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ON THE CONTINUITY OF
SYMMETRICALLY CLIQUISH OR

SYMMETRICALLY QUASICONTINUOUS
FUNCTIONS

Abstract

Let (X, TX) and (Y, TY ) be topological spaces and let (Z, ρZ) be a
metric space. In this article we characterize the sets of all continuity
points of symmetrically cliquish functions from X×Y to Z and the sets
of continuity points of symmetrically quasicontinuous functions from R2

to R.

If (X,TX) and (Y, TY ) are topological spaces and (Z, ρ) is a metric space,
then a function f : X × Y → Y is said to be:

1. quasicontinuous (resp. cliquish) at a point (x, y) ∈ X × Y if for every
set U ×V ∈ TX ×TY containing (x, y) and for each positive real η, there
are nonempty sets U ′ ∈ TX contained in U and V ′ ∈ TY contained in V
such that f(U ′ × V ′) ⊂ K(f(x, y), η) = {t ∈ Z; ρ(t, f(x, y)) < η} (resp.
diam(f(U ′ × V ′)) = sup{ρ(f(t, t′), f(u, u′)); t, u ∈ U ′ and t′, u′ ∈ V ′} <
η) ([3, 4]);

2. quasicontinuous at (x, y) with respect to x (alternatively y) if for every
set U ×V ∈ TX ×TY containing (x, y) and for each positive real η there
are nonempty sets U ′ ∈ TX contained in U and V ′ ∈ TY contained in V
such that x ∈ U ′ (alternatively y ∈ V ′) and f(U ′ × V ′) ⊂ K(f(x, y), η)
([5]);

3. cliquish at (x, y) with respect to x (alternatively y) if for every set U ×
V ∈ TX × TY containing (x, y) and for each positive real η there are
nonempty sets U ′ ∈ TX contained in U and V ′ ∈ TY contained in V
such that x ∈ U ′ (alternatively y ∈ V ′) and diam(f(U ′×V ′)) < η) ([1]);
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4. symmetrically quasicontinuous (resp. symmetrically cliquish) at (x, y) if
it is quasicontinuous (alternatively cliquish) at (x, y) with respect to x
and with respect to y ([5, 1]).

It is obvious that if the set C(f) of all continuity points of a function
f : X × Y → Z is dense, then f is cliquish. Moreover if X × Y is a Baire
space, then f is cliquish if and only if C(f) is dense ([4]).

In the last observation the hypothesis that X × Y is a Baire space is
important. For example, ifX = Y = Z = Q (Q denotes the set of all rationals)
and TX = TY is the topology generated by the natural metric ρ(x, y) = |x−y|
in R, then for each enumeration (rn) of all rationals such that rn 6= rm for
n 6= m, the function f(rn, rm) = 1

nm is symmetrically cliquish (and hence
cliquish), but the set C(f) is empty.

Remark 1. Let f : X × Y → Z be a function. If the vertical sections
(C(f))x = {v ∈ Y ; (x, v) ∈ C(f)}, x ∈ X, (alternatively the horizontal sec-
tions (C(f))y = {u ∈ X; (u, y) ∈ C(f)}, y ∈ Y ), are dense in Y (resp. in X),
then f is cliquish with respect to x (alternatively with respect to y).

Proof. Fix a point (x1, y1) ∈ X×Y , sets U ∈ TX and V ∈ TY with (x1, y1) ∈
U × V and a real η > 0. Since the section (C(f))x1 is dense, there is a point
y2 ∈ Y with (x1, y2) ∈ C(f). Consequently, there are sets U1 ∈ TX and
V1 ∈ TY such that (x1, y2) ∈ U1 × V1 ⊂ U × V and

f(U1 × V1) ⊂ K((f(x1, y2),
η

3
).

So oscU1×V1 f ≤
2η
3 < η and the proof of the cliquishness of f with respect to x

is completed. The proof of its cliquishness with respect to y is analogous.

Corollary 1. Let f : X × Y → Z be a function. If the vertical sections
(C(f))x, x ∈ X, and the horizontal sections (C(f))y, y ∈ Y , are dense in Y
and respectively in X, then f is symmetrically cliquish.

