Z. Ercan, Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey. e-mail: zercan@metu.edu.tr

ON THE HAHN DECOMPOSITION THEOREM

Abstract

The purpose of this article is to prove Hahn Decomposition type and Jordan Decomposition type theorems for measures on σ-semirings. These results generalize the classical theorems for measures on σ-algebras.

1 Introduction

A nonempty set \mathcal{T} of subsets of a nonempty set X is called a semiring on X if for any given sets $A, B \in \mathcal{T}, A \cap B \in \mathcal{T}$ and $A \backslash B=\cup_{n=1}^{k} C_{n}$ for some pairwise disjoint sets $C_{1}, C_{2}, \ldots, C_{k} \in \mathcal{T}$. Of course, Boolean algebras and σ-rings are semirings and there are plenty of examples of semirings which are not an algebra or a σ-ring. (see [1] for semirings).

A subset A of a set X is called a σ-set with respect to a semiring \mathcal{S} on X if $A=\cup_{n=1}^{\infty} A_{n}$ for some sequence $\left\{A_{n}\right\}$ in \mathcal{S}. It is easy to see that if A, A_{1}, \ldots, A_{n} are in a semiring, then $A \backslash \cup_{i=1}^{n} A_{i}$ is a σ-set, but if $A \in \mathcal{S}$ and $\left\{A_{n}\right\}$ is a sequence in \mathcal{S}, then $A \backslash \cup_{n=1}^{\infty} A_{n}$ may not be a σ-set.

Example 1.1. i) Let $X=[0,1)$ and $\mathcal{T}=\{[a, b): 0 \leq a \leq b \leq 1\}$. Then \mathcal{T} is a semiring on X, but $\{0\}=X \backslash \cup_{n}\left[\frac{1}{n}, 1\right)$ is not a σ-set in \mathcal{T}.
ii) Let X be a set with at least two elements, $\mathcal{T}=\{\{x\}: x \in X\} \cup\{\emptyset\}$. Although, for each $A, A_{1}, \cdots \in \mathcal{T}, A \backslash \cup_{n} A_{n}$ is a σ-set while \mathcal{T} is neither an algebra nor a σ-ring on X.

This observation leads us to introduce the following notion.
Definition 1.1. A semiring \mathcal{S} is called a σ-semiring on a set X if for each $A \in \mathcal{S}$ and for each sequence $\left\{A_{n}\right\}$ in \mathcal{S}, the set $A \backslash \cup_{n} A_{n}$ is a σ-set.

It should be noted that for each sequences $\left\{A_{n}\right\},\left\{B_{n}\right\}$ in a σ-semiring \mathcal{S} there exists a disjoint sequence $\left\{C_{n}\right\}$ in \mathcal{S} such that $\cup_{n} A_{n} \backslash \cup_{n} B_{n}=\cup_{n} C_{n}$ and if μ is a measure and $\cup_{n} A_{n} \subset \cup_{n} B_{n}$, then $\Sigma_{n} \mu\left(A_{n}\right) \leq \Sigma_{n} \mu\left(B_{n}\right)$.

Key Words: Semirings, positive-negative sets, Hahn decomposition theorem
Mathematical Reviews subject classification: Primary: 28A12, Secondary:28A95
Received by the editors August 5, 2002

2 The Hahn Decomposition Theorem

The classical Hahn Decomposition Theorem states that if Σ is a σ-algebra (or a σ-ring), and $\mu: \Sigma \rightarrow[-\infty, \infty)$ is a signed measure, then there exist a positive set A and a negative set B in Σ such that $A \cap B=\emptyset$ and $X=A \cup B$. (See [2] for a short proof.) We prove this theorem for the semiring case. First we need the following definition.

Definition 2.1. We say that a measure $\mu, \mu: \mathcal{S} \rightarrow[-\infty, \infty)$, on a semiring \mathcal{S}, satisfies the $\left(^{*}\right)$ property if $E \in \mathcal{S},\left\{A_{n}\right\}$ a disjoint sequence in \mathcal{S} satisfying $E=\cup_{n} A_{n}$, then $\mu(E)=\Sigma_{n \in K} \mu\left(A_{n}\right)+\Sigma_{n \in K^{c}} \mu\left(A_{n}\right)$ for each subset K of natural numbers \mathbb{N}.

It is obvious that all real valued measures on a σ-algebra satisfies the $\left(^{*}\right)$ property.

