Zbigniew Grande, Institute of Mathematics, Bydgoszcz Academy, Plac
Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. e-mail: grande@ab-byd.edu.pl

ON A PROBLEM OF LEIDERMAN

Abstract

In the space $\left.B_{1}(0,1]\right)$ of all Baire 1 real functions on $[0,1]$, equipped with the topology of pointwise convergence there is an uncountable discrete closed subset of Darboux functions. This affirmatively answers a question of A. Leiderman.

Let \mathbb{R} be the set of all reals. Denote by $B_{1}([0,1])$ the space of all Baire 1 functions from $[0,1]$ to \mathbb{R} equipped with the pointwise convergence topology. At the $17^{\text {th }}$ SUMMER CONFERENCE ON REAL FUNCTIONS THEORY in Stará Lesná, Slovakia, 2002, A. Leiderman in his lecture [1] asked if $B_{1}([0,1])$ contains an uncountable discrete closed subset of Darboux functions? In this article I show that the answer is affirmative. We start with the following Lemma.

Lemma 1. If $A \subset[0,1]$ is a nonempty perfect set, then there is a Darboux Baire 1 function $f:[0,1] \rightarrow[0,1]$ such that $f(x)=0$ for $x \in[0,1] \backslash A$ and $f(A)=[0,1]$.

Proof. Let $h:[0,1] \rightarrow[0,1]$ be a homeomorphism from $[0,1]$ onto $[0,1]$ such that the image $h(A)$ is of positive measure ([3]). There is a nonempty F_{σ}-set $B \subset h(A)$ belonging to the density topology $T_{d}([1])$. By Zahorski's lemma $([1,4])$ there is an approximately continuous function $g:[0,1] \rightarrow[0,1]$ such that $g(x)=0$ for $x \in[0,1] \backslash A$ and $g(B)=(0,1]$. Now the function $f(x)=g(h(x))$ for $x \in[0,1]$ satisfies all the requirements.

In the lecture [2] A. Leiderman stated that
(*) the uncountable family of all functions

$$
f_{a}(x)=\frac{1}{|x-a|} \text { for } x \in[0,1] \backslash\{a\} \text { and } f_{a}(a)=0, \text { where } a \in[0,1]
$$

is a discrete and closed subset of $B_{1}([0,1])$.

[^0]Theorem 1. There is an uncountable closed discrete subset $E \subset B_{1}([0,1])$ composed of Darboux functions.

Proof. Let $E \subset(0,1)$ be a nonempty perfect set of measure zero and let

$$
E=\left\{e_{0}, e_{1}, \ldots, e_{\alpha}, \ldots\right\} \text { where } \alpha<\omega_{c}
$$

and ω_{c} denotes the first ordinal number whose cardinality is that of the continuum. Let ω_{1} be the first uncountable ordinal and let $A=\left\{e_{\alpha} ; \alpha<\omega_{1}\right\}$. For each point $a \in A$ there are sequences $\left(C_{a, n}\right)_{n}$ of nonempty perfect sets of measure zero such that
(1) $C_{a, n} \cap C_{b, m}=\emptyset$ if $(a, n) \neq(b, m)$;
(2) $C_{a, 2 n-} \subset(0, a) \backslash A$ and $C_{a, 2 n} \subset(a, 1) \backslash A$ for $n \geq 1$;
(3) for each $a \in A$ the sequences $\left(C_{a, 2 n-1}\right)_{n}$ and $\left(C_{a, 2 n}\right)_{n}$ converge in the Hausdorff metric to the set $\{a\}$.

Let

$$
c_{a, n}=\max \left(f_{a}\left(C_{a, n}\right)\right) \text { for all pairs }(a, n) \text { where } a \in A \text { and } n \geq 1
$$

By Lemma 1, for $a \in A$ and for positive integers n, there are Darboux Baire 1 functions $\phi_{a, n}:[0,1] \rightarrow[0,1]$ such that

$$
\phi_{a, n}(x)=0 \text { for } x \in[0,1] \backslash C_{a, n} \text { and } \phi_{a, n}\left(C_{a, n}\right)=[0,1] .
$$

For $a \in A$ let

$$
g_{a}(x)= \begin{cases}\max \left(0, f_{a}(x)-c_{a, n} \phi_{a, n}(x)\right) & \text { for } x \in C_{a, n}, n \geq 1 \\ f_{a}(x) & \text { otherwise on }[0,1]\end{cases}
$$

Since for each pair $(a, n) \in A \times N$ there is a point $x \in C_{a, n}$ with $g_{a, n}(x)=0$ and since the functions f_{a} are continuous at $u \neq a$, each function g_{a} belongs to Darboux Baire 1.

