ON THE CONTINUITY OF SYMMETRICALLY CLIQUISH OR SYMMETRICALLY QUASICONTINUOUS FUNCTIONS

Abstract

Let $\left(X, T_{X}\right)$ and $\left(Y, T_{Y}\right)$ be topological spaces and let $\left(Z, \rho_{Z}\right)$ be a metric space. In this article we characterize the sets of all continuity points of symmetrically cliquish functions from $X \times Y$ to Z and the sets of continuity points of symmetrically quasicontinuous functions from \mathbb{R}^{2} to \mathbb{R}.

If $\left(X, T_{X}\right)$ and $\left(Y, T_{Y}\right)$ are topological spaces and (Z, ρ) is a metric space, then a function $f: X \times Y \rightarrow Y$ is said to be:

1. quasicontinuous (resp. cliquish) at a point $(x, y) \in X \times Y$ if for every set $U \times V \in T_{X} \times T_{Y}$ containing (x, y) and for each positive real η, there are nonempty sets $U^{\prime} \in T_{X}$ contained in U and $V^{\prime} \in T_{Y}$ contained in V such that $f\left(U^{\prime} \times V^{\prime}\right) \subset K(f(x, y), \eta)=\{t \in Z ; \rho(t, f(x, y))<\eta\}$ (resp. $\operatorname{diam}\left(f\left(U^{\prime} \times V^{\prime}\right)\right)=\sup \left\{\rho\left(f\left(t, t^{\prime}\right), f\left(u, u^{\prime}\right)\right) ; t, u \in U^{\prime}\right.$ and $\left.t^{\prime}, u^{\prime} \in V^{\prime}\right\}<$ $\eta)([3,4])$;
2. quasicontinuous at (x, y) with respect to x (alternatively y) if for every set $U \times V \in T_{X} \times T_{Y}$ containing (x, y) and for each positive real η there are nonempty sets $U^{\prime} \in T_{X}$ contained in U and $V^{\prime} \in T_{Y}$ contained in V such that $x \in U^{\prime}$ (alternatively $y \in V^{\prime}$) and $f\left(U^{\prime} \times V^{\prime}\right) \subset K(f(x, y), \eta)$ ([5]);
3. cliquish at (x, y) with respect to x (alternatively y) if for every set $U \times$ $V \in T_{X} \times T_{Y}$ containing (x, y) and for each positive real η there are nonempty sets $U^{\prime} \in T_{X}$ contained in U and $V^{\prime} \in T_{Y}$ contained in V such that $x \in U^{\prime}\left(\right.$ alternatively $\left.y \in V^{\prime}\right)$ and $\left.\operatorname{diam}\left(f\left(U^{\prime} \times V^{\prime}\right)\right)<\eta\right)([1])$;

[^0]4. symmetrically quasicontinuous (resp. symmetrically cliquish) at (x, y) if it is quasicontinuous (alternatively cliquish) at (x, y) with respect to x and with respect to $y([5,1])$.

It is obvious that if the set $C(f)$ of all continuity points of a function $f: X \times Y \rightarrow Z$ is dense, then f is cliquish. Moreover if $X \times Y$ is a Baire space, then f is cliquish if and only if $C(f)$ is dense ([4]).

In the last observation the hypothesis that $X \times Y$ is a Baire space is important. For example, if $X=Y=Z=\mathbb{Q}(\mathbb{Q}$ denotes the set of all rationals) and $T_{X}=T_{Y}$ is the topology generated by the natural metric $\rho(x, y)=|x-y|$ in \mathbb{R}, then for each enumeration $\left(r_{n}\right)$ of all rationals such that $r_{n} \neq r_{m}$ for $n \neq m$, the function $f\left(r_{n}, r_{m}\right)=\frac{1}{n m}$ is symmetrically cliquish (and hence cliquish), but the set $C(f)$ is empty.

Remark 1. Let $f: X \times Y \rightarrow Z$ be a function. If the vertical sections $(C(f))_{x}=\{v \in Y ;(x, v) \in C(f)\}, x \in X$, (alternatively the horizontal sections $\left.(C(f))^{y}=\{u \in X ;(u, y) \in C(f)\}, y \in Y\right)$, are dense in Y (resp. in X), then f is cliquish with respect to x (alternatively with respect to y).