Lemma 2.1. Let \mathcal{S} be a σ-semiring on a set X and $\mu: \mathcal{S} \rightarrow[-\infty, \infty)$ be a signed measure with the (${ }^{*}$) property, $E \in \mathcal{S}$ and $0<\mu(E)$. Then there exists a positive subset A of E in \mathcal{S} with $0<\mu(A)$.

Proof. For each $A \subset E$, if $A \in \mathcal{S}, 0 \leq \mu(A)$, then there is not anything to prove. So suppose the set

$$
\mathcal{F}=\{\mathcal{C}: A, B \in \mathcal{C} \Rightarrow A \subset E, A \in \mathcal{S}, \mu(A)<0 \text { and } A \cap B=\emptyset \text { if } A \neq B\}
$$

is nonempty. Let \mathcal{C}_{∞} be a maximal element of \mathcal{F} with respect to inclusion. For each natural number k, the set $\mathcal{C}_{k}=\left\{A \in \mathcal{C}_{\infty}: \mu(A) \leq-\frac{1}{k}\right\}$ is finite. If this were not the case we could choose a disjoint sequence $\left\{A_{n}\right\}$ in \mathcal{C}_{k} and let $\left\{B_{n}\right\}$ be a disjoint sequence in \mathcal{S} with $E \backslash \cup_{n} A_{n}=\cup_{n} B_{n}$ Then
$E=\left(\cup_{n} A_{n}\right) \cup\left(\cup_{n} B_{n}\right)$ and $\mu(E)=\Sigma_{n} \mu\left(A_{n}\right)+\Sigma_{n} \mu\left(B_{n}\right)=-\infty+\Sigma_{n} \mu\left(B_{n}\right)$.
This a contradiction. Hence \mathcal{C}_{k} is finite. Therefore, \mathcal{C}_{∞} is at most countable. Let $\mathcal{C}_{\infty}=\left\{C_{n}: n=1,2, \ldots\right\}$. Choose a disjoint sequence $\left\{D_{n}\right\}$ in \mathcal{S} with $E \backslash \cup_{n} C_{n}=\cup_{n} D_{n}$. Since $0<\mu(E)$ and $\mu\left(C_{n}\right)<0$ for each n we have

$$
\mu(E)=\Sigma_{n} \mu\left(C_{n}\right)+\Sigma_{n} \mu\left(D_{n}\right)
$$

which implies that $0<\mu\left(D_{k}\right)$ for some k. If there were a subset $B \subset D_{k}$ in \mathcal{S} with $\mu(B)<0$, then $\mathcal{C}_{\infty} \cup\{B\} \in \mathcal{F}$ which contradicts the maximality of \mathcal{C}_{∞}, so D_{k} is required positive set.

Lemma 2.2. Let \mathcal{S} be a σ-semiring on a set X with $X \in \mathcal{S}$ and $\mu: \mathcal{S} \rightarrow$ $[-\infty, \infty)$ be a signed measure satisfying

$$
\alpha=\sup \left\{\Sigma_{i=1}^{n} \mu\left(A_{i}\right): 0 \leq A_{i} \in \mathcal{S} \text { and } A_{i} \cap A_{j}=\emptyset \text { for all } i \neq j\right\}<\infty
$$

Then there exist a sequence $\left\{A_{n}\right\}$ of positive sets and a sequence $\left\{B_{n}\right\}$ of negative sets such that $X=\left(\cup_{n} A_{n}\right) \cup\left(\cup_{n} B_{n}\right)$ and $A_{i} \cap B_{j}=\emptyset$ for all i and j.

Proof. We can choose an increasing sequence $\left\{t_{n}\right\}$ of natural numbers and a finite collection of positive sets $A_{1}^{n}, A_{2}^{n}, \ldots, A_{t_{n}}^{n} \in \mathcal{S}$ for each n satisfying $A_{i}^{n} \cap A_{j}^{m}=\emptyset$ for $\operatorname{each}(i, n) \neq(j, m)$ and $k_{n}=\Sigma_{i=1}^{t_{n}} \mu\left(A_{i}^{n}\right) \rightarrow \alpha$. Let $\left\{B_{n}\right\}$ be a sequence in \mathcal{S} such that $X \backslash \cup_{n=1}^{\infty} \cup_{i=1}^{t_{n}} A_{i}^{n}=\cup_{i=1}^{\infty} B_{i}$. Suppose that B_{n} is not negative for some n. Then there exists k and $A \in \mathcal{S}$, with $A \subset B_{k}$ and $0<\mu(A)$. From the previous theorem, there exists $0 \leq E \in \mathcal{S}, E \subset A$ and $0<\mu(E)$. We choose n with $\alpha-\epsilon \leq k_{n}$. Since $E \cap A_{i}^{n}=\emptyset$ for each $1 \leq i \leq t_{n}$,

$$
\alpha-\epsilon+\mu(E) \leq k_{n}+\mu(E)=\Sigma_{i=1}^{t_{n}} \mu\left(A_{i}^{n}\right)+\mu(E) \leq \alpha
$$

