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ON THE HAHN DECOMPOSITION
THEOREM

Abstract

The purpose of this article is to prove Hahn Decomposition type
and Jordan Decomposition type theorems for measures on σ-semirings.
These results generalize the classical theorems for measures on σ-algebras.

1 Introduction

A nonempty set T of subsets of a nonempty set X is called a semiring on X
if for any given sets A,B ∈ T , A ∩ B ∈ T and A \ B = ∪k

n=1Cn for some
pairwise disjoint sets C1, C2, . . . , Ck ∈ T . Of course, Boolean algebras and
σ-rings are semirings and there are plenty of examples of semirings which are
not an algebra or a σ-ring. (see [1] for semirings).

A subset A of a set X is called a σ-set with respect to a semiring S on
X if A = ∪∞n=1An for some sequence {An} in S. It is easy to see that if
A,A1, . . . , An are in a semiring, then A \ ∪n

i=1Ai is a σ-set, but if A ∈ S and
{An} is a sequence in S, then A \ ∪∞n=1An may not be a σ-set.

Example 1.1. i) Let X = [0, 1) and T = {[a, b) : 0 ≤ a ≤ b ≤ 1}. Then T is
a semiring on X, but {0} = X \ ∪n[ 1

n , 1) is not a σ-set in T .
ii) Let X be a set with at least two elements, T = {{x} : x ∈ X} ∪ {∅}.
Although, for each A,A1, · · · ∈ T , A \ ∪nAn is a σ-set while T is neither an
algebra nor a σ-ring on X.

This observation leads us to introduce the following notion.

Definition 1.1. A semiring S is called a σ-semiring on a set X if for each
A ∈ S and for each sequence {An} in S, the set A \ ∪nAn is a σ-set.

It should be noted that for each sequences {An},{Bn} in a σ-semiring S
there exists a disjoint sequence {Cn} in S such that ∪nAn \ ∪nBn = ∪nCn

and if µ is a measure and ∪nAn ⊂ ∪nBn, then Σnµ(An) ≤ Σnµ(Bn).
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2 The Hahn Decomposition Theorem

The classical Hahn Decomposition Theorem states that if Σ is a σ-algebra
(or a σ-ring), and µ : Σ → [−∞,∞) is a signed measure, then there exist a
positive set A and a negative set B in Σ such that A∩B = ∅ and X = A∪B.
(See [2] for a short proof.) We prove this theorem for the semiring case. First
we need the following definition.

Definition 2.1. We say that a measure µ, µ : S → [−∞,∞), on a semiring
S, satisfies the (*) property if E ∈ S, {An} a disjoint sequence in S satisfying
E = ∪nAn, then µ(E) = Σn∈Kµ(An) + Σn∈Kcµ(An) for each subset K of
natural numbers N.

It is obvious that all real valued measures on a σ-algebra satisfies the (*)
property.

Lemma 2.1. Let S be a σ-semiring on a set X and µ : S → [−∞,∞) be a
signed measure with the (*) property, E ∈ S and 0 < µ(E). Then there exists
a positive subset A of E in S with 0 < µ(A).

Proof. For each A ⊂ E, if A ∈ S, 0 ≤ µ(A), then there is not anything to
prove. So suppose the set

F = {C : A,B ∈ C ⇒ A ⊂ E,A ∈ S, µ(A) < 0 and A ∩B = ∅ if A 6= B}

is nonempty. Let C∞ be a maximal element of F with respect to inclusion.
For each natural number k, the set Ck = {A ∈ C∞ : µ(A) ≤ − 1

k} is finite. If
this were not the case we could choose a disjoint sequence {An} in Ck and let
{Bn} be a disjoint sequence in S with E \ ∪nAn = ∪nBn Then

E = (∪nAn) ∪ (∪nBn) and µ(E) = Σnµ(An) + Σnµ(Bn) = −∞+ Σnµ(Bn).

This a contradiction. Hence Ck is finite. Therefore, C∞ is at most countable.
Let C∞ = {Cn : n = 1, 2, . . . }. Choose a disjoint sequence {Dn} in S with
E \ ∪nCn = ∪nDn. Since 0 < µ(E) and µ(Cn) < 0 for each n we have

µ(E) = Σnµ(Cn) + Σnµ(Dn)

which implies that 0 < µ(Dk) for some k. If there were a subset B ⊂ Dk in S
with µ(B) < 0, then C∞ ∪ {B} ∈ F which contradicts the maximality of C∞,
so Dk is required positive set.

Lemma 2.2. Let S be a σ-semiring on a set X with X ∈ S and µ : S →
[−∞,∞) be a signed measure satisfying

α = sup{Σn
i=1µ(Ai) : 0 ≤ Ai ∈ S and Ai ∩Aj = ∅ for all i 6= j} <∞.
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Then there exist a sequence {An} of positive sets and a sequence {Bn} of
negative sets such that X = (∪nAn)∪ (∪nBn) and Ai ∩Bj = ∅ for all i and j.

Proof. We can choose an increasing sequence {tn} of natural numbers and
a finite collection of positive sets An

1 , A
n
2 , . . . , A

n
tn
∈ S for each n satisfying

An
i ∩ Am

j = ∅ for each(i ,n) 6= (j ,m) and kn = Σtn
i=1µ(An

i ) → α. Let {Bn} be
a sequence in S such that X \ ∪∞n=1 ∪

tn
i=1 A

n
i = ∪∞i=1Bi. Suppose that Bn is

not negative for some n. Then there exists k and A ∈ S, with A ⊂ Bk and
0 < µ(A). From the previous theorem, there exists 0 ≤ E ∈ S, E ⊂ A and
0 < µ(E). We choose n with α−ε ≤ kn. Since E∩An

i = ∅ for each 1 ≤ i ≤ tn,

α− ε+ µ(E) ≤ kn + µ(E) = Σtn
i=1µ(An

i ) + µ(E) ≤ α.