Proof. Fix a point $\left(x_{1}, y_{1}\right) \in X \times Y$, sets $U \in T_{X}$ and $V \in T_{Y}$ with $\left(x_{1}, y_{1}\right) \in$ $U \times V$ and a real $\eta>0$. Since the section $(C(f))_{x_{1}}$ is dense, there is a point $y_{2} \in Y$ with $\left(x_{1}, y_{2}\right) \in C(f)$. Consequently, there are sets $U_{1} \in T_{X}$ and $V_{1} \in T_{Y}$ such that $\left(x_{1}, y_{2}\right) \in U_{1} \times V_{1} \subset U \times V$ and

$$
f\left(U_{1} \times V_{1}\right) \subset K\left(\left(f\left(x_{1}, y_{2}\right), \frac{\eta}{3}\right)\right.
$$

So $\operatorname{osc}_{U_{1} \times V_{1}} f \leq \frac{2 \eta}{3}<\eta$ and the proof of the cliquishness of f with respect to x is completed. The proof of its cliquishness with respect to y is analogous.

Corollary 1. Let $f: X \times Y \rightarrow Z$ be a function. If the vertical sections $(C(f))_{x}, x \in X$, and the horizontal sections $(C(f))^{y}, y \in Y$, are dense in Y and respectively in X, then f is symmetrically cliquish.

Theorem 1. Suppose that $\left(Y, T_{Y}\right)$ (alternatively $\left(X, T_{X}\right)$) is a Baire space and a function $f: X \times Y \rightarrow Z$ is cliquish with respect to x (alternatively with respect to y). Then each section $(C(f))_{x}, x \in X$, (alternatively each section $\left.(C(f))^{y}, y \in Y\right)$, is dense in Y (alternatively in X).

Proof. For $n \geq 1$ let

$$
U_{n}=\left\{(x, y) \in X \times Y ; \text { osc } f<\frac{1}{n} \text { at }(x, y)\right\}
$$

The sets

$$
U_{n} \in T_{X} \times T_{Y} \text { and } C(f)=\bigcap_{n=1}^{\infty} U_{n}
$$

Fix a point $(x, y) \in X \times Y$, sets $U \in T_{X}$ and $V \in T_{Y}$ with $(x, y) \in U \times V$ and a positive integer n. Since f is cliquish with respect to x, there are sets $U_{1} \in T_{X}$ and $V_{1} \in T_{Y}$ such that $x \in U_{1} \subset U, V_{1} \subset V$ and $\operatorname{diam}\left(f\left(U_{1} \times V_{1}\right)\right)<\frac{1}{n}$. So $V_{1} \subset\left(U_{n}\right)_{x} \cap V$, and consequently the set $\left(U_{n}\right)_{x}$ is dense in Y. The section $\left(U_{n}\right)_{x}$ is open and dense in Y. Thus $Y \backslash\left(U_{n}\right)_{x}$ is closed and nowhere dense in Y. From this it follows that

$$
Y \backslash(C(f))_{x}=Y \backslash \bigcap_{n=1}^{\infty}\left(U_{n}\right)_{x}=\bigcup_{n=1}^{\infty}\left(Y \backslash\left(U_{n}\right)_{x}\right)
$$

is of the first category in Y. Since Y is a Baire space, the section $(C(f))_{x}$ is dense in Y. The proof of the second part is analogous.

The next assertion follows immediately from Theorem 1.
Corollary 2. Suppose that $\left(Y, T_{Y}\right)$ and $\left(X, T_{X}\right)$ are Baire spaces and a function $f: X \times Y \rightarrow Z$ is symmetrically cliquish. Then the sections $(C(f))_{x}$, $x \in X$, and the sections $(C(f))^{y}, y \in Y$, are dense in Y and resp. in X.

By a standard reasoning we can prove the following remark which we apply in the proof of next theorem.

Remark 2. If a sequence of cliquish (quasicontinuous) with respect to x [alternatively y] functions $f_{n}: X \times Y \rightarrow Z$ uniformly converges to a function f, then f is also cliquish (quasicontinuous) with respect to x [alternatively y].

Theorem 2. Let $A \subset X \times Y$ be an F_{σ}-set such that the sections $A_{x}, x \in X$, (alternatively $A^{y}, y \in Y$,) are of the first category in Y (alternatively in X). Then there is a function $f: X \times Y \rightarrow \mathbb{R}$ which is cliquish with respect to x (alternatively to y) such that $C(f)=(X \times Y) \backslash A$.
Proof. There are closed sets A_{n} with $A=\bigcup_{n} A_{n}$ and $A_{n} \subset A_{n+1}$ for $n \geq$ 1. Since for $n \geq 1$, the sections $\left((X \times Y) \backslash A_{n}\right)_{x}, x \in X$, (alternatively $\left.\left((X \times Y) \backslash A_{n}\right)^{y}, y \in Y,\right)$ are open, the sections $\left(A_{n}\right)_{x}, x \in X$, (alternatively $\left.\left(A_{n}\right)^{y}, y \in Y,\right)$ and $n=1,2, \ldots$, are closed and nowhere dense. Consequently, the characteristic functions $f_{n}=\chi_{A_{n}, X \times Y}$ are symmetrically cliquish with respect to x (alternatively y). Let $f=\sum_{n=1}^{\infty} \frac{f_{n}}{2^{n}}$ and for $n \geq 1$ let $s_{n}=$ $\sum_{k=1}^{n} \frac{f_{k}}{2^{k}}$. Since for each $n \geq 1$ the sections $\left(A_{n}\right)_{x}, x \in X$, (alternatively $\left.\left(A_{n}\right)^{y}, y \in Y,\right)$ are nowhere dense, the function s_{n} is cliquish with respect to x
(alternatively y). But the convergence of the series is uniform, so the function f is cliquish with respect to x (alternatively y). Moreover from the equalities $C\left(s_{n}\right)=(X \times Y) \backslash A_{n}, n \geq 1$, we obtain $C(f)=(X \times Y) \backslash A$.

