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ON THE SUMS OF UNILATERALLY
APPROXIMATELY CONTINUOUS AND

APPROXIMATE JUMP FUNCTIONS

Abstract

In paper [4] it is proved that every jump function f : R → R is
the sum of two unilaterally continuous jump functions. In this article
we prove that the analogous result is not true for the density topology.
Moreover we show some necessary and sufficient conditions ensuring
that an approximate jump function is the sum of two unilaterally ap-
proximately continuous and approximate jump functions.

Let R be the set of all reals. Denote by µ the Lebesgue measure in R.
For a Lebesgue measurable set A ⊂ R and a point x we define the right (left)
density D+(A, x) (D−(A, x)) of the set A at the point x as

lim
h→0+

µ(A ∩ [x, x+ h])
h

( lim
h→0+

µ(A ∩ [x− h, x])
h

respectively),

whenever these limits exist. A point x is called a right density point (a left
density point) of a set A if there is a Lebesgue measurable set B ⊂ A such
that D+(B, x) = 1 (D−(B, x) = 1).

A function f : A → R is said to be approximately continuous from the
right (from the left) at a point x if there is a Lebesgue measurable set B ⊂ A
such that x ∈ B, D+(B, x) = 1 (D−(B, x) = 1) and the restricted function
f�B is continuous at x. If a function f is simultaneously approximately con-
tinuous at a point x from the right and from the left,, then we will say that
f is approximately continuous at x ([2]). A function f is called unilaterally
approximately continuous at x if f is approximately continuous at x from the
right or from the left. A function f : R → R is called an unilaterally approx-
imately continuous function if it is unilaterally approximately continuous at
each point x ∈ R.
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For a function f : R → R and a point x we will say that the right
approximate limit ap limt→x+ f(t) (respectively the left approximate limit
ap limt→x− f(t)) is equal a ∈ [−∞,∞] if there is a Lebesgue measurable set B
with D+(B, x) = 1 (respectively D−(B, x) = 1) such that limB3t→x f(t) = a.

A function f : R→ R is said to be an approximate jump function if for each
point x ∈ R there are both finite unilateral approximate limits ap limt→x+ f(t)
and ap limt→x− f(t).

Since the operations of the calculation of unilateral approximate limits are
linear, the sums and the products of approximate jump functions are also
approximate jump functions.

Remark 1. Each approximate jump function f : R→ R is Lebesgue measur-
able.

Proof. Let η be a positive real and let A ⊂ R be a Lebesgue measurable set
with µ(A) > 0. Let a ∈ A be a density point of A. Since the left approximate
limit ap limt→x− f(t) is finite, there is a Lebesgue measurable set B ⊂ A
such that D−(B, a) = 1 and diam(f(B)) < η, where diam(f(B)) denotes the
diameter of the set f(B). So, by Davies’ Lemma 2 from [3] the function f is
Lebesgue measurable.

Remark 2. If f : R → R is a Lebesgue measurable function, then there is a
sequence (fn) of approximate jump functions such that f = lim

n→∞
fn.

Proof. Of course, there is a Baire 2 function g : R → R such that the set
A = {x : f(x) 6= g(x)} is of measure zero. By Preiss’ theorem from [6] there is
a sequence (gn) of approximately continuous functions gn : R → R such that
g = lim

n→∞
gn. Consequently, the functions

fn(x) =

{
gn(x) for x ∈ R \A
f(x) for x ∈ A

are approximate jump functions and f = lim
n→∞

fn.

Let Dap(f) denote the set of all points x at which f is not approximately
continuous. Since for each set A with µ(A) = 0 the function fA(x) = 1 for
x ∈ A and fA(x) = 0 for x ∈ R\A is an approximate jump function and there
are uncountable sets A with µ(A) = 0, there are approximate jump functions
(also without the Baire property) with the uncountable sets Dap(f).

From Belowska’s construction in [1] follows that there are unilaterally ap-
proximately continuous functions for which the sets Dap(f) are not countable.
But the following theorem is true.
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Theorem 1. If a function f : R→ R is an approximate jump and unilaterally
approximately continuous function, then the set Dap(f) is countable.

Proof. Assume by a contradiction, that the set Dap(f) is not countable. Let

A = {x : ap limt→x+ f(t) < ap limt→x− f(t)}

and
B = {x : ap limt→x+ f(t) > ap limt→x− f(t)}.

