Zbigniew Grande, Institute of Mathematics, Bydgoszcz Academy, Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. e-mail: grande@ab-byd.edu.pl

ON A PROBLEM OF LEIDERMAN

Abstract

In the space $B_1(0,1]$ of all Baire 1 real functions on [0, 1], equipped with the topology of pointwise convergence there is an uncountable discrete closed subset of Darboux functions. This affirmatively answers a question of A. Leiderman.

Let \mathbb{R} be the set of all reals. Denote by $B_1([0,1])$ the space of all Baire 1 functions from [0,1] to \mathbb{R} equipped with the pointwise convergence topology. At the 17^{th} SUMMER CONFERENCE ON REAL FUNCTIONS THEORY in Stará Lesná, Slovakia, 2002, A. Leiderman in his lecture [1] asked if $B_1([0,1])$ contains an uncountable discrete closed subset of Darboux functions? In this article I show that the answer is affirmative. We start with the following Lemma.

Lemma 1. If $A \subset [0,1]$ is a nonempty perfect set, then there is a Darboux Baire 1 function $f: [0,1] \rightarrow [0,1]$ such that f(x) = 0 for $x \in [0,1] \setminus A$ and f(A) = [0, 1].

PROOF. Let $h: [0,1] \to [0,1]$ be a homeomorphism from [0,1] onto [0,1]such that the image h(A) is of positive measure ([3]). There is a nonempty F_{σ} -set $B \subset h(A)$ belonging to the density topology T_d ([1]). By Zahorski's lemma ([1, 4]) there is an approximately continuous function $g: [0, 1] \rightarrow [0, 1]$ such that g(x) = 0 for $x \in [0,1] \setminus A$ and g(B) = (0,1]. Now the function f(x) = q(h(x)) for $x \in [0, 1]$ satisfies all the requirements.

In the lecture [2] A. Leiderman stated that

(*) the uncountable family of all functions

$$f_a(x) = \frac{1}{|x-a|}$$
 for $x \in [0,1] \setminus \{a\}$ and $f_a(a) = 0$, where $a \in [0,1]$,

is a discrete and closed subset of $B_1([0,1])$.

Key Words: Pointwise convergence topology, Baire 1 functions, Darboux property, discrete subset, closed set

Mathematical Reviews subject classification: 26A15, 54C30 Received by the editors October 2, 2002

Theorem 1. There is an uncountable closed discrete subset $E \subset B_1([0,1])$ composed of Darboux functions.

PROOF. Let $E \subset (0,1)$ be a nonempty perfect set of measure zero and let

$$E = \{e_0, e_1, \ldots, e_\alpha, \ldots\}$$
 where $\alpha < \omega_c$,

and ω_c denotes the first ordinal number whose cardinality is that of the continuum. Let ω_1 be the first uncountable ordinal and let $A = \{e_{\alpha}; \alpha < \omega_1\}$. For each point $a \in A$ there are sequences $(C_{a,n})_n$ of nonempty perfect sets of measure zero such that

- (1) $C_{a,n} \cap C_{b,m} = \emptyset$ if $(a,n) \neq (b,m)$;
- (2) $C_{a,2n-} \subset (0,a) \setminus A$ and $C_{a,2n} \subset (a,1) \setminus A$ for $n \ge 1$;
- (3) for each $a \in A$ the sequences $(C_{a,2n-1})_n$ and $(C_{a,2n})_n$ converge in the Hausdorff metric to the set $\{a\}$.

Let

$$c_{a,n} = \max(f_a(C_{a,n}))$$
 for all pairs (a,n) where $a \in A$ and $n \ge 1$.

By Lemma 1, for $a \in A$ and for positive integers n, there are Darboux Baire 1 functions $\phi_{a,n} : [0,1] \to [0,1]$ such that

$$\phi_{a,n}(x) = 0$$
 for $x \in [0,1] \setminus C_{a,n}$ and $\phi_{a,n}(C_{a,n}) = [0,1]$.

For $a \in A$ let

$$g_a(x) = \begin{cases} \max(0, f_a(x) - c_{a,n}\phi_{a,n}(x)) & \text{for } x \in C_{a,n}, n \ge 1\\ f_a(x) & \text{otherwise on } [0, 1]. \end{cases}$$

Since for each pair $(a, n) \in A \times N$ there is a point $x \in C_{a,n}$ with $g_{a,n}(x) = 0$ and since the functions f_a are continuous at $u \neq a$, each function g_a belongs to Darboux Baire 1.

Observe that for a fixed point $a \in A$ we have

$$\inf\{g_b(a); b \neq a\} = \inf\{f_b(a); b \neq a\} = \frac{1}{\max(a, 1-a)} = r_a > 0.$$

If for $a \in A$ we put

$$U_a = \{ g \in B_1([0,1]); |g(a)| < r_a \},\$$

ON A PROBLEM OF LEIDERMAN

then U_a is open in the pointwise convergence topology, $g_a \in U_a$ and for each point $b \neq a$ belonging to A we have g_b is not in U_a . So the family $\{g_a; a \in A\}$ is discrete in $B_1([0, 1])$.

We will prove that the family $K = \{g_a; a \in A\}$ is closed in $B_1([0,1])$. Assume, to the contrary, that there is a function $h \in B_1([0,1]) \setminus K$ which belongs to the closure (in the pointwise convergence topology T_p) cl(K) of the family K. Assume that there is a point $a \in A$ with $h = f_a$. Then for each $b \neq a$ belonging to A the function

$$g_b \notin W_a = \{g \in B_1([0,1]); |g(a)| < r_a\} \ni f_a.$$

Moreover, there are a pair (a, n) and a point $u \in C_{a,n}$ with $g_a(u) = 0$. Since $f_a(u) > 0$, the function

$$g_a \notin V = \{g \in B_1([01]); |g(u) - f_a(u)| < \frac{f(a)}{2}\} \ni f_a$$

So, the equality $h = f_a$ for some $a \in A$ is not possible. Consequently, by (*), there is an open family $W \in T_p$ containing h such that

(**)
$$f_a \in B_1([0,1]) \setminus W \text{ for all } a \in A$$

There are a positive real s and a point $w \in [0, 1]$ such that

$$V = \{g \in B_1([0,1]); |g(w) - h(w)| < s\} \subset W.$$

If $w \in [0,1] \setminus \bigcup_{a \in A, n \ge 1} C_{a,n}$, then $f_a(w) = g_a(w)$ for all $a \in A$, and consequently $V \cap K = \emptyset$, in a contradiction with the relation $h \in cl(K)$. So there is exactly one pair (a,n) with $w \in C_{a,n}$. Observe that $g_b(w) = f_b(w)$ for $a \neq b, b \in A$. Since $h \in cl(K)$, there is $b \neq a$ belonging to A such that $g_b \in V$. But $g_b(w) = f_b(w)$, so $f_b \in V$ and we obtain a contradiction with (**). \Box .

Acknowledgment I am grateful to Professor Udayan B. Darji for his suggestion of omitting the Continuum Hypothesis and to the referee who has corrected my English.

References

- A. M. Bruckner, Differentiation of Real Functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin 1978.
- [2] A. Leiderman, On discrete closed subsets of function spaces with pointwise convergence topology, Abstracts of 17th Summer Conference On Real Functions Theory, Stará Lesná, Slovakia, September 1–6, (2002), 43.

- [3] J. Oxtoby, *Measure and Category*, Springer-Verlag, New York Heidelberg Berlin 1971.
- [4] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc., 69 (1950), 1–54.