In the same manner we can prove the following theorem.
Theorem 3. Let $A \subset X \times Y$ be an F_{σ}-set such that the sections $A_{x}, x \in X$, and $A^{y}, y \in Y$, are of the first category in Y and resp. in X. Then there is a symmetrically cliquish function $f: X \times Y \rightarrow \mathbb{R}$ such that $C(f)=(X \times Y) \backslash A$.

It is obvious (compare [2]) that if a function $f: X \times Y \rightarrow Z$ is such that the graph $\operatorname{Gr}(f \upharpoonright C(f)$ of the restricted function $f \upharpoonright C(f)$ is dense in the graph $G r(f)$, then f is quasicontinuous. The converse is also true.

Remark 3. If a function $f: X \times Y \rightarrow Z$ is quasicontinuous and the set $C(f)$ is dense in $X \times Y$, then the graph $\operatorname{Gr}(f \upharpoonright C(f)$ is dense in $G r(f)$.

Proof. Fix a point $(x, y, f(x, y))$, where $(x, y) \in X \times Y$, sets $U \in T_{X}, V \in T_{Y}$ with $(x, y) \in U \times V$ and a real $\eta>0$. From the quasicontinuity of f at (x, y) it follows that there are nonempty sets $U_{1} \in T_{X}$ and $V_{1} \in T_{Y}$ such that

$$
U_{1} \times V_{1} \subset U \times V \text { and } f\left(U_{1} \times V_{1}\right) \subset K\left(f(x, y), \frac{\eta}{2}\right)
$$

Since $C(f)$ is dense in $X \times Y$, there is a point $\left(x_{1}, y_{1}\right) \in\left(U_{1} \times V_{1}\right) \cap C(f)$. From the continuity of f at $\left(x_{1}, y_{1}\right)$ it follows that there are sets $U_{2} \in T_{X}$ and $V_{2} \in T_{Y}$ such that

$$
\left(x_{1}, y_{1}\right) \in U_{2} \times V_{2} \subset U_{1} \times V_{1} \text { and } f\left(U_{2} \times V_{2}\right) \subset K\left(f\left(x_{1}, y_{1}\right), \frac{\eta}{2}\right)
$$

$U_{2} \times V_{2}$ is a nonempty open set contained in $U \times V$ and $f\left(U_{2} \times V_{2}\right) \subset$ $K(f(x, y), \eta)$.

There is, however, a symmetrically quasicontinuous function g with $C(g)=$ Ø. In a suitable example we apply the following remark, which may be proved by a standard reasoning.

Remark 4. Let a function $f: X \times Y \rightarrow \mathbb{R}$ be symmetrically quasicontinuous at a point (x, y) and let $g: X \times Y \rightarrow \mathbb{R}$ be continuous at (x, y). Then the sum $f+g$ is symmetrically quasicontinuous at (x, y).
Example 1. In $X=Y=Z=\mathbb{R}$ we introduce the natural metric ρ and let

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { for } x, y>0 \\ f(x, y)=0 & \text { otherwise on } \mathbb{R}^{2}\end{cases}
$$