Since $\alpha<\infty$, we have $\mu(E) \leq \epsilon$. Since $0<\epsilon$ was arbitrary, we have a contradiction to $0<\mu(E)$. Hence, B_{n} must be negative set for each n.

Lemma 2.3. Let \mathcal{S} be a σ-semiring on a set $X, X \in \mathcal{S}$ and $\mu: \mathcal{S} \rightarrow[-\infty, \infty)$ a signed measure with the $\left({ }^{*}\right)$ property. Then $\alpha<\infty$, where α is as in the previous lemma.
Proof. Let $k_{n}=\Sigma_{i=1}^{t_{n}} \mu\left(A_{i}^{n}\right) \rightarrow \alpha$, where $\left\{t_{n}\right\}$ is an increasing sequence of natural numbers and $\left\{A_{i}^{n}: 1 \leq i \leq t_{n}\right\}$ disjoint collection of positive sets for each n. Choose a disjoint sequence $\left\{B_{n}\right\}$ of positive sets satisfying $\cup_{n} \cup_{i=1}^{t_{n}} A_{i}^{n}=\cup_{n} B_{n}$. and it is routine to show that for each $n \Sigma_{i=1}^{t_{n}} \mu\left(A_{i}^{n}\right) \leq$ $\Sigma_{n} \mu\left(B_{n}\right)$. Let $\left\{C_{n}\right\}$ be a disjoint sequence in \mathcal{S} with $X=\left(\cup_{n} B_{n}\right) \cup\left(\cup_{n} C_{n}\right)$. Since μ has the (*) property, we have that $\mu(X)=\Sigma_{n} \mu\left(B_{n}\right)+\Sigma_{n} \mu\left(C_{n}\right)$ which implies that $\alpha \leq \Sigma_{n} \mu\left(B_{n}\right)<\infty$.

From the above lemmas, the proof of the following main theorem is obvious.
Theorem 2.1. Let \mathcal{S} be a σ-semiring on a set $X, X \in \mathcal{S}$ and $\mu: \mathcal{S} \rightarrow$ $[-\infty, \infty)$ be a signed measure with (*) property. Then there exist disjoint sequences $\left\{P_{n}\right\}$ of positive sets and $\left\{N_{n}\right\}$ of negative sets such that

$$
X=\left(\cup_{n} P_{n}\right) \cup\left(\cup_{n} N_{n}\right), P_{n} \cap N_{m}=\emptyset \text { for all } n, m
$$

The following example shows that the above theorem is no longer valid without " σ " condition.

Example 2.1. Let $X=[0,1), \mathcal{S}=\{[x, y): 0 \leq x, y \leq 1\}$ and choose $a, b \in \mathbb{R}, b<-1$. Let $\mu: \mathcal{S} \rightarrow \mathbb{R}$ be defined by

$$
\mu([x, y)):(y-x) \mathcal{X}_{[x, y)}(a)+(y-x-b) \mathcal{X}_{[y, 1)}(a)
$$

Then μ has the $\left(^{*}\right)$ property, $X \in \mathcal{S}$, and \mathcal{S} is not a σ-semiring. It is clear that there is no positive and negative sequences as in the above theorem.

Since every signed measure on a σ-algebra has the $\left(^{*}\right)$ property, from the above theorem we immediately get the well known Hahn decomposition theorem.

Corollary 2.1. (Hahn Decomposition Theorem). Let Σ be a σ-algebra on a set X and μ be a signed measure on Σ. Then there exist a positive set P and negative set N such that $X=P \cup N$ and $P \cap N=\emptyset$.

The Jordan Decomposition Theorem states that for any signed measure $\mu: \Sigma \rightarrow[-\infty, \infty), \Sigma$ a σ-algebra, there exist measures μ_{1}, μ_{2} such that $\mu=$ $\mu_{1}-\mu_{2}$. We can generalize this theorem as follows.

