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TYPICAL PROPERTIES OF CORRELATION
DIMENSION

Abstract

Let (X, p) be a complete separable metric space and M be the set
of all probability Borel measures on X. We show that if the space
M is equipped with the weak topology, the set of measures having the
upper (resp. lower) correlation dimension zero is residual. Moreover, the
upper correlation dimension of a typical (in the sense of Baire category)
measure is estimated by means of the local lower entropy and local upper
entropy dimensions of X.

1 Introduction

The correlation dimension introduced by Procaccia, Grassberger and Hentschel
[9] is frequently used in the theory of dynamical systems. A rigorous mathe-
matical treatment of this dimension was given by Pesin [5]. For further results
see [1, 3,4, 6,7, 8, 10, 11].

In this note we investigate some typical properties of the correlation di-
mension. Recall that a set in a metric space is called nowhere dense if its
closure has empty interior. A countable union of nowhere dense sets is said
to be of the first Baire category. A subset A of a complete metric space X is
said to be residual in X if its complement is of the first Baire category. If the
set of all elements of X satisfying some property P is residual in X, then the
property P is called typical or generic. We also say that a typical element of
X has property P.
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Let M be the space of all probability Borel measures on a complete separa-
ble metric space X. We show that a typical measure in the space M endowed
with the strong topology has upper correlation dimension zero. If the space
M is endowed with the weak topology, then a typical measure has lower cor-
relation dimension zero and upper correlation dimension no smaller than the
smallest local lower entropy dimension of X and no greater than the smallest
local upper entropy dimension of X.

These results are in the spirit of that by Gruber [2], who studied typical
properties of entropy dimension of compact subsets of X. Namely, he con-
sidered the space C of all compact subsets of X equipped with the Hausdorff
metric. He proved that a typical compact subset of X has lower entropy di-
mension zero. He also proved that if the compact subsets of X having lower
entropy dimension at least § are dense in C, then a typical compact subset of
X has upper dimension at least 9.

The paper is divided into three sections. In Section 2 we formulate the
main results. Section 3 contains the proofs. In Section 4 we present two
examples which show that the estimation of the upper correlation dimension
given in Section 2 cannot be improved.

2 Main Result

Let (X, p) be a complete separable metric space and let B(x,r) denote the
open ball in X with center at = and radius r > 0. By B we denote the o-
algebra of Borel subsets of X and by M we denote the set of all probability
Borel measures on X.

For py, po € M we consider the distance d; given by the supremum norm;
ie.,

di(p, p2) = sup |1 (A) — p2(A)]|
AeB

and the Fortet-Mourier distance dy given by the formula

o) =suw {| [ f@) @)= [ fia)data)]: £ € £},

where L is the subset of C'(X) which contains all the functions f such that
|f(x)] <1and |f(x)— f(y)] < p(z,y) for x,y € X. It can be proved that the
sequence (), tn € M, is weakly convergent to a measure pu € M if and only
if limy, o0 d2(ftn, 1) = 0. It is well known that the spaces (M, d;) and (M, d2)
are complete.

Let € M. The quantities

dim, g = lim, ¢ Togr log/X w(B(x,r)) du(x)
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and

. . 1
dim, p = lim, o o—log [ (Ba.r) du(o)

are called the upper and lower correlation dimension of u, respectively. From
the definition of the upper correlation dimension it follows immediately that
if u({x}) > 0 for some x € X, then dim. y = 0.

Finally we recall that the upper and lower entropy dimensions of a set
K C X are defined, respectively, by the formulae

dim K = limsup M and dim K = 1iminfw7
r—o+  log(1/r) r—o+  log(1/r)

where N(K,r) is the least number of balls of radius  which cover the set K.
Note that if the set K is closed and non-compact, then dim K = dim K = .

Remark 1. In the definitions of entropy dimensions we can replace the num-
ber N(K,r) by

M(K,r) =sup{card F : F C K and p(z,y) > r for every z, y € F, x # y}.

Now we are ready to formulate our main result.

Theorem 1. Let o = inf{dim B(z,a) : € X, a > 0} and 8 = inf{dim B(z,a) :
z € X, a>0}. Then

(a) the set M° = {u € M : dim,. ju = 0} is residual in the space (M,d,),
(b) the set Mo ={p € M :dim,pu = 0} is residual in the space (M, dz),
(¢c) The set MB = {p € M :a <dim.pu < B} is residual in the space (M, ds).