Then $f: \mathbb{R}^{2} \rightarrow\left[0, \frac{1}{2}\right]$ is a symmetrically quasicontinuous function and $C(f)=$ $\mathbb{R}^{2} \backslash\{(0,0)\}$. Let $\left(\left(x_{n}, y_{n}\right)\right)_{n}$ be an enumeration of all pairs of rationals such that $\left(x_{n}, y_{n}\right) \neq\left(x_{m}, y_{m}\right)$ for $n \neq m$. Observe that for each positive integer n the function

$$
g_{n}(x, y)=\frac{f\left(x-x_{n}, y-y_{n}\right)}{2^{n}} \text { for }(x, y) \in \mathbb{R}^{2}
$$

is symmetrically quasicontinuous on \mathbb{R}^{2} and $C\left(g_{n}\right)=\mathbb{R}^{2} \backslash\left\{\left(x_{n}, y_{n}\right)\right\}$. Let $g: Q \times Q \rightarrow \mathbb{R}$ be defined by

$$
g(x, y)=\sum_{n=1}^{\infty} \frac{f\left(x-x_{n}, y-y_{n}\right)}{2^{n}}
$$

For each positive integer k we have

$$
g(x, y)=\sum_{k \neq n=1}^{\infty} g_{n}(x, y)+g_{k}(x, y)
$$

So g is the sum of a continuous function at the point $\left(x_{k}, y_{k}\right)$ and the symmetrically quasicontinuous function g_{k} which is not discontinuous at $\left(x_{k}, y_{k}\right)$. Consequently, by Remark 4, the function g is symmetrically quasicontinuous on $Q \times Q$ and $C(g)=\emptyset$.

Theorem 4. Let $f: X \times Y \rightarrow Z$ be a function. If the graphs of the restrictions of the vertical sections $f_{x} \upharpoonright C(f)_{x}, x \in X$, (alternatively the graphs of the restrictions of the horizontal sections $f^{y}\left\lceil C(f)^{y}, y \in Y\right)$, are dense in the graphs of these sections f_{x} (alternatively f^{y}), then f is quasicontinuous with respect to x (alternatively with respect to y).

Proof. Fix a point $\left(x_{1}, y_{1}\right) \in X \times Y$, sets $U \in T_{X}$ and $V \in T_{Y}$ with $\left(x_{1}, y_{1}\right) \in$ $U \times V$ and a real $\eta>0$. Since the graph $\operatorname{Gr}\left(f_{x_{1}} \upharpoonright\left((C(f))_{x_{1}}\right)\right.$ is dense in $\operatorname{Gr}\left(f_{x_{1}}\right)$, there is a point

$$
y_{2} \in Y \text { with }\left(x_{1}, y_{2}\right) \in C(f) \text { and } \rho\left(f\left(x_{1}, y_{2}\right), f\left(x_{1}, y_{1}\right)\right)<\frac{\eta}{2}
$$

By the continuity of f at $\left(x_{1}, y_{2}\right)$, there are sets $U_{1} \in T_{X}$ and $V_{1} \in T_{Y}$ such that $\left(x_{1}, y_{2}\right) \in U_{1} \times V_{1} \subset U \times V$ and $f\left(U_{1} \times V_{1}\right) \subset K\left(\left(f\left(x_{1}, y_{2}\right), \frac{\eta}{3}\right)\right.$. Observe that $f\left(U_{1} \times V_{1}\right) \subset K\left(f\left(x_{1}, y_{1}\right), \eta\right)$ and the proof of the quasicontinuity of f with respect to x is completed. The proof of its quasicontinuity with respect to y is analogous.

The next assertion follows immediately from Theorem 4.

Corollary 3. Let $f: X \times Y \rightarrow Z$ be a function. If the graphs of the restrictions $f_{x} \upharpoonright C(f)_{x}, x \in X$, are dense in $G r\left(f_{x}\right)$ and the graphs of the restrictions $f^{y}\left\lceil C(f)^{y}, y \in Y\right.$, are dense in the graphs $G r\left(f^{y}\right)$, then f is symmetrically quasicontinuous.

Theorem 5. Suppose that $\left(Y, T_{Y}\right)$ (alternatively $\left(X, T_{X}\right)$) is a Baire space and a function $f: X \times Y \rightarrow Z$ is quasicontinuous with respect to x (alternatively with respect to y). Then the graphs $G r\left(f_{x} \upharpoonright C(f)_{x}\right), x \in X$, (alternatively the graphs $G r\left(f^{y}\left\lceil C(f)^{y}\right), y \in Y\right)$, are dense in $G r\left(f_{x}\right)$ (alternatively in $G r\left(f^{y}\right)$).

Proof. Fix a point $(x, y) \in X \times Y$, sets $U \in T_{X}$ and $V \in T_{Y}$ with $(x, y) \in$ $U \times V$ and a real $\eta>0$. Since f is quasicontinuous with respect to x, there are sets $U_{1} \in T_{X}$ and $V_{1} \in T_{Y}$ such that

$$
\left.x \in U_{1} \subset U, \quad V_{1} \subset V \text { and } f\left(U_{1} \times V_{1}\right)\right) \subset K(f(x, y), \eta)
$$

By Theorem 1 the section $(C(f))_{x}$ is dense in Y, so there is a point $v \in V_{1}$ with $(x, v) \in C(f)$. Since $f_{x}(v)=f(x, v) \in K(f(x, y), \eta)$, the proof of the first part is completed. The proof of the second part is analogous.

