left(B_{1}\right)\right] \subseteq \operatorname{cl}\left(B_{2}\right)$.

Proof. Since $f \in \mathcal{E}_{3}$, there exist open sets $U \subseteq X$ and $V \subseteq Y$ such that $x \in U, f(x) \in V$, and there is a $G \in \Pi_{2}^{0}(X)$ such that $f^{-1}(V) \cap U \subseteq G$ and $\operatorname{osc}(f, G) \leq \epsilon$. Pick $B_{1} \in \mathcal{B}_{1}$ and $B_{2} \in \mathcal{B}_{2}$ so that $\operatorname{cl}\left(B_{1}\right) \subseteq U, \operatorname{cl}\left(B_{2}\right) \subseteq V$, $x \in B_{1}$, and $f(x) \in B_{2}$. Now $f^{-1}\left(\operatorname{cl}\left(B_{2}\right)\right) \cap \operatorname{cl}\left(B_{1}\right) \subseteq f^{-1}(V) \cap U \subseteq G$, and $\operatorname{osc}(f, G) \leq \epsilon$. Since $f \mid A$ is continuous, we may assume B_{1} is small enough that $f\left[A \cap \operatorname{cl}\left(B_{1}\right)\right] \subseteq \operatorname{cl}\left(B_{2}\right)$.

Lemma 27. Suppose $f: X \rightarrow Y$. Let $\epsilon>0$ and \mathcal{A} be a finite collection of closed boxes in $X \times Y$ such that for every $A \in \mathcal{A}: \operatorname{diam}\left(\pi_{Y}[A]\right) \leq \epsilon / 5$, there is a $G_{A} \in \Pi_{2}^{0}(X)$ such that $\pi_{X}[A \cap f]$ is subset of G_{A} and $\operatorname{osc}\left(f, G_{A}\right) \leq \epsilon / 5$. There is a $G \in \Pi_{2}^{0}(X)$ such that $\pi_{X}[M(\mathcal{A}) \cap f] \subseteq G$ and $f \mid G$ is ϵ-continuous.

Proof. Let $G_{1}=\bigcup_{A \in \mathcal{A}}\left(G_{A} \cap \operatorname{cl}\left(\pi_{X}[A \cap f]\right)\right)$. Clearly, $G_{1} \in \Pi_{2}^{0}(X)$ and $\pi_{X}[M(\mathcal{A}) \cap f] \subseteq \bigcup_{A \in \mathcal{A}} \pi_{X}[A \cap f] \subseteq G_{1} \subseteq \bigcup_{A \in \mathcal{A}} \pi_{X}[A]$. Let

$$
G=G_{1} \backslash\left(\bigcup\left\{\pi_{X}[A] \cap \pi_{X}[B]: A, B \in \mathcal{A} \text { and } \pi_{Y}[A] \cap \pi_{Y}[B]=\emptyset\right\}\right)
$$

Now $G \in \Pi_{2}^{0}(X)$ and $\pi_{X}[M(\mathcal{A}) \cap f] \subseteq G \subseteq \pi_{X}[M(\mathcal{A})]$. We now show that $f \mid G$ is ϵ-continuous. Let $x \in G$ and $x_{n} \in G$ be such that $\lim _{n \in \omega} x_{n}=x$. Pick $A \in \mathcal{A}$ and $B \in \mathcal{A}$ such that $x \in G_{A} \cap \pi_{X}[A]$ and $\left\{x_{n}: n \in \omega\right\} \subseteq G_{B} \cap \pi_{X}[B]$. Since $\pi_{X}[B]$ is closed, $x \in \pi_{X}[B]$. Since $x \in \pi_{X}[M(\mathcal{A})]$, we have $A \cap B \neq \emptyset$. Since $\operatorname{diam}\left(\pi_{Y}[A] \cup \pi_{Y}[B]\right)<2 \epsilon / 5$ and $\max \left\{\operatorname{osc}\left(f, G_{B}\right), \operatorname{osc}\left(f, G_{A}\right)\right\}<\epsilon / 5$, we have $\lim \sup _{n \in \omega} \mathrm{~d}\left(f\left(x_{n}\right), f(x)\right)<4 \epsilon / 5$. Thus, $f \mid G$ is ϵ-continuous.

Lemma 28. If f is \mathcal{E}_{3}, then $\mathcal{C}(f) \in \Pi_{4}^{0}(\mathrm{~J}(X))$.