Theorem 2.2. Let \mathcal{S} be a σ-semiring on X with $X \in \mathcal{S}$. A signed measure $\mu: \mathcal{S} \rightarrow[-\infty, \infty)$ satisfies the $\left(^{*}\right)$ property if and only if $\mu=\mu_{1}-\mu_{2}$ for some measures μ_{1}, μ_{2}.

Proof. It is obvious that if $\mu=\mu_{1}-\mu_{2}$ for some measures μ_{1}, μ_{2}, then μ satisfies the $\left(^{*}\right)$ property. If μ satisfies the $\left(^{*}\right)$ property, choose disjoint sequences $\left\{P_{n}\right\}$ of positive sets and $\left\{N_{n}\right\}$ of negative sets as in Theorem 1.1. Let $\mu_{1}(A)=\Sigma_{n} \mu\left(A \cap P_{n}\right)$ and $\mu_{2}(A)=-\Sigma_{n} \mu\left(A \cap N_{n}\right)$. It is obvious that μ_{1} and μ_{2} are the required measures.

Let Σ be a σ-algebra, μ a signed measure, P_{1}, P_{2} positive sets and N_{1}, N_{2} negative sets satisfying $P_{1} \cap N_{2}=P_{2} \cap N_{2}=\emptyset$ and $X=P_{1} \cup N_{1}=P_{2} \cup N_{2}$. Then it is well known that $\mu\left(P_{1} \Delta P_{2}\right)=\mu\left(N_{1} \Delta N_{2}\right)=0$. For the σ-semirings case this result reads as follows.

Theorem 2.3. Let \mathcal{S} be a σ-semiring on a set X with $X \in \mathcal{S}$ and $\mu: \mathcal{S} \rightarrow$ $[-\infty, \infty)$ be a signed measure. Suppose that $\left\{P_{n}\right\},\left\{Q_{n}\right\}$ are disjoint sequences of positive sets, and $\left\{N_{n}\right\},\left\{M_{n}\right\}$ are disjoint sequences of negative sets such that $X=\left(\cup_{n} P_{n}\right) \cup\left(\cup_{n} N_{n}\right)=\left(\cup_{n} Q_{n}\right) \cup\left(\cup_{n} M_{n}\right)$. Then there exist disjoint sequences $\left\{R_{n}\right\}$ of positive sets and $\left\{S_{n}\right\}$ of negative sets such that $\cup_{n} R_{n}=$ $\left(\cup_{n} P_{n}\right) \Delta\left(\cup_{n} Q_{n}\right), \cup_{n} S_{n}=\left(\cup_{n} N_{n}\right) \Delta\left(\cup_{n} M_{n}\right)$ and $\mu\left(R_{n}\right)=\mu\left(S_{n}\right)=0$ for each n.

Proof. Since \mathcal{S} is a σ-semiring, for each n there exist disjoint sequences $\left\{U_{i}^{n}\right\}$, $\left\{V_{i}^{n}\right\}$ of positive sets such that $P_{n} \backslash \cup_{m} Q_{m}=\cup_{i} U_{i}^{n}$ and $Q_{n} \backslash \cup_{m} P_{m}=\cup_{i} V_{i}^{n}$. Now $\left(\cup_{n} P_{n}\right) \Delta\left(\cup_{n} Q_{n}\right)=\cup_{i, n}\left(U_{i}^{n} \cup V_{i}^{n}\right)$. Since

$$
U_{i}^{n}=\left(\cup_{m}\left(Q_{m} \cap U_{i}^{n}\right)\right) \cup\left(\cup_{m}\left(M_{m} \cap U_{i}^{n}\right)\right)
$$

and since μ has the $\left(^{*}\right)$ property, we have that

$$
\mu\left(U_{i}^{n}\right)=\Sigma_{m} \mu\left(Q_{m} \cap U_{i}^{n}\right)+\Sigma_{m} \mu\left(M_{m} \cap U_{i}^{n}\right)=0
$$

for each i, j. Similarly, $\mu\left(V_{i}^{n}\right)=0$ for each i, j. Now we can set

$$
\left\{R_{n}: n=1,2, \ldots\right\}=\left\{U_{i}^{n}: i, n=1,2, \ldots\right\} \cup\left\{V_{i}^{n}: i, n=1,2, \ldots\right\}
$$

Similarly, we can construct the sequence $\left\{S_{n}\right\}$ of negative sets.

References

[1] C. D. Aliprantis and O. Burkinshaw, Principles of Real Analysis, Academic Press (third edition), 1998.
[2] R. Doss, The Hahn decomposition theorem, Proc. Amer. Math. Soc., 80, (1980), 377.