The next Corollary follows immediately from Theorem 5 .
Corollary 4. Suppose that $\left(Y, T_{Y}\right)$ and $\left(X, T_{X}\right)$ are Baire spaces and a function $f: X \times Y \rightarrow Z$ is symmetrically quasicontinuous. Then the graphs of the restrictions $f_{x} \upharpoonright C(f)_{x}, x \in X$, are dense in the graphs of these sections f_{x} and the graphs of the restrictions $f^{y} \upharpoonright C(f)^{y}, y \in Y$, are dense in the graphs of these sections f^{y}.

Since every symmetrically quasicontinuous function $f: X \times Y \rightarrow Z$ is symmetrically cliquish, the set $D(f)=(X \times Y) \backslash C(f)$ is an F_{σ}-set with of the first category horizontal and vertical sections $(D(f))^{y}$ and $(D(f))_{x}, y \in Y$ and resp. $x \in X$.

Theorem 6. Suppose that $X=Y=Z=\mathbb{R}, \rho(x, y)=|x-y|$ for $x, y \in \mathbb{R}$ and that $T_{X}=T_{Y}$ is the natural topology generated by ρ. If $A \subset \mathbb{R}^{2}$ is an F_{σ}-set whose horizontal and vertical sections A^{y} and $A_{x}, \quad x, y \in \mathbb{R}$, are of the first category, then there is a symmetrically quasicontinuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $C(f)=\mathbb{R}^{2} \backslash A$.

Proof. Since A is an F_{σ}-set, there are nonempty compact sets A_{n} such that

$$
A=\bigcup_{n} A_{n} \text { and } A_{n} \subset A_{n+1} \text { for } n \geq 1
$$

Without loss of the generality we can assume that $A_{n+1} \backslash A_{n} \neq \emptyset$ for $n \geq 1$. Since every set $A_{n} \subset A$, the sections $\left(A_{n}\right)_{x}$ and $\left(A_{n}\right)^{y}, x, y \in \mathbb{R}$, are nowhere dense in \mathbb{R}. Now we will construct by induction a sequence of functions $\left(f_{n}\right)$.

For this for a point $c=\left(c_{1}, c_{2}\right) \in \mathbb{R}^{2}$ and a real $r>0$ denote by $\operatorname{Sqr}(c, r)$ the closed square $\left[c_{1}-r, c_{1}+r\right] \times\left[c_{2}-r, c_{2}+r\right]$.

Step 1. Let $B_{1} \subset A_{1}$ be a countable set dense in A_{1}. Without loss of the generality we can assume that B_{1} is an infinite set. Enumerate all points of B_{1} in a sequence $\left(b_{1, n}\right)$. Since A_{1} is a nowhere dense set, for each point $b_{1, n}$, $n \geq 1$, there are a sequence of different points $c_{1, n, k} \in \mathbb{R}^{2} \backslash A$ and a sequence of pairwise disjoint closed squares $I_{1, n, k}=\operatorname{Sqr}\left(c_{1, n, k}, r_{1, n, k}\right), k \geq 1$, such that
(1.1) for each $n \geq 1$ the limit $\lim _{k \rightarrow \infty} c_{1, n, k}=b_{1, n}$;
(1.2) if $\left(n_{1}, k_{1}\right) \neq\left(n_{2}, k_{2}\right)$, then $I_{1, n_{1}, k_{1}} \cap I_{1, n_{2}, k_{2}}=\emptyset$;
(1.3) $I_{1, n, k} \cap A_{n+k}=\emptyset$ for $k \geq 1$;
(1.4) for all $n, k \geq 1$ and $x \in I_{1, n . k} \operatorname{dist}\left(x, A_{1}\right)=\inf \left\{|x-y| ; y \in A_{1}\right\}<\frac{1}{n}$.

Now for all positive integers $n, k \geq 1$ we find a real $t_{1, n, k} \in\left(0, r_{1, n, k}\right)$ and denote by $J_{1, n, k}$ the closed square $\operatorname{Sqr}\left(c_{1, n, k}, t_{1, n, k}\right)$. For $n, k \geq 1$ let $f_{1, n, k}$: $I_{1, n, k} \rightarrow[0,1]$ be a continuous function such that

$$
f_{1, n, k}\left(c_{1, n, k}\right)=1 \text { and } f_{1, n, k}(x, y)=0 \text { for }(x, y) \in I_{1, n, k} \backslash J_{1, n, k}
$$

and let

$$
f_{1}(x, y)= \begin{cases}f_{1, n, k}(x, y) & \text { for }(x, y) \in I_{1, n, k}, n, k \geq 1 \\ 0 & \text { otherwise on } \mathbb{R}^{2}\end{cases}
$$