Since f is an unilaterally approximately continuous and approximate jump
function, we obtain Dap(f) = A ∪ B. So, at least one of the sets A, B is
uncountable. Without loss of the generality we may assume that A is not
countable. For each point x ∈ A there are rationals a(x), b(x) and a positive
rational r(x) such that:

ap limt→x+ f(t) < a(x) < b(x) < ap limt→x− f(t)

µ([x, x+ h] ∩ f−1((−∞, a(x))))
h

>
7
8

for h ∈ (0, r(x)],

µ([x− h, x] ∩ f−1((b(x),∞)))
h

>
7
8

for h ∈ (0, r(x)].

But the set of all triplets of rationals is countable; so there are rationals a, b,
r such that the set E = {x ∈ A : a(x) = a, b(x) = b, r(x) = r} is uncountable.
Let u, v ∈ E be bilateral condensation points of E such that u < v < u + r.
Then 0 < h = v − u < r and consequently

µ([u, u+ h] ∩ f−1((−∞, a)))
h

>
7
8

and (*)

µ([v − h, v] ∩ f−1((b,∞)))
h

>
7
8
. (**)

But [u, u+h] = [u, v] = [v−h, v], so, by (*) and (**), there is a point w ∈ [u, v]
with f(w) < a and f(w) > b. This contradiction finishes the proof.

Conclusion 1. If f : R→ R is an approximate jump and unilaterally approx-
imately continuous function, then there is a Baire 1 function g : R→ R such
that the set {x : g(x) 6= f(x)} is countable.

Proof. The restricted function f�(R \ Dap(f)) is in Baire 1 class ([2]) and
R \Dap(f) is an Gδ-set, so there is ([5], p. 341) a Baire 1 function g : R→ R
such that g�(R \Dap(f)) = f�(R \Dap(f)). This completes the proof.
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In [4] it is proved that every jump function f : R→ R (i.e., both unilateral
limits limt→x+ f(t) and limt→x− f(t) exist and are finite at each point x ∈ R)
is the sum of two unilaterally continuous jump functions.

From the above considerations follows that this result is not true for the
density topology. Of course, from Theorem 1 follows that if f is the sum of two
unilaterally approximately continuous and approximate jump functions, then
the set Dap(f) is countable. So, if f is an approximate jump function such
that the set Dap(f) is uncountable, then it is not the sum of two unilaterally
approximately continuous functions which are approximately jump functions.

Moreover, if f is the sum of two unilaterally approximately continuous
and approximate jump functions, then, by Conclusion 1, there are a Baire 1
function g : R→ R and a countable set A such that f(x) = g(x) for x ∈ R\A.

However observe that if f is the function of Dirichlet, then the set {x :
f(x) 6= 0} = Q is countable (Q denotes the set of all rationals), but f is not
the sum of two unilaterally aproximately continuous and approximate jump
functions.

Remark 3. If f(x) = 1 for ∈ Q and f(x) = 0 for x ∈ R \ Q, then f is not
the sum of two unilaterally approximately continuous and approximate jump
functions.

Proof. Assume by a contradiction that there are unilaterally approximately
continuous and approximate jump functions g, h such that f = g + h. Let
B = Dap(g)∪Dap(h). By Theorem 1 the set B is countable. Moreover Q ⊂ B.
Fix a ∈ (0, 1

8 ). Since the functions g, h are approximately continuous at each
point x ∈ R\B, for every point x ∈ R\B there is a positive rational r(x) such
that for each nondegenerate interval I containing x of the length d(I) ≤ r(x)

µ(I ∩ g−1((g(x)− a, g(x) + a)))
µ(I)

>
1
2

and

µ(I ∩ h−1((h(x)− a, h(x) + a)))
µ(I)

>
1
2
.

Since the set of all rationals is countable, there is a positive rational r such that
the set E = {x ∈ R \ B : r(x) = r} is of the second category. Consequently,
there is an open interval J1 such that the set J1 ∩ E is dense in J1. Let
t ∈ J1 \B be a point and let J ⊂ J1 be an open interval of the length d(J) < r
containing t and such that

µ(J ∩ g−1((g(t)− a, g(t) + a)))
µ(J)

>
1
2
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and

µ(J ∩ h−1((h(t)− a, h(t) + a)))
µ(J)

>
1
2
.

If y is a point of the intersection J ∩ E, then

µ(J ∩ g−1((g(y)− a, g(y) + a)))
µ(J)

>
1
2

and

µ(J ∩ h−1((h(y)− a, h(y) + a)))
µ(J)

>
1
2
.