Since α < ∞, we have µ(E) ≤ ε. Since 0 < ε was arbitrary, we have a
contradiction to 0 < µ(E). Hence, Bn must be negative set for each n.

Lemma 2.3. Let S be a σ-semiring on a set X, X ∈ S and µ : S → [−∞,∞)
a signed measure with the (*) property. Then α < ∞, where α is as in the
previous lemma.

Proof. Let kn = Σtn
i=1µ(An

i ) → α, where {tn} is an increasing sequence
of natural numbers and {An

i : 1 ≤ i ≤ tn} disjoint collection of positive
sets for each n. Choose a disjoint sequence {Bn} of positive sets satisfying
∪n ∪tn

i=1 A
n
i = ∪nBn. and it is routine to show that for each n Σtn

i=1µ(An
i ) ≤

Σnµ(Bn). Let {Cn} be a disjoint sequence in S with X = (∪nBn) ∪ (∪nCn).
Since µ has the (*) property, we have that µ(X) = Σnµ(Bn)+Σnµ(Cn) which
implies that α ≤ Σnµ(Bn) <∞.

From the above lemmas, the proof of the following main theorem is obvious.

Theorem 2.1. Let S be a σ-semiring on a set X, X ∈ S and µ : S →
[−∞,∞) be a signed measure with (*) property. Then there exist disjoint
sequences {Pn} of positive sets and {Nn} of negative sets such that

X = (∪nPn) ∪ (∪nNn), Pn ∩Nm = ∅ for all n,m.

The following example shows that the above theorem is no longer valid
without “σ” condition.

Example 2.1. Let X = [0, 1), S = {[x, y) : 0 ≤ x, y ≤ 1} and choose
a, b ∈ R, b < −1. Let µ : S → R be defined by

µ([x, y)) : (y − x)X[x,y)(a) + (y − x− b)X[y,1)(a)

Then µ has the (*) property, X ∈ S, and S is not a σ-semiring. It is clear
that there is no positive and negative sequences as in the above theorem.
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Since every signed measure on a σ-algebra has the (*) property, from the
above theorem we immediately get the well known Hahn decomposition theo-
rem.

Corollary 2.1. (Hahn Decomposition Theorem). Let Σ be a σ-algebra on a
set X and µ be a signed measure on Σ. Then there exist a positive set P and
negative set N such that X = P ∪N and P ∩N = ∅.

The Jordan Decomposition Theorem states that for any signed measure
µ : Σ → [−∞,∞), Σ a σ-algebra, there exist measures µ1, µ2 such that µ =
µ1 − µ2. We can generalize this theorem as follows.

Theorem 2.2. Let S be a σ-semiring on X with X ∈ S. A signed measure
µ : S → [−∞,∞) satisfies the (*) property if and only if µ = µ1−µ2 for some
measures µ1, µ2.

Proof. It is obvious that if µ = µ1 − µ2 for some measures µ1, µ2, then
µ satisfies the (*) property. If µ satisfies the (*) property, choose disjoint
sequences {Pn} of positive sets and {Nn} of negative sets as in Theorem 1.1.
Let µ1(A) = Σnµ(A ∩ Pn) and µ2(A) = −Σnµ(A ∩Nn). It is obvious that µ1

and µ2 are the required measures.

Let Σ be a σ-algebra, µ a signed measure, P1, P2 positive sets and N1, N2

negative sets satisfying P1 ∩N2 = P2 ∩N2 = ∅ and X = P1 ∪N1 = P2 ∪N2.
Then it is well known that µ(P1∆P2) = µ(N1∆N2) = 0. For the σ-semirings
case this result reads as follows.

Theorem 2.3. Let S be a σ-semiring on a set X with X ∈ S and µ : S →
[−∞,∞) be a signed measure. Suppose that {Pn}, {Qn} are disjoint sequences
of positive sets, and {Nn}, {Mn} are disjoint sequences of negative sets such
that X = (∪nPn) ∪ (∪nNn) = (∪nQn) ∪ (∪nMn). Then there exist disjoint
sequences {Rn} of positive sets and {Sn} of negative sets such that ∪nRn =
(∪nPn)∆(∪nQn), ∪nSn = (∪nNn)∆(∪nMn) and µ(Rn) = µ(Sn) = 0 for each
n.

Proof. Since S is a σ-semiring, for each n there exist disjoint sequences {Un
i },

{V n
i } of positive sets such that Pn \ ∪mQm = ∪iU

n
i and Qn \ ∪mPm = ∪iV

n
i .

Now (∪nPn)∆(∪nQn) = ∪i,n(Un
i ∪ V n

i ). Since

Un
i = (∪m(Qm ∩ Un

i )) ∪ (∪m(Mm ∩ Un
i ))

and since µ has the (*) property, we have that

µ(Un
i ) = Σmµ(Qm ∩ Un

i ) + Σmµ(Mm ∩ Un
i ) = 0.
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for each i, j. Similarly, µ(V n
i ) = 0 for each i, j. Now we can set

{Rn : n = 1, 2, . . . } = {Un
i : i, n = 1, 2, . . . } ∪ {V n

i : i, n = 1, 2, . . . }.

Similarly, we can construct the sequence {Sn} of negative sets.
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