Observe that $C\left(f_{1}\right)=\mathbb{R}^{2} \backslash A_{1}$. We will prove that f_{1} is symmetrically quasicontinuous. Obviously, it is symmetrically quasicontinuous at all points $(x, y) \in C\left(f_{1}\right)=\mathbb{R}^{2} \backslash A_{1}$. Fix a point $t=(x, y) \in A_{1}$, a real $\eta>0$ and open intervals I, J such that $(x, y) \in I \times J$. If there is a pair $\left(n_{1}, k_{1}\right)$ such that $\{(x, v) ; v \in J\} \cap I_{1, n_{1}, k_{1}} \neq \emptyset$, then there is a point $y_{2} \in J$ with $\left(x, y_{2}\right) \in I_{1, n_{1}, k_{1}} \backslash J_{1, n_{1}, k_{1}}$ and consequently there are open intervals $I_{1} \subset I$ and $J_{1} \subset J$ such that $x \in I_{1}$ and $f_{1}\left(I_{1} \times J_{1}\right)=\{0\}$. If such a pair $\left(n_{1}, k_{1}\right)$ does not exist, then for each point $v \in J \backslash\left(A_{1}\right)_{x}$ the point $(x, v) \in C\left(f_{1}\right)$ and consequently, there are open intervals $I_{1} \subset I$ and $J_{1} \subset J$ such that $x \in I_{1}$ and $f_{1}\left(I_{1} \times J_{1}\right)=\{0\}$. Since $f_{1}(t)=f_{1}(x, y)=0$, we obtain that f_{1} is quasicontinuous at t with respect to x. In the same way we can prove that f_{1} is quasicontinuous at t with respect to y. So f_{1} is symmetrically quasicontinuous.

Step $\mathbf{m}(m \geq 2)$. Let $B_{m} \subset A_{m} \backslash A_{m-1}$ be a countable set dense in $A_{m} \backslash A_{m-1}$. Without loss of the generality we can assume that B_{m} is an infinite
set. Enumerate all points of B_{m} in a sequence $\left(b_{m, n}\right)$ such that $b_{m, n_{1}} \neq b_{m, n_{2}}$ for $n_{1} \neq n_{2}$. Since the sections $\left(A_{m}\right)_{x}$ and $\left(A_{m}\right)^{y}, x, y \in \mathbb{R}$, are nowhere dense sets, for each point $b_{m, n}, n \geq 1$, there are a sequence of different points $c_{m, n, k} \in \mathbb{R}^{2} \backslash A$ and a sequence of pairwise disjoint closed squares

$$
I_{m, n, k}=\operatorname{Sqr}\left(c_{m, n, k}, r_{m, n, k}\right), \quad k \geq 1
$$

such that
(m.1) for each $n \geq 1$ the limit $\lim _{k \rightarrow \infty} c_{m, n, k}=b_{m, n}$;
(m.2) if $\left(n_{1}, k_{1}\right) \neq\left(n_{2}, k_{2}\right)$, then $I_{m, n_{1}, k_{1}} \cap I_{m, n_{2}, k_{2}}=\emptyset$;
(m.3) if $b_{m, n} \in \mathbb{R}^{2} \backslash \bigcup_{i<m ; j, k \geq 1} I_{i, j, k}$, then $I_{m, n, k} \subset \mathbb{R}^{2} \backslash\left(A_{m} \cup \bigcup_{i<m ; j, k \geq 1} I_{i, j, k}\right)$;
(m.4) if $b_{m, n} \in I_{i, j, l}$ for some $i<m$ and $j, l \geq 1$, then $I_{m, n, k} \subset I_{i, j, l}$;
(m.5) $I_{m, n, k} \cap A_{m+n+k}=\emptyset$ for $n, k \geq 1$;
(m.6) for all $n, k \geq 1$ and $x \in I_{m, n . k} \operatorname{dist}\left(x, A_{m}\right)=\inf \left\{|x-y| ; y \in A_{1}\right\}<\frac{1}{m+n}$.

