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MAXIMAL CLASSES FOR THE FAMILY OF
STRONG ŚWIA̧TKOWSKI FUNCTIONS

Abstract

In this paper we introduce the class of extra strong Świa̧tkowski
functions, and we characterize the following maximal classes for the
families of strong Świa̧tkowski and extra strong Świa̧tkowski functions:
the maximal additive class, the maximal multiplicative class, and the
maximal class with respect to maximums.

1 Preliminaries

The letters R, Q, and N denote the real line, the set of rationals, and the set
of positive integers, respectively. The symbol I(a, b) denotes the open interval
with endpoints a and b. For each A ⊂ R we use the symbols clA, cardA,
and χ

A to denote the closure, the cardinality, and the characteristic function
of A, respectively.

Let I be a nondegenerate interval and f : I → R. The symbols C(f)
and A(f) will stand for the set of all points of continuity of f and the set
of all local maximums (not necessarily strict) of f , respectively. We say that
f is a Darboux function (f ∈ D), if it maps connected sets onto connected
sets. We say that f is a strong Świa̧tkowski function [1] (f ∈ Śs), if whenever
α, β ∈ I, α < β, and y ∈ I

(
f(α), f(β)

)
, there is an x0 ∈ (α, β) ∩ C(f) such

that f(x0) = y. We will say that f is an extra strong Świa̧tkowski function
(f ∈ Śes), if f

[
[a, b]

]
= f

[
[a, b] ∩ C(f)

]
for all a, b ∈ I, a < b. (Clearly

Śes ⊂ Śs ⊂ D and both inclusions are proper.) Finally f ∈ Const iff f [I] is
a singleton. Moreover, for each x ∈ I we write lim(f, x) = limt→x f(x), and
similarly we define the symbols lim(f, x−) and lim(f, x+).

Key Words: Darboux function, strong Świa̧tkowski function, extra strong Świa̧tkowski
function.

Mathematical Reviews subject classification: Primary 26A21, 54C30. Secondary 26A15,
54C08.

Received by the editors September 27, 2002
∗Supported by Bydgoszcz Academy.

429



430 Paulina Szczuka

If L and L1 are families of real functions, then we define:

Ma(L1,L) =
{
f : (∀g ∈ L1) f + g ∈ L

}
,

Mm(L1,L) =
{
f : (∀g ∈ L1) fg ∈ L

}
,

Mmax(L1,L) =
{
f : (∀g ∈ L1) max{f, g} ∈ L

}
.

Moreover we let

Ma(L) =Ma(L,L), Mm(L) =Mm(L,L), Mmax(L) =Mmax(L,L).

The above classes are called the maximal additive class for L, the maximal
multiplicative class for L, and the maximal class with respect to maximums
for L, respectively.

Remark 1.1. Clearly if L′ ⊂ L and L′1 ⊃ L1, thenMa(L′1,L
′) ⊂Ma(L1,L).

Similar inclusions hold for Mm and Mmax.

2 Auxiliary Lemmas

First we will show some properties of extra strong Świa̧tkowski functions.

Lemma 2.1. Let f : R → R and x0 ∈ R. Assume that f�(−∞, x0) ∈ Śes,
x0 ∈ C(f), and f�(x0,∞) ∈ Śes. Then f ∈ Śes.

Proof. Let α < β. We can assume that α ≤ x0 ≤ β. Since f�(−∞, x0) ∈ Śes,
we have

f
[
[α, x0)

]
= f

[⋃
n∈N [α, x0 − 1/n]

]
=
⋃
n∈N f

[
[α, x0 − 1/n]

]
=
⋃
n∈N f

[
[α, x0 − 1/n] ∩ C(f)

]
= f

[
[α, x0) ∩ C(f)

]
.