Theorem 1. Suppose that (Y, TY ) (alternatively (X,TX)) is a Baire space
and a function f : X × Y → Z is cliquish with respect to x (alternatively with
respect to y). Then each section (C(f))x, x ∈ X, (alternatively each section
(C(f))y, y ∈ Y ), is dense in Y (alternatively in X).

Proof. For n ≥ 1 let

Un = {(x, y) ∈ X × Y ; osc f <
1
n

at (x, y)}.
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The sets

Un ∈ TX × TY and C(f) =
∞⋂

n=1

Un.

Fix a point (x, y) ∈ X×Y , sets U ∈ TX and V ∈ TY with (x, y) ∈ U×V and a
positive integer n. Since f is cliquish with respect to x, there are sets U1 ∈ TX

and V1 ∈ TY such that x ∈ U1 ⊂ U , V1 ⊂ V and diam(f(U1 × V1)) < 1
n . So

V1 ⊂ (Un)x ∩ V , and consequently the set (Un)x is dense in Y . The section
(Un)x is open and dense in Y . Thus Y \ (Un)x is closed and nowhere dense in
Y . From this it follows that

Y \ (C(f))x = Y \
∞⋂

n=1

(Un)x =
∞⋃

n=1

(Y \ (Un)x)

is of the first category in Y . Since Y is a Baire space, the section (C(f))x is
dense in Y . The proof of the second part is analogous.

The next assertion follows immediately from Theorem 1.

Corollary 2. Suppose that (Y, TY ) and (X,TX) are Baire spaces and a func-
tion f : X × Y → Z is symmetrically cliquish. Then the sections (C(f))x,
x ∈ X, and the sections (C(f))y, y ∈ Y , are dense in Y and resp. in X.

By a standard reasoning we can prove the following remark which we apply
in the proof of next theorem.

Remark 2. If a sequence of cliquish (quasicontinuous) with respect to x [al-
ternatively y] functions fn : X × Y → Z uniformly converges to a function f ,
then f is also cliquish (quasicontinuous) with respect to x [alternatively y].

Theorem 2. Let A ⊂ X × Y be an Fσ-set such that the sections Ax, x ∈ X,
(alternatively Ay, y ∈ Y ,) are of the first category in Y (alternatively in X).
Then there is a function f : X × Y → R which is cliquish with respect to x
(alternatively to y) such that C(f) = (X × Y ) \A.

Proof. There are closed sets An with A =
⋃

nAn and An ⊂ An+1 for n ≥
1. Since for n ≥ 1, the sections ((X × Y ) \ An)x, x ∈ X, (alternatively
((X × Y ) \ An)y, y ∈ Y ,) are open, the sections (An)x, x ∈ X, (alternatively
(An)y, y ∈ Y ,) and n = 1, 2, . . ., are closed and nowhere dense. Consequently,
the characteristic functions fn = χ

An,X×Y are symmetrically cliquish with
respect to x (alternatively y). Let f =

∑∞
n=1

fn

2n and for n ≥ 1 let sn =∑n
k=1

fk

2k . Since for each n ≥ 1 the sections (An)x, x ∈ X, (alternatively
(An)y, y ∈ Y ,) are nowhere dense, the function sn is cliquish with respect to x
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(alternatively y). But the convergence of the series is uniform, so the function
f is cliquish with respect to x (alternatively y). Moreover from the equalities
C(sn) = (X × Y ) \An, n ≥ 1, we obtain C(f) = (X × Y ) \A.

In the same manner we can prove the following theorem.

Theorem 3. Let A ⊂ X × Y be an Fσ-set such that the sections Ax, x ∈ X,
and Ay, y ∈ Y , are of the first category in Y and resp. in X. Then there is a
symmetrically cliquish function f : X×Y → R such that C(f) = (X×Y )\A.

It is obvious (compare [2]) that if a function f : X × Y → Z is such that
the graph Gr(f�C(f) of the restricted function f�C(f) is dense in the graph
Gr(f), then f is quasicontinuous. The converse is also true.

Remark 3. If a function f : X×Y → Z is quasicontinuous and the set C(f)
is dense in X × Y , then the graph Gr(f�C(f) is dense in Gr(f).

Proof. Fix a point (x, y, f(x, y)), where (x, y) ∈ X×Y , sets U ∈ TX , V ∈ TY

with (x, y) ∈ U × V and a real η > 0. From the quasicontinuity of f at (x, y)
it follows that there are nonempty sets U1 ∈ TX and V1 ∈ TY such that

U1 × V1 ⊂ U × V and f(U1 × V1) ⊂ K
(
f(x, y),

η

2

)
.