Now for all positive integers $n, k \geq 1$ we find a real $s_{m, n, k} \in\left(0, r_{m, n, k}\right)$ and denote by $J_{m, n, k}$ the closed square Sqr $\left(c_{m, n, k}, s_{m, n, k}\right)$. For $n, k \geq 1$ let $f_{m, n, k}$: $I_{m, n, k} \rightarrow[0,1]$ be a continuous function such that

$$
f_{m, n, k}\left(c_{m, n, k}\right)=1 \text { and } f_{m, n, k}(x, y)=0 \text { for }(x, y) \in I_{m, n, k} \backslash J_{m, n, k}
$$

Moreover let

$$
f_{m}(x, y)= \begin{cases}f_{m, n, k}(x, y) & \text { for } x \in I_{m, n, k}, n, k \geq 1 \\ 0 & \text { otherwise on } \mathbb{R}^{2}\end{cases}
$$

In the same manner as in the case of f_{1} we can prove that $C\left(f_{j}\right)=\mathbb{R}^{2} \backslash \operatorname{cl}\left(A_{j} \backslash\right.$ $\left.A_{j-1}\right)$ and that f_{j} are symmetrically quasicontinuous everywhere on \mathbb{R}^{2}. Let

$$
s_{0}=0 \text { and } s_{j}=\sum_{i \leq j} \frac{f_{i}}{2^{i}} \text { for } j \in\{1,2, \ldots, m\}
$$

Observe that if $(x, y) \notin A_{m}$, then the functions $f_{i}, i \leq m$, are continuous at (x, y), and consequently s_{m} is also continuous at (x, y). So, $\mathbb{R}^{2} \backslash A_{m} \subset C\left(s_{m}\right)$. If $(x, y) \in A_{m}$, then either $(x, y) \in A_{1}$ or there is a positive integer $k<m$ such that $(x, y) \in A_{k+1} \backslash A_{k}$. If $(x, y) \in A_{1}$, then $s_{m}(x, y)=f_{1}(x, y)=0$ and $\limsup _{(u, v) \rightarrow(x, y)} s_{m}(u, v) \geq \lim \sup _{(u, v) \rightarrow(x, y)} \frac{f_{1}(u, v)}{2}=\frac{1}{2}$, and s_{m} is not continuous at (x, y).

If there is a positive integer $k<m$ with $(x, y) \in A_{k+1} \backslash A_{k}$, then put $h=s_{m}-s_{k}$ and observe that s_{k} is continuous at (x, y). Similarly as above we can prove that $h(x, y)=0$ and $\lim \sup _{(u, v) \rightarrow(x, y)} h(u, v)>0$. So h is not continuous at (x, y). Since $s_{m}=s_{k}+h$, the sum s_{m} is not continuous at (x, y) and $C\left(s_{m}\right)=\mathbb{R}^{2} \backslash A_{m}$.

Now we will prove that the sum s_{m} is symmetrically quasicontinuous. Evidently it is symmetrically quasicontinuous at all points of the set $C\left(s_{m}\right)=$ $\mathbb{R}^{2} \backslash A_{m}$. Let $(x, y) \in A_{m}$. Since the function $s_{1}=\frac{f_{1}}{2}$ is symmetrically quasicontinuous, for the proof that s_{m} is symmetrically quasicontinuous at (x, y) (we will write $s_{m} \in \operatorname{Sqc}(x, y)$) it suffices to show that for $k<m$ the implication $s_{k} \in \operatorname{Sqc}(x, y) \Longrightarrow s_{k+1} \in \operatorname{Sqc}(x, y)$. So fix a positive integer $k<m$ and assume that s_{k} is symmetrically quasicontinuous at (x, y). Let $j \leq m$ be the first integer such that $(x, y) \in A_{j}$. If $j>k$, then $(x, y) \in \mathbb{R}^{2} \backslash A_{k}=C\left(s_{k}\right)$ and s_{k+1} is symmetrically quasicontinuous at (x, y) as the sum of the symmetrically quasicontinuous at (x, y) function f_{k+1} and continuous at this point s_{k}. Thus we can assume that $j \leq k$. The function s_{j-1} is continuous at (x, y) and $g_{j}(x, y)=0$. If for each integer $l \in\{j+1, j+2, \ldots, k+1\}$ the point $(x, y) \notin \operatorname{cl}\left(A_{l} \backslash A_{l-1}\right)$, then the functions $f_{i}, j<i \leq k+1$, are continuous at (x, y), and consequently $s_{k+1}=\sum_{j \neq i \leq k+1} f_{i}+f_{j}$ is symmetrically quasicontinuous at (x, y) as the sum of symmetrically quasicontinuous function f_{j} and a continuous function at this point (x, y). Now consider the case, where the family \mathcal{A} of all integers l such that $j<l \leq k+1$ and $(x, y) \in \operatorname{cl}\left(A_{l} \backslash A_{l-1}\right)$ is nonempty. Then for $i<j$ and for $j<i \notin \mathcal{A}$ the functions f_{i} are continuous at (x, y). Let $\psi=\sum_{i \in \mathcal{A}} \frac{f_{i}}{2^{i}}$ and let $h=s_{k+1}-\psi$. The function h is continuous at (x, y) and $\psi(x, y)=0$. Let U and V be open intervals such that $(x, y) \in U \times V$. Since open intervals cannot be countable unions of pairwise disjoint closed sets $([6])$, there is an open interval $J \subset V \backslash\left(A_{k+1}\right)_{x}$ such that $(\{x\} \times J) \subset \psi^{-1}(0) \cap C(\psi)$. Consequently the function ψ is quasicontinuous at (x, y) with respect to x. Similarly we can prove that ψ is quasicontinuous at (x, y) with respect to y. Since ψ is symmetrically quasicontinuous at (x, y) and h is continuous at (x, y), the sum $s_{k+1}=h+\psi$ is also symmetrically quasicontinuous at (x, y). This proves that the function $f=\sum_{m=1}^{\infty} \frac{f_{m}}{2^{m}}$ as the limit of a uniformly convergent sequence of symmetrically quasicontinuous functions s_{m} is symmetrically quasicontinuous. Moreover $C(f)=\mathbb{R}^{2} \backslash A$ and the proof is completed.