The proof of Theorem 1 is given in the next section. In the last section we
give an example of a space (X, p) such that the set {y € M : dim. pu = B} is
residual in (M, d2) and an example of a space (X, p) for which a < 5 and the
set {u € M : dim, p > a} is nowhere dense in (M, dy). These examples show
that the estimation « < dim,. 1 < B in Theorem 1 cannot be improved.

3 Proofs

We split the proof of Theorem 1 into a sequence of lemmas.
Let (e,) and (d,,) be sequences of positive numbers convergent to zero. Let
N, ={veM:v({z}) > e, for some g € X},
. x > .
Gi=|J{meM:di(p,v) <.}, andH;= (| | G

veN, m=1n=m
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fori=1,2and n € N.
Lemma 1. The set H; is residual in the space (M,d;) fori=1,2.

PROOF. Since for each m € N the set |J;— N, is dense in M, the set
U,—,, G: is dense and open in M. This implies that the set H; is residual in
the space (M, d;) for i =1, 2. O

Lemma 2. The set M° = {y € M : dim.p = 0} is residual in the space
(Madl)'

Proor. Let ¢, = % and ¢, = ﬁ for n € N. According to Lemma 1 it is
sufficient to check that if u € Hy, then dim.pu = 0. Let pu € H;. For every
m € N there are n > m and v € N,, such that d;(u,v) < §,. Since v € N,
there is a point zy such that v({z¢}) > &,. Consequently,

u({zo}) > v({wo}) = n > en — 0n = on
and dim, ¢ = 0. O

Lemma 3. The set My = {u € M : dim, pu = 0} is residual in the space
(Mad2)'

Proor. Let g, = %7 rn = (g,)" and 6, = %Enrn for n € N. According to
Lemma 1 it is sufficient to check that if yu € Ho then dim,p = 0. Let p € Hos.
For every m € N there is n > m and v € N, such that da(u,v) < d,. Since
v € N, there is a point zg such that v({zo}) > &,. Fix r € (0,1] and consider
the function f: X — [0,00) given by

r if p(z,zo) <
fley=<r—t ifplz,z0)=r+t,0<t<r (1)
0 if p(x, xo) > 2r.

Clearly f € L. From the definition of the function f and inequality ds(u, V) <
0p, it follows that for every y € B(xg,r) we have

r r x)du(z —0n ) dv(x).
p(B,30) > [ Fa)dn(o) > =0, + [ fa)dvio)
Since f(x9) =r and v({zg}) > &,, the last inequality implies

On
#B(y,3r)) 2 =~ +en.



TYPICAL PROPERTIES OF CORRELATION DIMENSION 273

By a similar calculation, using a function f given by (1) with /2 in the place
of 7, we can show that p(B(zo,7)) > =2 + ¢,. Substituting r = 7,,/3 we
obtain

36, 2en
WB(y,ra)) 2 =T 4 e = " for every y € Bleo,ra/3)  (2)
and .
w(Blxo,0/3) > 3)
Using (2) and (3) we have
22
w(B(y,n)) duly) = #B(y;ra)) dply) = —5*.
X B(WO""H/3)
Hence
i < i 1 B
dim, p < lim 3o og/Xu( (Y, 7)) dp(y)
2
—1
< lim log(2¢2/9) ~ lim 2logn — log(2/9) _o, 0
n—oo  logr, n—oo nlogn

Recall that for given p € M we define the support of p by the formula
supppu = {z € X : u(B(z,r)) > 0 for every r > 0}.

Lemma 4. Assume that dim(B(zg,a)) > d for some point xo € X and some
constants a,d > 0. Then there exists C > 0 such that for every r > 0 there
exists a measure p, with supp p,. C B(xo,a) such that

i (B(z,7)) < Cr for every x € X. (4)

PROOF. Since dim B(zg,a) > d, by virtue of Remark 1, there is 0 < 7 < 1

such that M (B(zg,a),r) > r~<¢ for every 0 < r < rg. Put C = 2¢/rd. 1If

7 > 70/2 then Cr? > 1 and (4) is obviously true for every measure u € M.
Suppose now that 0 < r < ro/2. Let m be an integer such that

M (B(xo,a),2r) > m > (2r)~%.