Since C(f) is dense in X × Y , there is a point (x1, y1) ∈ (U1 × V1) ∩ C(f).
From the continuity of f at (x1, y1) it follows that there are sets U2 ∈ TX and
V2 ∈ TY such that

(x1, y1) ∈ U2 × V2 ⊂ U1 × V1 and f(U2 × V2) ⊂ K
(
f(x1, y1),

η

2

)
.

U2 × V2 is a nonempty open set contained in U × V and f(U2 × V2) ⊂
K(f(x, y), η).

There is, however, a symmetrically quasicontinuous function g with C(g) =
∅. In a suitable example we apply the following remark, which may be proved
by a standard reasoning.

Remark 4. Let a function f : X × Y → R be symmetrically quasicontinuous
at a point (x, y) and let g : X × Y → R be continuous at (x, y). Then the sum
f + g is symmetrically quasicontinuous at (x, y).

Example 1. In X = Y = Z = R we introduce the natural metric ρ and let

f(x, y) =

{
xy

x2+y2 for x, y > 0
f(x, y) = 0 otherwise on R2.
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Then f : R2 → [0, 1
2 ] is a symmetrically quasicontinuous function and C(f) =

R2 \ {(0, 0)}. Let ((xn, yn))n be an enumeration of all pairs of rationals such
that (xn, yn) 6= (xm, ym) for n 6= m. Observe that for each positive integer n
the function

gn(x, y) =
f(x− xn, y − yn)

2n
for (x, y) ∈ R2,

is symmetrically quasicontinuous on R2 and C(gn) = R2 \ {(xn, yn)}. Let
g : Q×Q→ R be defined by

g(x, y) =
∞∑

n=1

f(x− xn, y − yn)
2n

.

For each positive integer k we have

g(x, y) =
∞∑

k 6=n=1

gn(x, y) + gk(x, y).

So g is the sum of a continuous function at the point (xk, yk) and the sym-
metrically quasicontinuous function gk which is not discontinuous at (xk, yk).
Consequently, by Remark 4, the function g is symmetrically quasicontinuous
on Q×Q and C(g) = ∅.

Theorem 4. Let f : X × Y → Z be a function. If the graphs of the restric-
tions of the vertical sections fx�C(f)x, x ∈ X, (alternatively the graphs of
the restrictions of the horizontal sections fy�C(f)y, y ∈ Y ), are dense in the
graphs of these sections fx (alternatively fy), then f is quasicontinuous with
respect to x (alternatively with respect to y).

Proof. Fix a point (x1, y1) ∈ X×Y , sets U ∈ TX and V ∈ TY with (x1, y1) ∈
U×V and a real η > 0. Since the graph Gr(fx1�((C(f))x1) is dense in Gr(fx1),
there is a point

y2 ∈ Y with (x1, y2) ∈ C(f) and ρ(f(x1, y2), f(x1, y1)) <
η

2
.

By the continuity of f at (x1, y2), there are sets U1 ∈ TX and V1 ∈ TY such
that (x1, y2) ∈ U1 × V1 ⊂ U × V and f(U1 × V1) ⊂ K((f(x1, y2), η

3 ). Observe
that f(U1 × V1) ⊂ K(f(x1, y1), η) and the proof of the quasicontinuity of f
with respect to x is completed. The proof of its quasicontinuity with respect
to y is analogous.

The next assertion follows immediately from Theorem 4.
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Corollary 3. Let f : X×Y → Z be a function. If the graphs of the restrictions
fx�C(f)x, x ∈ X, are dense in Gr(fx) and the graphs of the restrictions
fy�C(f)y, y ∈ Y , are dense in the graphs Gr(fy), then f is symmetrically
quasicontinuous.

Theorem 5. Suppose that (Y, TY ) (alternatively (X,TX)) is a Baire space and
a function f : X × Y → Z is quasicontinuous with respect to x (alternatively
with respect to y). Then the graphs Gr(fx�C(f)x), x ∈ X, (alternatively the
graphs Gr(fy�C(f)y), y ∈ Y ), are dense in Gr(fx) (alternatively in Gr(fy)).