Consequently, there is a point

y0 ∈ J ∩ g−1((g(y)− a, g(y) + a)) ∩ g−1((g(t)− a, g(t) + a)).

So, |g(y)−g(t)| ≤ |g(y)−g(y0)|+ |g(y0)−g(t)| < a+a = 2a. Similarly we can
prove that |h(y)− h(t)| < 2a. So for arbitrary points y1, y2 ∈ J ∩E we obtain
|g(y1)− g(y2)| ≤ |g(y1)− g(t)|+ |g(t)− g(y2)| < 2a+ 2a = 4a and analogously
|h(y1)− h(y2)| < 4a.

Let u ∈ Q∩J be a point. Since the function g is unilaterally approximately
continuous at u, there is a nondegenerate interval J2 ⊂ J with an endpoint
u ∈ J2 such that

µ(J2 ∩ g−1((g(u)− a, g(u) + a)))
µ(J2)

>
1
2
.

There is a point v ∈ J2 ∩ E. Then

µ(J2 ∩ g−1((g(v)− a, g(v) + a)))
µ(J2)

>
1
2

and consequently, there is a point

w ∈ J2 ∩ g−1((g(u)− a, g(u) + a)) ∩ g−1((g(v)− a, g(v) + a)).

So, |g(u)−g(v)| ≤ |g(u)−g(w)|+|g(w)−g(v)| < a+a = 2a. Since the function
h is unilaterally approximately continuous at u, as above we can prove that
there is a point z ∈ J ∩E such that |h(u)−h(z)| < 2a. Since v, z ∈ E ⊂ R\Q,
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we have h(v) = −g(v), g(z) = −h(z), |g(v)−g(z)| < 4a and |h(v)−h(z)| < 4a.
So,

1 =f(u) = g(u) + h(u) < g(v) + 2a+ h(z) + 2a = g(v)− g(z) + 4a
≤4a+ 4a = 8a < 1,

and this contradiction finishes the proof.

We show some sufficient condition which implies that a function f : R→ R
is the sum of two unilaterally approximately continuous and simultanuously
approximate jump functions. For this, the notions of the density topology and
of the approximate oscillation are necessary.

The family Td of all Lebesgue measurable subsets A ⊂ R such that for each
point x ∈ A both unilateral densities D+(A, x) = D−(A, x) = 1 is a topology
called the density topology ([2]).

For a set A denote by intd(A) and respectively by cld(A) the interior and
the closure of A with respect to the topology Td. If f : R → R is a function,
then the approximate oscillation of f at a point x is defined as ap osc f(x) =
inf{diam(f(U)) : x ∈ U ∈ Td}.

Observe that for an arbitrary function f : R → R we have Dap(f) = {x :
ap oscf(x) > 0}.

For the approximate jump functions f : R→ R the approximate oscillation
ap osc f(x) of f at a point x may be defined as

max(|f(x)− ap lim
t→x+ f(t)|, |f(x)− ap lim

t→x−
f(t)|, |ap lim

t→x+ f(t)− ap lim
t→x−

f(t)|).

We will say that a countable set A = {ai : i ≥ 1} satisfies the condition
(a) if there are pairwise disjoint sets Ui ∈ Td such that ai ∈ Ui for integer
i ≥ 1 and such that for each point x ∈ R\

⋃
i≥1 cld(Ui) the unilateral densities

D+(
⋃
i≥1 Ui, x) = D−(

⋃
i≥1 Ui, x) = 0.

Observe that isolated sets A ⊂ R and sets B whose derived sets are finite
satisfy the condition (a).

Theorem 2. Let f : R → R be an approximate jump function such that the
set Dap(f) is countable and for each positive real r

Ar = {x ∈ Dap(f) : ap oscf(x) ≥ r}

satisfies the condition (a). Then there are unilaterally approximately continu-
ous and approximate jump functions g, h with f = g + h.

Proof. If f is approximately continuous, then we can write g = f and h = 0
and Theorem 2 is true in this case. So we suppose that f is not approximately
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continuous. There is a positive number p ≤ 1
2 such that B1 = Ap 6= ∅. For

n > 1 let Bn = A p
2n

. Since B1 6= ∅ satisfies the condition (a), there are
pairwise disjoint sets U1,i ∈ Td, i ≥ 1 such that U1,i ∩ (Dap(f) \ B1) = ∅, the
cardinality card(B1∩U1,i) = 1 and B1 ⊂

⋃
i≥1 U1,i and R\

⋃
i≥1 cld(U1,i) ∈ Td.