Example 2. Let $X=Y=Z=\mathbb{R}$, let

$$
T_{X}=T_{Y}=\{\emptyset\} \cup\{\mathbb{R} \backslash A ; A \text { is finite }\}
$$

and let $T_{Z}=T_{e}$ be the natural topology in \mathbb{R}. Then each quasicontinuous (hence also symmetrically quasicontinuous) function $f:\left(X \times Y, T_{X} \times T_{Y}\right) \rightarrow$
$\left(Z, T_{Z}\right)$ is constant. In fact, if a quasicontinuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is not constant, then there are different points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ with $f\left(x_{1}, y_{1}\right) \neq$ $f\left(x_{2}, y_{2}\right)$. Let

$$
\eta=\frac{\left|f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{2}\right)\right|}{2}
$$

Since f is quasicontinuous, there are nonempty sets $U_{1}, U_{2}, V_{1}, V_{2} \in T_{X}=T_{Y}$ such that

$$
\begin{gathered}
f\left(U_{1} \times V_{1}\right) \subset\left(f\left(x_{1}, y_{1}\right)-\eta, f\left(x_{1}, y_{1}\right)+\eta\right) \text { and } \\
f\left(U_{2} \times V_{2}\right) \subset\left(f\left(x_{2}, y_{2}\right)-\eta, f\left(x_{1}, y_{1}\right)+\eta\right)
\end{gathered}
$$

Obviously there is a point $(u, v) \in\left(U_{1} \times V_{1}\right) \cap\left(U_{2} \times V_{2}\right)$. Thus,

$$
\begin{aligned}
2 \eta & =\left|f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{2}\right)\right| \leq\left|f\left(x_{1}, y_{1}\right)-f(u, v)\right|+\left|f(u, v)-f\left(x_{2}, y_{2}\right)\right| \\
& <\eta+\eta=2 \eta
\end{aligned}
$$

and the obtained contradiction shows that f is constant (so and continuous).
Thus if $A \subset X \times Y$ is a nonempty F_{σ}-set with of the first category sections A_{x} and $A^{y}, x, y \in \mathbb{R}$ (for example a nonempty finite set), then each symmetrically quasicontinuous function $f: X \times Y \rightarrow Z$ is continuous at all points of A.

Example 2 shows that an analogy of Theorem 6 in arbitrary topological spaces $\left(X, T_{X}\right)$ and $\left(Y, T_{Y}\right)$ is not true.

References

[1] Z. Grande, Some observations on the symmetrical quasicontinuity of Piotrowski and Vallin, Real Anal. Exch., 31, No. 1 (2005-2006), 309-314.
[2] Z. Grande, T. Natkaniec, Lattices generated by \mathcal{T}-quasicontinuous functions, Bull. Polish Acad., Sci. Math., 34, No. 9-10 (1986), 525-530.
[3] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math., 19 (1932), 184-197.
[4] T. Neubrunn, Quasi-continuity, Real Anal. Exch., 14, No. 2 (1988-89), 259-306.
[5] Z. Piotrowski and R. W. Vallin, Conditions which imply continuity, Real Anal. Exch., 29 No. 1 (2003-2004), 211-217.
[6] W. Sierpiński, Sur une propriété des ensembles F_{σ}-linéaires, Fund. Math., 14 (1929), 216-220.

[^0]: Key Words: Symmetrical cliquishness, symmetrical quasicontinuity, quasicontinuity, continuity points

 Mathematical Reviews subject classification: 54C05; 54C08; 26B05; 26A15
 Received by the editors August 4, 2006
 Communicated by: B. S. Thomson