Proof. Fix a point (x, y) ∈ X × Y , sets U ∈ TX and V ∈ TY with (x, y) ∈
U × V and a real η > 0. Since f is quasicontinuous with respect to x, there
are sets U1 ∈ TX and V1 ∈ TY such that

x ∈ U1 ⊂ U, V1 ⊂ V and f(U1 × V1)) ⊂ K(f(x, y), η).

By Theorem 1 the section (C(f))x is dense in Y , so there is a point v ∈ V1

with (x, v) ∈ C(f). Since fx(v) = f(x, v) ∈ K(f(x, y), η), the proof of the
first part is completed. The proof of the second part is analogous.

The next Corollary follows immediately from Theorem 5.

Corollary 4. Suppose that (Y, TY ) and (X,TX) are Baire spaces and a func-
tion f : X × Y → Z is symmetrically quasicontinuous. Then the graphs of
the restrictions fx�C(f)x, x ∈ X, are dense in the graphs of these sections fx

and the graphs of the restrictions fy�C(f)y, y ∈ Y , are dense in the graphs
of these sections fy.

Since every symmetrically quasicontinuous function f : X × Y → Z is
symmetrically cliquish, the set D(f) = (X × Y ) \ C(f) is an Fσ-set with of
the first category horizontal and vertical sections (D(f))y and (D(f))x, y ∈ Y
and resp. x ∈ X.

Theorem 6. Suppose that X = Y = Z = R, ρ(x, y) = |x−y| for x, y ∈ R and
that TX = TY is the natural topology generated by ρ. If A ⊂ R2 is an Fσ-set
whose horizontal and vertical sections Ay and Ax, x, y ∈ R, are of the first
category, then there is a symmetrically quasicontinuous function f : R2 → R
such that C(f) = R2 \A.

Proof. Since A is an Fσ-set, there are nonempty compact sets An such that

A =
⋃
n

An and An ⊂ An+1 for n ≥ 1.
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Without loss of the generality we can assume that An+1 \ An 6= ∅ for n ≥ 1.
Since every set An ⊂ A, the sections (An)x and (An)y, x, y ∈ R, are nowhere
dense in R. Now we will construct by induction a sequence of functions (fn).

For this for a point c = (c1, c2) ∈ R2 and a real r > 0 denote by Sqr (c, r)
the closed square [c1 − r, c1 + r]× [c2 − r, c2 + r].

Step 1. Let B1 ⊂ A1 be a countable set dense in A1. Without loss of the
generality we can assume that B1 is an infinite set. Enumerate all points of
B1 in a sequence (b1,n). Since A1 is a nowhere dense set, for each point b1,n,
n ≥ 1, there are a sequence of different points c1,n,k ∈ R2 \ A and a sequence
of pairwise disjoint closed squares I1,n,k = Sqr (c1,n,k, r1,n,k), k ≥ 1, such that

(1.1) for each n ≥ 1 the limit limk→∞ c1,n,k = b1,n;

(1.2) if (n1, k1) 6= (n2, k2), then I1,n1,k1 ∩ I1,n2,k2 = ∅;

(1.3) I1,n,k ∩An+k = ∅ for k ≥ 1;

(1.4) for all n, k ≥ 1 and x ∈ I1,n.k dist(x,A1) = inf{|x− y|; y ∈ A1} < 1
n .

Now for all positive integers n, k ≥ 1 we find a real t1,n,k ∈ (0, r1,n,k) and
denote by J1,n,k the closed square Sqr (c1,n,k, t1,n,k). For n, k ≥ 1 let f1,n,k :
I1,n,k → [0, 1] be a continuous function such that

f1,n,k(c1,n,k) = 1 and f1,n,k(x, y) = 0 for (x, y) ∈ I1,n,k \ J1,n,k,

and let

f1(x, y) =

{
f1,n,k(x, y) for (x, y) ∈ I1,n,k, n, k ≥ 1
0 otherwise on R2.