By the definition of M (B(zg, a),2r) we can find in the ball B(x¢, a) the points
Z1,...,Zm, such that p(x;,x;) > 2r for 4,5 € {1,...,m}, i # j. Set p, =
% Z:L 0z, , where 5, denotes the delta Dirac measure supported at point z;.
Since for arbitrary € X the ball B(x,r) contains at most one point from the
set {z1,...,2n}, we have p,(B(z,r)) < L < (2r)? < Crd. O
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Lemma 5. Assume that there is a constant d > 0 such that @i@c, a) >d
for every x € X and every a > 0. Then the set Mg = {p € M : dim. p > d}
is residual in the space (M, ds).

PROOF. Let {x1,23,...} be a dense subset of X. Fix n € N and define
1 .
a, = min gp(aci,xj): forl1<i<j<ng;.

According to Lemma 4, for every i € {1,...,n} there exists a constant C; such
that for every r > 0 there exists a measure p, ; with supp p,; C B(x;, ay,) such
that p,;(B(z,7)) < Cir? for every z € X. Set

Cp =max{n,Cq,...,Cp}, rp, = 27 and 4, = rffl.
Now fix 7 = 2r,, and denote by N,, the set of all measures of the form

V=DPi1lr1 + +pnﬂr,na
where (p1,...,pn) is any sequence of non-negative numbers such that p; +
oo+ p, = 1. Clearly v(B(z,2r,)) < 2¢C,rd for every v € N,, and = € X. Let
Gn=|J {neM: dy(u,v) <6}
V€Nn

Suppose that the sets G,, are constructed for every n € N and define H =
Noo_iUr—, Gn. Clearly H is a residual subset of (M,ds). Let p € H. For
every m € N there are n > m and v € N, such that da(i,v) < d,. Fix a point
y € X and let f be the function given by (1) with ¥ in the place of . Since
da(p,v) < 8, we have

(B < [ F@ () <80+ [ fla)dvie) <5, 4 (Bl 20). 6)
X X
Substituting r = r,, in (5) we obtain

On ~ - I
w(B(y,mn)) < — +v(B(y,2r,)) < rd +29C,rd < 291 Crdd = 29410, 27,
T

n

This implies that

d+1+1log, C,, — Cyd

lim sup =d,

s log/X w(B(z,ry)) dp(z) > limsup

n— 00 *Cn

which completes the proof. O
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Remark 2. Assume there exist sequences (a,) and (r,,) of positive numbers
convergent to zero such that for each z € X we have M(B(x,a,),r,) > ;¢
for n € N. An argument similar to that of the proofs of Lemmas 4 and 5 shows
that the set My = {x € M : dim,. pu > d} is residual in the space (M, d).

Lemma 6. Let K be a subset of X and let p be a probability Borel measure
on X such that u(K) > 0. Then dim. p < dim K.

PROOF. Suppose K is relatively compact. (Otherwise there is nothing to
prove.) First assume that suppp C K. Given an r > 0 we denote by N =
N(K,r) the least number of balls of radius r which cover the set K. Now,
denote by x1, ..., x N the centers of the balls of such a covering. Let Ay,..., Ay
be a pairwise disjoint measurable covering of K such that A; C B(x;,r) for
i=1,...,N. If z € A;, then A; C B(x,2r). Consequently

N N
mewmww:;ﬁﬂmwmwwz;mm?

Using the Buniakowski-Schwarz inequality

(Einr) (£ > (Bon)

i=1 i=1
we obtain

1
[ n(Ba.20) du(o) = 5 (
X
Let (r,,) be a sequence of positive numbers convergent to zero. Then from (6)
it follows that

lim sup < dim K.

n—oo lOg 27y,

) log N(K,ry,)
lo B(z,2ry,))du(r) < limsup ———=
g [ n(Blr2r,) dpa) < imsup <EZ 2T

Thus dim, p < dim K for every u such that supp u C K.
Now take an arbitrary p in M such that p(K) > 0. Set v(A) = wAnk)
A € B. Since pu(A) > u(K)v(A), we have

[ nBla ) dn(o) 2 i) [ (Bl dvta), (7)
X X
By (7) and the fact that suppr C K we have

— log u?(K
dim, p < limsup og,ui()

+ dim, v = dim, v < dim K. O
r—0 IOgT‘
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Lemma 7. Assume that dim B(zq,a) < d for some point zg € X and some
constants a,d > 0. Then the set M = {u € M : dim.p > d} is nowhere
dense in the space (M,ds).

