Károly Simon, Institute of Mathematics, Technical University of Budapest, H-1529 B.O. Box 91, Hungary. email: simonk@math.bme.hu Boris Solomyak \dagger Box 354350, Department of Mathematics, University of Washington, Seattle WA, 98195. email: solomyak@math.washington.edu

VISIBILITY FOR SELF-SIMILAR SETS OF DIMENSION ONE IN THE PLANE ${ }^{\ddagger}$

Abstract

We prove that a purely unrectifiable self-similar set of finite 1-dimensional Hausdorff measure in the plane, satisfying the Open Set Condition, has radial projection of zero length from every point.

1 Introduction.

For $a \in \mathbb{R}^{2}$, let P_{a} be the radial projection from a,

$$
P_{a}: \mathbb{R}^{2} \backslash\{a\} \rightarrow S^{1}, \quad P_{a}(x)=\frac{(x-a)}{|x-a|}
$$

A special case of our theorem asserts that the "four corner Cantor set" of contraction ratio $1 / 4$ has radial projection of zero length from all points $a \in \mathbb{R}^{2}$. See Figure ??, where we show the second-level approximation of the four corner Cantor set and the radial projection of some of its points.

Denote by \mathcal{H}^{1} the one-dimensional Hausdorff measure. A Borel set Λ is a 1 -set if $0<\mathcal{H}^{1}(\Lambda)<\infty$. It is said to be invisible from a if $P_{a}(\Lambda \backslash\{a\})$ has zero length.

Theorem 1.1. Let Λ be a self-similar 1-set in \mathbb{R}^{2} satisfying the Open Set Condition, which is not on a line. Then, Λ is invisible from every $a \in \mathbb{R}^{2}$.

[^0]

Figure 1: The radial projection of the four corner set.

Recall that a nonempty compact Λ is self-similar if $\Lambda=\bigcup_{i=1}^{m} S_{i}(\Lambda)$ for some contracting similitudes S_{i}. This means that $S_{i}(x)=\lambda_{i} \mathcal{O}_{i} x+b_{i}$, where $0<\lambda_{i}<1, \mathcal{O}_{i}$ is an orthogonal transformation of the plane, and $b_{i} \in \mathbb{R}^{2}$. The Open Set Condition holds if there exists an open set $V \neq \emptyset$ such that $S_{i}(V) \subset V$ for all i, and $S_{i}(V) \cap S_{j}(V)=\emptyset$ for all $i \neq j$. For a self-similar set satisfying the Open Set Condition, being a 1 -set is equivalent to $\sum_{i=1}^{m} \lambda_{i}=1$.

A Borel set Λ is purely unrectifiable (or irregular), if $\mathcal{H}^{1}(\Lambda \cap \Gamma)=0$ for every rectifiable curve Γ. A set Λ satisfying the assumptions of Theorem 1.1 is purely unrectifiable by Hutchinson [5] (see also [8]). A classical theorem of Besicovitch [2] (see also [4, Theorem 6.13]) says that a purely unrectifiable 1-set has orthogonal projections of zero length on almost every line through the origin. We use it in our proof.

In [10, Problem 12] (see also [9, 10.12]), Mattila raised the following question. Let Λ be a Borel set in \mathbb{R}^{2} with $\mathcal{H}^{1}(\Lambda)<\infty$. Is it true that for \mathcal{H}^{1} almost all $a \in \Lambda$, the intersection $\Lambda \cap L$ is a finite set for almost all lines L through a ? If Λ is purely unrectifiable, is it true that $\Lambda \cap L=\{a\}$ for almost all lines through a ? Note that the latter property is equivalent to Λ being invisible from a. Thus, our theorem implies a positive answer for a purely unrectifiable self-similar 1-set Λ satisfying the Open Set Condition. The general case of a purely unrectifiable set remains open. On the other hand, M. Csörnyei and D. Preiss proved recently that the answer to the first part of the question is negative [personal communication].