Observe that C(f1) = R2 \ A1. We will prove that f1 is symmetrically qua-
sicontinuous. Obviously, it is symmetrically quasicontinuous at all points
(x, y) ∈ C(f1) = R2 \ A1. Fix a point t = (x, y) ∈ A1, a real η > 0
and open intervals I, J such that (x, y) ∈ I × J . If there is a pair (n1, k1)
such that {(x, v); v ∈ J} ∩ I1,n1,k1 6= ∅, then there is a point y2 ∈ J with
(x, y2) ∈ I1,n1,k1 \ J1,n1,k1 and consequently there are open intervals I1 ⊂ I
and J1 ⊂ J such that x ∈ I1 and f1(I1 × J1) = {0}. If such a pair (n1, k1)
does not exist, then for each point v ∈ J \ (A1)x the point (x, v) ∈ C(f1) and
consequently, there are open intervals I1 ⊂ I and J1 ⊂ J such that x ∈ I1
and f1(I1 × J1) = {0}. Since f1(t) = f1(x, y) = 0, we obtain that f1 is qua-
sicontinuous at t with respect to x. In the same way we can prove that f1 is
quasicontinuous at t with respect to y. So f1 is symmetrically quasicontinuous.

Step m (m ≥ 2). Let Bm ⊂ Am \ Am−1 be a countable set dense in
Am\Am−1. Without loss of the generality we can assume that Bm is an infinite
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set. Enumerate all points of Bm in a sequence (bm,n) such that bm,n1 6= bm,n2

for n1 6= n2. Since the sections (Am)x and (Am)y, x, y ∈ R, are nowhere
dense sets, for each point bm,n, n ≥ 1, there are a sequence of different points
cm,n,k ∈ R2 \A and a sequence of pairwise disjoint closed squares

Im,n,k = Sqr (cm,n,k, rm,n,k), k ≥ 1,

such that

(m.1) for each n ≥ 1 the limit limk→∞ cm,n,k = bm,n;

(m.2) if (n1, k1) 6= (n2, k2), then Im,n1,k1 ∩ Im,n2,k2 = ∅;

(m.3) if bm,n ∈ R2\
⋃

i<m; j,k≥1 Ii,j,k, then Im,n,k ⊂ R2\(Am∪
⋃

i<m; j,k≥1 Ii,j,k);

(m.4) if bm,n ∈ Ii,j,l for some i < m and j, l ≥ 1, then Im,n,k ⊂ Ii,j,l;

(m.5) Im,n,k ∩Am+n+k = ∅ for n, k ≥ 1;

(m.6) for all n, k ≥ 1 and x ∈ Im,n.k dist(x,Am) = inf{|x−y|; y ∈ A1} < 1
m+n .

Now for all positive integers n, k ≥ 1 we find a real sm,n,k ∈ (0, rm,n,k) and
denote by Jm,n,k the closed square Sqr (cm,n,k, sm,n,k). For n, k ≥ 1 let fm,n,k :
Im,n,k → [0, 1] be a continuous function such that

fm,n,k(cm,n,k) = 1 and fm,n,k(x, y) = 0 for (x, y) ∈ Im,n,k \ Jm,n,k.

Moreover let

fm(x, y) =

{
fm,n,k(x, y) for x ∈ Im,n,k, n, k ≥ 1
0 otherwise on R2.

In the same manner as in the case of f1 we can prove that C(fj) = R2 \cl(Aj \
Aj−1) and that fj are symmetrically quasicontinuous everywhere on R2. Let

s0 = 0 and sj =
∑
i≤j

fi

2i
for j ∈ {1, 2, . . . ,m}.

Observe that if (x, y) /∈ Am, then the functions fi, i ≤ m, are continuous at
(x, y), and consequently sm is also continuous at (x, y). So, R2 \Am ⊂ C(sm).
If (x, y) ∈ Am, then either (x, y) ∈ A1 or there is a positive integer k < m
such that (x, y) ∈ Ak+1 \ Ak. If (x, y) ∈ A1, then sm(x, y) = f1(x, y) = 0
and lim sup(u,v)→(x,y) sm(u, v) ≥ lim sup(u,v)→(x,y)

f1(u,v)
2 = 1

2 , and sm is not
continuous at (x, y).
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If there is a positive integer k < m with (x, y) ∈ Ak+1 \ Ak, then put
h = sm − sk and observe that sk is continuous at (x, y). Similarly as above
we can prove that h(x, y) = 0 and lim sup(u,v)→(x,y) h(u, v) > 0. So h is not
continuous at (x, y). Since sm = sk +h, the sum sm is not continuous at (x, y)
and C(sm) = R2 \Am.