Similarly, since f�(x0,∞) ∈ Śes, we have f
[
(x0, β]

]
= f

[
(x0, β]∩C(f)

]
. Hence

f
[
[α, β]

]
= f

[
[α, x0)

]
∪
{
f(x0)

}
∪ f
[
(x0, β]

]
= f

[
[α, x0) ∩ C(f)

]
∪
{
f(x0)

}
∪ f
[
(x0, β] ∩ C(f)

]
= f

[
[α, β] ∩ C(f)

]
.

Consequently, f ∈ Śes.

Lemma 2.2. Let f : R → R and x0 ∈ R. Assume that f�(−∞, x0] ∈ Const,
f�(x0,∞) ∈ Śes, and f(x0) ∈

⋂
δ>0 f

[
[x0, x0 + δ] ∩ C(f)

]
. Then, f ∈ Śes.
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Proof. Let α < β. We may assume that α = x0 and x0 /∈ C(f). (Cf.
Lemma 2.1.) Since f�(x0,∞) ∈ Śes, we have f

[
(x0, β]

]
= f

[
(x0, β] ∩ C(f)

]
.

Using the assumptions, we obtain f(x0) ∈ f
[
(x0, β] ∩ C(f)

]
. Hence

f
[
[x0, β]

]
=
{
f(x0)

}
∪ f
[
(x0, β]

]
=
{
f(x0)

}
∪ f
[
(x0, β] ∩ C(f)

]
= f

[
(x0, β] ∩ C(f)

]
= f

[
[x0, β] ∩ C(f)

]
.

Consequently, f ∈ Śes.

Lemma 2.3. If f, ϕ ∈ Śes, then f ◦ ϕ ∈ Śes.

Proof. Let α < β. We consider two cases.
Case 1. ϕ�[α, β] ∈ Const.

Then (f ◦ ϕ)�[α, β] ∈ Const ⊂ Śes and

(f ◦ ϕ)
[
[α, β]

]
= (f ◦ ϕ)

[
[α, β] ∩ C(f ◦ ϕ)

]
.

Case 2. ϕ�[α, β] /∈ Const.
Since ϕ ∈ Śes, ϕ

[
[α, β]

]
is a nondegenerate interval. Since f ∈ Śes,

f
[
ϕ
[
[α, β]

]]
= f

[
ϕ
[
[α, β]

]
∩ C(f)

]
.

Hence

(f ◦ ϕ)
[
[α, β]

]
= f

[
ϕ
[
[α, β]

]]
= f

[
ϕ
[
[α, β] ∩ C(ϕ)

]]
= f

[
ϕ
[
[α, β] ∩ C(ϕ)

]
∩ C(f)

]
⊂ f

[
ϕ
[
[α, β] ∩ C(f ◦ ϕ)

]]
= (f ◦ ϕ)

[
[α, β] ∩ C(f ◦ ϕ)

]
.

Consequently, f ◦ ϕ ∈ Śes.

The next three lemmas are purely technical. The first one is probably
known, but I could not find an appropriate reference.

Lemma 2.4. If f : R→ R, then the set f [A(f)] is at most countable.

Proof. Let y ∈ f [A(f)]. Then y = f(x) for some x ∈ A(f). Choose arbitrary
px, qx ∈ Q such that px < x < qx and f(t) ≤ y for each t ∈ (px, qx). Define
the function ϕ : f [A(f)] → Q2 by ϕ(y) = (px, qx). If ϕ(y1) = ϕ(y2), then
(px1 , qx1) = (px2 , qx2) for some x1, x2 ∈ A(f) such that f(x1) = y1 and f(x2) =
y2. Then x2 ∈ (px1 , qx1), so y2 ≤ y1, and similarly y1 ≤ y2. Whence y1 = y2.
We proved that ϕ is an injection. Consequently, card f [A(f)] ≤ card Q2, which
completes the proof.
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Lemma 2.5. If f ∈ Śs \ Const, then there are a < b such that f�[a, b] is
bounded and nonconstant.

Proof. Define S =
{
x ∈ R : lim

(
|f |, x

)
= ∞

}
. Then S is closed. Let

{In : n ∈ N} be a family of compact intervals such that R \ S =
⋃
n∈N In.