Without loss of generality we may assume that U1,i, i ≥ 1 are Fσ-sets. For
integer i ≥ 1 denote by u1,i the only point belonging to B1 ∩ U1,i.

By Zahorski’s Lemma ([2, 7]) for i ≥ 1 there are approximately continuous
functions φ1,i : R→ [0, 1] such that φ1,i(u1,i) = 1, 0 < φ1,i(x) ≤ 1 for x ∈ U1,i

and φ1,i(R\U1,i) = {0}. Let g1(x) = f(x)+(f(u1,i)−ap limt→u+
1,i
f(t))φ1,i(x)

and h1(x) = f(x)−g1(x) for x ∈ U1,i∩(u1,i,∞) and i ≥ 1 and h1(x) = (f(x)−
ap limt→u−1,i

f(t))φ1,i(x) and g1(x) = f(x)−h1(x) for x ∈ U1,i∩(−∞, u1,i) and
i ≥ 1. Moreover let g1(x) = f(x) and h1(x) = 0 otherwise on R. Then f =
g1 + h1, Dap(g1)∪Dap(h1) ⊂ Dap(f) and the functions g1, h1 are unilaterally
approximately continuous at all points x ∈ B1 and approximate jump on R.

In the second step we consider the set B2 \B1. If B2 \B1 = ∅, then we put
g2 = g1 and h2 = h1. If B2 \ B1 6= ∅, then we write B2 \ B1 = {u2,i : i ≥ 1}.
Since the set B2 satisfies the condition (a), there are pairwise disjoint Fσ-sets
U2,i ∈ Td such that for integer i ≥ 1 we have U2,i ∩ (B1 ∪ (Dap(f) \B2)) = ∅,

U2,i ∩ (B2 \B1) = {u2,i}, B2 \B1 ⊂
⋃
i≥1

U2,i, diam(f(U2,i)) <
1
2
,

and R \
⋃
i≥1 cld(U2,i) ∈ Td. By Zahorski’s Lemma from [2, 7] for i ≥ 1 there

are approximately continuous functions φ2,i : R→ [0, 1] such that φ2,i(x) =
0 for x ∈ R \ U2,i, φ2,i(u2,i) = 1 and 0 < φ2,i(x) ≤ 1 for x ∈ U2,i. Let
g2(x) = g1(x) + (g1(u2,i)− ap limt→u+

2,i
g1(t))φ2,i(x) and h2(x) = f(x)− g2(x)

for x ∈ U2,i ∩ (u2,i,∞) and i ≥ 1,

h2(x) = h1(x)+(h1(u2,i)−ap limt→u−2,i
h1(t))φ2,i(x) and g2(x) = f(x)−h2(x)

for x ∈ U2,i ∩ (−∞, u2,i) and i ≥ 1. Moreover let g2(x) = g1(x) and h2(x) =
h1(x) otherwise on R. Then the functions g2, h2 are approximate jump func-
tions unilaterally approximately continuous at all points x ∈ B2 and max(|g2(x)−
g1(x)|, |h2(x)− h1(x)|) < 1

2 and g2(x) + h2(x) = f(x) for all x ∈ R. Moreover
Dap(g2) ∪Dap(h2) ⊂ Dap(f).

Generally in step n > 2 we consider the set Bn \Bn−1. If Bn \Bn−1 = ∅,
then we put gn = gn−1 and hn = hn−1. If Bn \ Bn−1 6= ∅ we proceed
analogously as above and we construct approximate jump functions gn and hn
unilaterally approximately continuous at all points x ∈ Bn and such that

max(|gn(x)− gn−1(x)|, |hn(x)− hn−1(x)|) < 1
2n−1

for x ∈ R,
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gn + hn = f and Dap(gn) ∪Dap(hn) ⊂ Dap(f).

Then the sequences (gn) and (hn) uniformly converge and the limits g =
limn→∞ gn and h = limn→∞ hn are approximate jump and unilaterally ap-
proximately continuous functions and

g + h = lim
n→∞

gn + lim
n→∞

hn = lim
n→∞

(gn + hn) = f.

The following assertion follows from Remark 3 and Theorem 2.

Conclusion 2. The set Q of all rationals does not satisfy the condition (a).

In the same way, we can prove that every set satisfying the condition (a)
is nowhere dense.
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