Proof. Let $n \in \omega$. Let $\mathcal{B}_{1}=\left\{B_{1}^{k}: k \in \omega\right\}$ and $\mathcal{B}_{2}=\left\{B_{2}^{k}: k \in \omega\right\}$ be countable bases for X and Y respectively. Let \mathcal{W} be the collection of all finite collections $Z=\left\{W_{0}, \ldots W_{m}\right\}$ of sets of the form $W_{k}=\operatorname{cl}\left(B_{1}^{k}\right) \times \operatorname{cl}\left(B_{2}^{k}\right)$ such that $\operatorname{diam}\left(B_{2}^{k}\right) \leq 1 /\left(2^{n} \cdot 5\right)$ and there is a $G_{k} \in \Pi_{2}^{0}(X)$ such that $\pi_{X}[f \cap$ $\left.\left(\operatorname{cl}\left(B_{1}^{k}\right)\right) \times \operatorname{cl}\left(B_{2}^{k}\right)\right] \subseteq G_{k}$ and $\operatorname{osc}\left(f, G_{k}\right) \leq 1 /\left(2^{n} \cdot 5\right)$. Let $Z \in \mathcal{W}$. By Lemma 27 , there is a $H_{Z} \in \Pi_{2}^{0}(X)$ such that $\pi_{X}[M(Z) \cap f] \subseteq H_{Z}$ and $f \mid H_{Z}$ is $1 / 2^{n}$ continuous. Let $\mathcal{T}_{n}=\bigcup_{Z \in \mathcal{W}} \mathrm{~J}\left(H_{Z}\right)$. Clearly, $\mathcal{T}_{n} \in \Sigma_{3}^{0}(\mathrm{~J}(X))$ and $f \mid C$ is $1 / 2^{n}$-continuous for all $C \in \mathcal{T}_{n}$. The set $\mathcal{T}=\bigcap_{n \in \omega} \mathcal{T}_{n}$ is in $\Pi_{4}^{0}(J(X))$. Since $C \in \mathcal{T}$ implies that $f \mid C$ is $1 / 2^{n}$ continuous for all n, we have $\mathcal{T} \subseteq \mathcal{C}(f)$.

Let $C \in \mathcal{C}(f)$ and $n \in \omega$ be arbitrary. We will construct a finite collection $W=\left\{W_{1}, W_{2}, \ldots, W_{m}\right\}$ of sets of the form $W_{i}=\operatorname{cl}\left(B_{1}^{i}\right) \times \operatorname{cl}\left(B_{2}^{i}\right)$ such that
(a) $f \mid C \subseteq \bigcup W$,
(b) there is a $G_{i} \in \Pi_{2}^{0}(X)$ such that $\pi_{X}\left[f \cap W_{i}\right] \subseteq G_{i}$ and $\operatorname{osc}\left(f, G_{i}\right)<$ $1 /\left(2^{n} \cdot 5\right)$,
(c) $\operatorname{diam}\left(B_{2}^{i}\right)<1 /\left(2^{n} \cdot 5\right)$, and
(d) $f \mid\left(C \cap \pi_{X}\left(W_{i}\right)\right) \subseteq W_{i}$ for every $1 \leq i \leq m$.

By Lemma 26, for every $x \in C$ there exist $B_{1}^{x} \in \mathcal{B}_{1}$ and $B_{2}^{x} \in \mathcal{B}_{2}$ such that $x \in B_{1}^{x}, f(x) \in B_{2}^{x}, \operatorname{diam}\left(B_{2}^{x}\right)<1 /\left(2^{n} \cdot 5\right), f\left[\operatorname{cl}\left(B_{1}^{x}\right) \cap C\right] \subseteq \operatorname{cl}\left(B_{2}^{x}\right)$, and there is a $G \in \Pi_{2}^{0}(X)$ such that $f^{-1}\left(\operatorname{cl}\left(B_{2}^{x}\right)\right) \cap \operatorname{cl}\left(B_{1}^{x}\right) \subseteq G$ and $\operatorname{osc}(f, G)<1 /\left(2^{n} \cdot 5\right)$. Since $f \mid C$ is compact, we we may find a finite subcover $W^{*}=\left\{W_{1}^{*}, \ldots W_{m}^{*}\right\}$ of $\left\{B_{1}^{x} \times B_{2}^{x}: x \in C\right\}$. For each $1 \leq i \leq m$ let $W_{i}=\operatorname{cl}\left(W_{i}^{*}\right)$. The collection $W=\left\{W_{1} \ldots W_{m}\right\}$ clearly satisfies conditions (a), (b), (c), and (d).

By (b) and (c), $W \in \mathcal{W}$. Let $x \in C$. By (a), there is some $W_{i} \in W$ such that $\langle x, f(x)\rangle \in W_{i}$. By (d), for any $W_{k} \in W$ if $x \in \pi_{X}\left(W_{k}\right)$, then $\langle x, f(x)\rangle \in W_{k}$. Thus, $\langle x, f(x)\rangle \in M(W) \cap f$. So, $x \in \pi_{X}[M(W) \cap f]$. Therefore, $C \subseteq \pi_{X}[M(W) \cap f]$. Thus, $\mathcal{C}(f) \subseteq \mathcal{T}_{n}$.

It now follows that $\mathcal{C}(f) \subseteq \mathcal{T}$. Thus $\mathcal{C}(f) \in \Pi_{4}^{0}(\mathrm{~J}(X))$.
The theorem now follows from Lemma 28 and Theorem 3.

References

[1] F. Jordan, Ideals of compact sets associated with Borel functions, Real Analysis Exchange, 28(1) (2002-2003), 15-32.
[2] A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics 156, Springer-Verlag, New York, Berlin, Heidelberg, 1995.
[3] E. Michael, Continuous selections I, Annals of Mathematics (Second series), 56 (1956), 361-382.

[^0]: Key Words: Borel complexity, continuous functions
 Mathematical Reviews subject classification: 26A15, 03E15
 Received by the editors January 5, 2004
 Communicated by: Steve Jackson
 *The author would like to thank Iwo Labuda, Sławomir Solecki, and the referee of this paper for valuable comments and direction.