Since f ∈ Śs \ Const, f
[
C(f)

]
is a nondegenerate interval. One can easily see

that f [C(f)] ⊂ f [R \ S] =
⋃
n∈N f [In]. So, there is an n ∈ N such that f [In] is

not a singleton. Then f�In /∈ Const and lim
(
|f |, x

)
<∞ for each x ∈ In. But

In is compact; so f�In is bounded.

Lemma 2.6. Let I be an open interval (maybe unbounded) and f : I → R.
If f ∈ Śs is a nonconstant upper semicontinuous function, then there is an
x0 /∈ A(f) and a δ > 0 such that (x0 − δ, x0 + δ) ⊂ I and either

f(x) < f(x0) for each x ∈ (x0 − δ, x0) (1)

or

f(x) < f(x0) for each x ∈ (x0, x0 + δ). (2)

Proof. Let a, b ∈ I, a < b, and f(a) 6= f(b). We may assume that a, b ∈ C(f)
and f(a) < f(b). (The case f(a) > f(b) is analogous.) By Lemma 2.4, we
can choose a y ∈

(
f(a), f(b)

)
\ f [A(f)]. Since f(b) > y and b ∈ C(f), we can

define
x0 = inf

{
x ∈ [a, b) : f(x) ≥ y

}
.

Recall that a ∈ C(f) and f(a) < y. So, x0 > a. Let δ = x0−a > 0. Notice that
if x ∈ (x0−δ, x0) = (a, x0), then f(x) < y. To complete the proof we will show
that f(x0) = y. Since f ∈ D, we have f(x0) ≤ lim(f, x−0 ) ≤ y. On the other
hand, since f is upper semicontinuous and x0 < b, f(x0) ≥ lim(f, x+

0 ) ≥ y.
Hence f(x0) = y.

3 Main Results

First we consider the maximal additive classes for the families of strong Świa̧t-
kowski and extra strong Świa̧tkowski functions.

Theorem 3.1. Ma(Śes, Śs) ⊂ Const.

Proof. Let f /∈ Const. We will show that f /∈ Ma(Śes, Śs). If f /∈ Śs, then
since χ∅ ∈ Śes and f = f + χ∅ /∈ Śs, we obtain f /∈ Ma(Śes, Śs). So, we may
assume that f ∈ Śs. By Lemma 2.5, there are a < b such that f�[a, b] /∈ Const
and f is bounded on [a, b]. Then clearly f�(a, b) /∈ Const.
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First suppose (a, b) ⊂ C(f). By Lemma 2.6, there is an x0 ∈ (a, b) \ A(f)
and a δ ∈ (0, x0 − a) such that; e.g., condition (1) holds. (Similarly we can
proceed if there is an x0 ∈ (a, b) \ A(f) and a δ ∈ (0, b − x0) such that
condition (2) holds.) Since x /∈ A(f), we may choose a sequence (xi) ⊂ (x0, b)
such that xi ↘ x0 and f(xi) > f(x0) for each i. Define

g(x) =

{
0 if x ∈ (−∞, x0] ∪ [x1,∞),
gi(x) if x ∈ [xi+1, xi], i ∈ N,

where

gi(x) = max
{

2
(
f(x0)− f(x)

)
, 1−

(
2|x− (xi+1 + xi)/2|

)
/(xi − xi+1)

}
.

Then x0 is the only point of discontinuity of g, and by Lemma 2.2, g ∈ Śes.
We will show that f + g /∈ Śs.

Put α = x0 − δ/2 and β = x1. Notice that by (1), for each x ∈ [α, x0)
we have (f + g)(x) = f(x) < f(x0). Hence f(x0) ∈

(
(f + g)(α), (f + g)(β)

)
.