PROOF. Let D be the set of all probability measures v such that v(B(zo, §)) >
0. Clearly the set D is dense in M. If v € D, then let §(v) = +av(B(zo, £)).
The set

6= (JlueM: douv) <6}

veD

is open and dense in M. We claim that dim. pu < d for every p € G. Indeed,
let 1 € G and v € D be such that da(p, ) < §(v). Taking a function f, defined
by (1) with r = a/2, we have

a

* (B0, 0)) > /X fdu > /X Jdv = () > Su(B(o, §)) — 5(v) > 0.

According to Lemma 6 we have dim, y < d. This implies that the set M¢? is
nowhere dense in the space (M, ds). O

PROOF OF THEOREM 1. The statement (a) of Theorem 1 follows from Lemma
2. The statement (b) follows from Lemma 3. According to Lemma 5 and
Lemma 7, for every n € N the sets

— 1 S
M1 ={peM:dim.p>a—1} and M ={peM:dim.pu < f++}

are residual in the space (M, dz). From this and the equality

= 1
M= (Mal nM?P +n>
n=1 n
the statement (c) follows. The proof of Theorem 1 is completed. O

4 Examples

Example 1. We construct a Cantor-like set C' such that dimC = 0 and
dimC' = 1 and such that the set M* = {z € M : dim.u = 1} is residual
in the space (M,ds). Let (k) be a strictly increasing sequence of positive
integers such that liminf, . %” = 1 and limsup,,_, %” = o0. Let hg =1
and h, = 27%» for n € N. We define a sequence of sets (C,,) by induction.
Let Co = [0,1] and if C,, = U7 [o}, 87], where 3 = o + hy, < aZ,
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gntt n+1 on+1 n+1 n+1 ,
then Cy41 = Ui:l [, 8], where a5,y = o, B0 = o) + hny,

ot =B = hyy1 and B3 = B Let C = ;2 Cy,. From the definitions of
entropy dimensions it follows easily that dimC' = 0 and dimC = 1. Fixe > 0
and n € N. Let m € N be such that k,, < m%;” Set a,, = h,, and r,, = h,,.
Then, for each n € N, we have
M(B(z,an),rm) = 27177 > 20=)km — re L.

According to Remark 2 the set M*~¢ = {1 € M : dim. pu > 1 — ¢} is residual.
Since e > 0 is arbitrary and M* = (°2, M!~1/" it follows that the set M?
is residual.

Example 2. Now we construct a set X C R such that dim B(z,r) = 1 for all
r € X and 7 > 0 but dim,. = 0 for p from some open and dense subset G of
M. Let (k) and (k}) be two strictly increasing sequences of positive integers
such that

kr, !
liminf — =1, liminf = =1, (8)
n—oo M n—oo 1
and
/
iy max(kn, kn) ©)
n—o0 n

As in Example 1 we construct Cantor-like sets C' and C’ corresponding to
the sequences (k,) and (k.), respectively. Let X = C U (C' + 2), where
C'+2={z+2: 2z € C'} From (8) it follows that dim B(z,r) = 1 for all
x € X and r > 0. Set

G={peM:puC)>0and u(C +2) > 0}.

Then obviously the set G is open and dense in M. Let u € G. From (6)

— w and po(A) = #ANCTE2)) 4t follows

applied to the measures p1(A) (g) L(C712)

that
KA(0) | (O +2)
/X,L(B(x,%))du(w) SN TN

This implies that

1
1 B(x,2 <
g 108 [ n(Bla.20) dn(o) <
N { log u%(C') —log N(C,r) logu?(C' +2) —log N(C" +2,7) }

log 2r ’ log 27
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and consequently

(10)

dim, ¢ < lim sup min
r—0

{1ogN(C’,r) logN(C”,r)}
log(1/r) 7 log(1/r) '

Now, for given r € (0,1) we set n(r) = min{n : 27 <r} and n/(r) = min{n :
27Fn < r}. Then N(C,r) < 2" and N(C’,r) < 2% ("), Thus, for u € G, we

have

S ) min{n(r),n’(r)}
dim, pu < llrjlj(t)lp gl (11)

By the definitions of n(r) and n’(r) we have
log(1/7) > max{k,)-1, k'/n/(r)—l}' (12)

From (11), (12) and (9) it follows that dim, pu = 0.
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