Observe that for a fixed point $a \in A$ we have

$$
\inf \left\{g_{b}(a) ; b \neq a\right\}=\inf \left\{f_{b}(a) ; b \neq a\right\}=\frac{1}{\max (a, 1-a)}=r_{a}>0
$$

If for $a \in A$ we put

$$
U_{a}=\left\{g \in B_{1}([0,1]) ;|g(a)|<r_{a}\right\}
$$

then U_{a} is open in the pointwise convergence topology, $g_{a} \in U_{a}$ and for each point $b \neq a$ belonging to A we have g_{b} is not in U_{a}. So the family $\left\{g_{a} ; a \in A\right\}$ is discrete in $B_{1}([0,1])$.

We will prove that the family $K=\left\{g_{a} ; a \in A\right\}$ is closed in $B_{1}([0,1])$. Assume, to the contrary, that there is a function $h \in B_{1}([0,1]) \backslash K$ which belongs to the closure (in the pointwise convergence topology $\left.T_{p}\right) \operatorname{cl}(K)$ of the family K. Assume that there is a point $a \in A$ with $h=f_{a}$. Then for each $b \neq a$ belonging to A the function

$$
g_{b} \notin W_{a}=\left\{g \in B_{1}([0,1]) ;|g(a)|<r_{a}\right\} \ni f_{a} .
$$

Moreover, there are a pair (a, n) and a point $u \in C_{a, n}$ with $g_{a}(u)=0$. Since $f_{a}(u)>0$, the function

$$
g_{a} \notin V=\left\{g \in B_{1}([01]) ;\left|g(u)-f_{a}(u)\right|<\frac{f(a)}{2}\right\} \ni f_{a}
$$

So, the equality $h=f_{a}$ for some $a \in A$ is not possible. Consequently, by $(*)$, there is an open family $W \in T_{p}$ containing h such that

$$
\begin{equation*}
f_{a} \in B_{1}([0,1]) \backslash W \text { for all } a \in A \tag{**}
\end{equation*}
$$

There are a positive real s and a point $w \in[0,1]$ such that

$$
V=\left\{g \in B_{1}([0,1]) ;|g(w)-h(w)|<s\right\} \subset W
$$

If $w \in[0,1] \backslash \bigcup_{a \in A, n \geq 1} C_{a, n}$, then $f_{a}(w)=g_{a}(w)$ for all $a \in A$, and consequently $V \cap K=\emptyset$, in a contradiction with the relation $h \in \operatorname{cl}(K)$. So there is exactly one pair (a, n) with $w \in C_{a, n}$. Observe that $g_{b}(w)=f_{b}(w)$ for $a \neq b, b \in A$. Since $h \in \operatorname{cl}(K)$, there is $b \neq a$ belonging to A such that $g_{b} \in V$. But $g_{b}(w)=f_{b}(w)$, so $f_{b} \in V$ and we obtain a contradiction with $(* *)$.

Acknowledgment I am grateful to Professor Udayan B. Darji for his suggestion of omitting the Continuum Hypothesis and to the referee who has corrected my English.

References

[1] A. M. Bruckner, Differentiation of Real Functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin 1978.
[2] A. Leiderman, On discrete closed subsets of function spaces with pointwise convergence topology, Abstracts of $17^{\text {th }}$ Summer Conference On Real Functions Theory, Stará Lesná, Slovakia, September 1-6, (2002), 43.
[3] J. Oxtoby, Measure and Category, Springer-Verlag, New York - Heidelberg - Berlin 1971.
[4] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc., 69 (1950), 1-54.

[^0]: Key Words: Pointwise convergence topology, Baire 1 functions, Darboux property, discrete subset, closed set

 Mathematical Reviews subject classification: 26A15, 54C30
 Received by the editors October 2, 2002