Fix an x ∈ (x0, β). Then x ∈ [xi+1, xi) for some i ∈ N. We will show that
(f + g)(x) > f(x0). We consider three cases:

• If f(x) < f(x0), then

(f + g)(x) = (f + gi)(x) ≥ f(x) + 2f(x0)− 2f(x) > f(x0).

• If x = xi+1, then (f + g)(x) = f(x) > f(x0).

• If f(x) ≥ f(x0) and x 6= xi+1, then

(f+g)(x) ≥ f(x)+1−
(
2|x−(xi+1+xi)/2|

)/
(xi−xi+1) > f(x) ≥ f(x0).

Finally observe that x0 /∈ C(f + g). So, (f + g)(x) 6= f(x0) for each x ∈
(α, β) ∩ C(f + g) and f + g /∈ Śs. Now let (a, b) \ C(f) 6= ∅. Without loss of
generality we may assume that f(x0) < lim(f, x+

0 ) for some x0 ∈ (a, b). Choose
a y ∈

(
f(x0), lim(f, x+

0 )
)
. Since f ∈ Śs, there is a sequence (xi) ⊂ (x0, b)∩C(f)

such that xi ↘ x0 and f(xi) = y for each i. For each i, by [2, Lemma 4.1], there
is a continuous function gi : [xi+1, xi] → R such that gi = −y on {xi+1, xi}
and gi > −f on (xi+1, xi). Let

g(x) =

{
−y if x ∈ (−∞, x0] ∪ [x1,∞),
gi(x) if x ∈ [xi+1, xi], i ∈ N.

Then x0 is the only point of discontinuity of g, and by Lemma 2.2, g ∈ Śes.
We will show that f + g /∈ D ⊃ Śs.
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If x ∈ (x0, x1), then x ∈ [xi+1, xi) for some i ∈ N, whence

(f + g)(x) = (f + gi)(x) ≥ 0 > f(x0)− y = (f + g)(x0).

Consequently, f /∈Ma(Śes, Śs).

Clearly Const ⊂ Ma(Śs) ∩ Ma(Śes). So, using Theorem 3.1 and Re-
mark 1.1, we obtain the following corollary.

Corollary 3.2. Ma(Śs) =Ma(Śes) =Ma(Śes, Śs) = Const.

Now we turn to the maximal multiplicative classes for the families of strong
Świa̧tkowski and extra strong Świa̧tkowski functions.

Theorem 3.3. Mm(Śes, Śs) ⊂ Const.

Proof. Let f ∈ Mm(Śes, Śs). Since χR ∈ Śes, we obtain f = f · χR ∈ Śs.
We will show that f [C(f)] ⊂ f [A(f)] ∪ {0}. Let z ∈ f [C(f)] \ {0}. Then
z = f(x) for some x ∈ C(f). Assume that z > 0. (The other case is similar.)
There is an open interval I such that x ∈ I and f�I > 0. Let ϕ : I → R be
an increasing homeomorphism. Define ψ = ln ◦f ◦ ϕ−1. We will show that
ψ ∈Ma(Śes, Śs). Let g ∈ Śes, α < β and y ∈ I

(
(ψ + g)(α), (ψ + g)(β)

)
. Put

ḡ(x) =

{
exp
(
g
(
ϕ(x)

))
if x ∈

[
ϕ−1(α), ϕ−1(β)

]
,

constant on
(
−∞, ϕ−1(α)

]
and

[
ϕ−1(β),∞

)
.

Then by Lemmas 2.3 and 2.2, ḡ ∈ Śes.
For each x ∈

[
ϕ−1(α), ϕ−1(β)

]
⊂ I we have

(fḡ)(x) =
(
(f ◦ ϕ−1)(ḡ ◦ ϕ−1)

)(
ϕ(x)

)
=
(
(exp ◦ψ)(exp ◦g)

)(
ϕ(x)

)
=
(
exp ◦(ψ + g)

)(
ϕ(x)

)
.