Now we will prove that the sum sm is symmetrically quasicontinuous. Ev-
idently it is symmetrically quasicontinuous at all points of the set C(sm) =
R2 \ Am. Let (x, y) ∈ Am. Since the function s1 = f1

2 is symmetrically qua-
sicontinuous, for the proof that sm is symmetrically quasicontinuous at (x, y)
(we will write sm ∈ Sqc (x, y)) it suffices to show that for k < m the implica-
tion sk ∈ Sqc (x, y) =⇒ sk+1 ∈ Sqc (x, y). So fix a positive integer k < m and
assume that sk is symmetrically quasicontinuous at (x, y). Let j ≤ m be the
first integer such that (x, y) ∈ Aj . If j > k, then (x, y) ∈ R2 \Ak = C(sk) and
sk+1 is symmetrically quasicontinuous at (x, y) as the sum of the symmetri-
cally quasicontinuous at (x, y) function fk+1 and continuous at this point sk.
Thus we can assume that j ≤ k. The function sj−1 is continuous at (x, y)
and gj(x, y) = 0. If for each integer l ∈ {j + 1, j + 2, . . . , k + 1} the point
(x, y) /∈ cl(Al \Al−1), then the functions fi, j < i ≤ k + 1, are continuous at
(x, y), and consequently sk+1 =

∑
j 6=i≤k+1 fi + fj is symmetrically quasicon-

tinuous at (x, y) as the sum of symmetrically quasicontinuous function fj and
a continuous function at this point (x, y). Now consider the case, where the
family A of all integers l such that j < l ≤ k + 1 and (x, y) ∈ cl(Al \ Al−1)
is nonempty. Then for i < j and for j < i /∈ A the functions fi are contin-
uous at (x, y). Let ψ =

∑
i∈A

fi

2i and let h = sk+1 − ψ. The function h is
continuous at (x, y) and ψ(x, y) = 0. Let U and V be open intervals such that
(x, y) ∈ U × V . Since open intervals cannot be countable unions of pairwise
disjoint closed sets ([6]), there is an open interval J ⊂ V \ (Ak+1)x such that
({x} × J) ⊂ ψ−1(0) ∩ C(ψ). Consequently the function ψ is quasicontinuous
at (x, y) with respect to x. Similarly we can prove that ψ is quasicontinuous
at (x, y) with respect to y. Since ψ is symmetrically quasicontinuous at (x, y)
and h is continuous at (x, y), the sum sk+1 = h + ψ is also symmetrically
quasicontinuous at (x, y). This proves that the function f =

∑∞
m=1

fm

2m as
the limit of a uniformly convergent sequence of symmetrically quasicontinu-
ous functions sm is symmetrically quasicontinuous. Moreover C(f) = R2 \ A
and the proof is completed.

Example 2. Let X = Y = Z = R, let

TX = TY = {∅} ∪ {R \A;A is finite},

and let TZ = Te be the natural topology in R. Then each quasicontinuous
(hence also symmetrically quasicontinuous) function f : (X × Y, TX × TY ) →
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(Z, TZ) is constant. In fact, if a quasicontinuous function f : R2 → R is not
constant, then there are different points (x1, y1) and (x2, y2) with f(x1, y1) 6=
f(x2, y2). Let

η =
|f(x1, y1)− f(x2, y2)|

2
.

Since f is quasicontinuous, there are nonempty sets U1, U2, V1, V2 ∈ TX = TY

such that
f(U1 × V1) ⊂ (f(x1, y1)− η, f(x1, y1) + η) and

f(U2 × V2) ⊂ (f(x2, y2)− η, f(x1, y1) + η).

Obviously there is a point (u, v) ∈ (U1 × V1) ∩ (U2 × V2). Thus,

2η = |f(x1, y1)− f(x2, y2)| ≤ |f(x1, y1)− f(u, v)|+ |f(u, v)− f(x2, y2)|
< η + η = 2η,

and the obtained contradiction shows that f is constant (so and continuous).
Thus if A ⊂ X×Y is a nonempty Fσ-set with of the first category sections

Ax and Ay, x, y ∈ R (for example a nonempty finite set), then each symmet-
rically quasicontinuous function f : X × Y → Z is continuous at all points of
A.

Example 2 shows that an analogy of Theorem 6 in arbitrary topological
spaces (X,TX) and (Y, TY ) is not true.
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