Whence (
ln ◦(fḡ) ◦ ϕ−1

)(
ϕ(x)

)
=
(
ψ + g

)(
ϕ(x)

)
. (3)

Recall that y ∈ I
(
(ψ + g)(α), (ψ + g)(β)

)
. Hence

exp(y) ∈ I
((

exp ◦(ψ + g)
)
(α),

(
exp ◦(ψ + g)

)
(β)
)

= I
(
(fḡ)

(
ϕ−1(α)

)
, (fḡ)

(
ϕ−1(β)

))
.

By assumption, f ∈ Mm(Śes, Śs). Thus fḡ ∈ Śs, and (fḡ)(x0) = exp(y) for
some x0 ∈

(
ϕ−1(α), ϕ−1(β)

)
∩C(fḡ). Since ϕ is a homeomorphism, (fḡ)◦ϕ−1
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is continuous at ϕ(x0). So by (3), ϕ(x0) ∈ (α, β) ∩ C(ψ + g). One can easily
see that

(
ψ + g

)(
ϕ(x0)

)
= y, and consequently, ψ + g ∈ Śs.

We showed that ψ ∈Ma(Śes, Śs). So by Theorem 3.1, ψ ∈ Const. But for
each x ∈ I we have(

ln ◦f
)
(x) =

(
ln ◦f ◦ ϕ−1

)(
ϕ(x)

)
= ψ

(
ϕ(x)

)
.

So f�I ∈ Const and finally z ∈ A(f). Since f ∈ Śs, the set f [C(f)] ⊂ f [A(f)]∪
{0} is connected. By Lemma 2.4, the set f [C(f)] is at most countable. Whence
f [C(f)] = {y} for some y ∈ R. But

(
inf f [R], sup f [R]

)
⊂ f [C(f)] = {y}; so

f ∈ Const.

Clearly Const ⊂ Mm(Śs) ∩ Mm(Śes). So, using Theorem 3.3 and Re-
mark 1.1, we obtain the following corollary.

Corollary 3.4. Mm(Śs) =Mm(Śes) =Mm(Śes, Śs) = Const.

Finally we will characterize the maximal classes with respect to maximums
for the families of strong Świa̧tkowski and extra strong Świa̧tkowski functions.

Theorem 3.5. Mmax(Śes, Śs) ⊂ Const.

Proof. Let f /∈ Const. We will show that f /∈ Mmax(Śes, Śs). If f /∈ Śs,
then there are α < β and y ∈ I

(
f(α), f(β)

)
such that f(x) 6= y for each

x ∈ (α, β)∩ C(f). Put g = min
{
f(α), f(β)

}
and h = max{f, g}. Then clearly

g ∈ Śes, y ∈ I
(
h(α), h(β)

)
and h(x) 6= y for each x ∈ (α, β) ∩ C(h). Whence

h /∈ Śs. So, f /∈Mmax(Śes, Śs), and we may assume that f ∈ Śs.
Now assume that f is upper semicontinuous. By Lemma 2.6, there are an

x0 /∈ A(f) and a δ > 0 such that; e.g., condition (1) holds. (Similarly we can
proceed if there are an x0 /∈ A(f) and a δ > 0 such that condition (2) holds.)
Choose a sequence (xi) such that xi ↘ x0 and f(xi) > f(x0) for each i. Since
f ∈ Śs, we may assume that (xi) ⊂ C(f). For each i, since xi ∈ C(f), there is
a δi > 0 such that f(x) > f(x0) for each x ∈ (xi − δi, xi + δi). Without loss
of generality we may assume that xi+1 + δi+1 < xi − δi for each i ∈ N. Let

g(x) =


f(x0)− 1 if x ∈ (−∞, x0] ∪ {xi : i ∈ N} ∪ [x1,∞),
f(x0) + 1 if x ∈

⋃∞
i=1[xi+1 + δi+1, xi − δi],

linear in each interval [xi+1, xi+1 + δi+1] and [xi − δi, xi].

Then x0 is the only point of discontinuity of g, and by Lemma 2.2, g ∈ Śes.
We will show that h = max{f, g} /∈ Śs.
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Put α = x0− δ/2 and β = x1− δ1. Notice that by (1), for each x ∈ [α, x0)
we have h(x) = max

{
f(x), f(x0) − 1

}
< f(x0). Hence f(x0) ∈

(
h(α), h(β)

)
.

Fix an x ∈ (x0, β). Then x ∈ [xi+1, xi) for some i ∈ N. We will show that
h(x) > f(x0). We consider two cases.

• If x ∈ [xi+1, xi+1 + δi+1) ∪ (xi − δi, xi), then h(x) ≥ f(x) > f(x0).

• If x ∈ [xi+1 + δi+1, xi − δi], then h(x) ≥ g(x) > f(x0).

Finally, observe that

lim(h, x+
0 ) ≥ lim(g, x+

0 ) = f(x0) + 1 > f(x0) = h(x0),

so x0 /∈ C(h). So, h(x) 6= f(x0) for each x ∈ (α, β) ∩ C(h) and h /∈ Śs.
Consequently, f /∈ Mmax(Śes, Śs), and we may assume that f is not upper
semicontinuous.

We will assume that f(x0) < lim(f, x+
0 ) for some x0 ∈ R. (The case

f(x0) < lim(f, x−0 ) for some x0 ∈ R is similar.) Let y ∈
(
f(x0), lim(f, x+

0 )
)
.

There is a sequence (xi) ⊂ C(f) such that xi ↘ x0 and f(xi) > y for each i.
For each i, since xi ∈ C(f), there is a δi > 0 such that f(x) > y > f(x0) for
each x ∈ (xi−δi, xi+δi). Without loss we may assume that xi+1+δi+1 < xi−δi
for each i ∈ N. Let

g(x) =


f(x0) if x ∈ (−∞, x0] ∪ {xi : i ∈ N} ∪ [x1,∞),
y if x ∈

⋃∞
i=1[xi+1 + δi+1, xi − δi],

linear in each interval [xi+1, xi+1 + δi+1] and [xi − δi, xi].

Then x0 is the only point of discontinuity of g, and by Lemma 2.2, g ∈ Śes.
We will show that h = max{f, g} /∈ D ⊃ Śs. If x ∈ (x0, x1), then x ∈ [xi+1, xi)
for some i ∈ N: so

• either x ∈ [xi+1, xi+1 + δi+1) ∪ (xi − δi, xi) and h(x) ≥ f(x) > y,

• or x ∈ [xi+1 + δi+1, xi − δi] and h(x) ≥ g(x) = y.

But y > f(x0) = h(x0). Consequently, f /∈Mmax(Śes, Śs).

Clearly Const ⊂ Mmax(Śs) ∩ Mmax(Śes). So, using Theorem 3.5 and
Remark 1.1, we obtain the following corollary.

Corollary 3.6. Mmax(Śs) =Mmax(Śes) =Mmax(Śes, Śs) = Const.
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4 An Excerpt from [2]

Lemma 4.1. If g : [a, b] → (−∞,M) is upper semicontinuous both at a and
at b, then there is a continuous function ψ : [a, b]→ [min{g(a), g(b)},M ] such
that ψ = g on {a, b} and ψ > g on (a, b).

Proof. Let δ0 = (b− a)/2. For each n ∈ N find a δn ∈ (0, δn−1/2) such that
g < g(a) + n−1 on [a, a+ δn] and g < g(b) + n−1 on [b− δn, b]. Define

ψ(x) =


M if x ∈ [a+ δ1, b− δ1],
g(a) + n−1 if x = a+ δn+1, n ∈ N,
g(b) + n−1 if x = b− δn+1, n ∈ N,
g(x) if x ∈ {a, b},

and let ψ be linear in each interval [a+δn+1, a+δn] or [b−δn, b−δn+1] (n ∈ N).
One can easily see that ψ has all required properties.
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