Note that we prove a stronger property for our class of sets, namely, that
the set is invisible from every point $a \in \mathbb{R}^{2}$. It is easy to construct examples of non-self-similar purely unrectifiable 1-sets for which this property fails. Marstrand [6, p. 281-284] has an example of a purely unrectifiable 1-set which is visible from a set of dimension one. It is obtained by an iterative construction which is far from being self-similar and is too complicated to describe here.

We do not discuss here other results and problems related to visibility; see [9, Section 6] for a recent survey. We only mention a result of Mattila [7, Th.5.1]. If a set Λ has projections of zero length on almost every line (which could have $\mathcal{H}^{1}(\Lambda)=\infty$), then the set of points Ξ from which Λ is visible is a purely unrectifiable set of zero 1-capacity. A different proof of this and a characterization of such sets Ξ is due to Csörnyei [3].

2 Preliminaries.

We have $S_{i}(x):=\lambda_{i} \mathcal{O}_{i} x+b_{i}$, where $0<\lambda_{i}<1$,

$$
\mathcal{O}_{i}=\left[\begin{array}{rr}
\cos \left(\varphi_{i}\right) & -\varepsilon_{i} \sin \left(\varphi_{i}\right) \\
\sin \left(\varphi_{i}\right) & \varepsilon_{i} \cos \left(\varphi_{i}\right)
\end{array}\right]
$$

$\varphi_{i} \in[0,2 \pi)$, and $\varepsilon_{i} \in\{-1,1\}$ shows whether \mathcal{O}_{i} is a rotation through the angle φ_{i} or a reflection about the line through the origin making the angle $\varphi_{i} / 2$ with the x-axis.

Let $\Sigma:=\{1, \ldots, m\}^{\mathbb{N}}$ be the symbolic space. The natural projection Π : $\Sigma \rightarrow \Lambda$ is defined by

$$
\begin{equation*}
\Pi(\mathbf{i})=\lim _{n \rightarrow \infty} S_{i_{1} \ldots i_{n}}\left(x_{0}\right), \text { where } \mathbf{i}=\left(i_{1} i_{2} i_{3} \ldots\right) \in \Sigma \tag{1}
\end{equation*}
$$

and $S_{i_{1} \ldots i_{n}}=S_{i_{1}} \circ \cdots \circ S_{i_{n}}$. The limit in (1) exists and does not depend on x_{0}. Let $\lambda_{i_{1} \ldots i_{n}}=\lambda_{i_{1}} \cdots \lambda_{i_{n}}$ and $\varepsilon_{i_{1} \ldots i_{k}}=\varepsilon_{i_{1}} \cdots \varepsilon_{i_{k}}$. We can write

$$
S_{i_{1} \ldots i_{n}}(x)=\lambda_{i_{1} \ldots i_{n}} \mathcal{O}_{i_{1} \ldots i_{n}} x+b_{i_{1} \ldots i_{n}},
$$

where

$$
\begin{gathered}
\mathcal{O}_{i_{1} \ldots i_{n}}:=\mathcal{O}_{i_{1}} \circ \ldots \circ \mathcal{O}_{i_{n}}=\left[\begin{array}{rr}
\cos \left(\varphi_{i_{1} \ldots i_{n}}\right) & -\varepsilon_{i_{1} \ldots i_{n}} \sin \left(\varphi_{i_{1} \ldots i_{n}}\right) \\
\sin \left(\varphi_{i_{1} \ldots i_{n}}\right) & \varepsilon_{i_{1} \ldots i_{n}} \cos \left(\varphi_{i_{1} \ldots i_{n}}\right)
\end{array}\right] \\
\varphi_{i_{1} \ldots i_{n}}:=\varphi_{i_{1}}+\varepsilon_{i_{1}} \varphi_{i_{2}}+\varepsilon_{i_{1} i_{2}} \varphi_{i_{3}}+\cdots+\varepsilon_{i_{1} \ldots i_{n-1}} \varphi_{i_{n}}
\end{gathered}
$$

and

$$
b_{i_{1} \ldots i_{n}}=b_{i_{1}}+\lambda_{i_{1}} \mathcal{O}_{i_{1}} b_{i_{2}}+\cdots+\lambda_{i_{1} \ldots i_{n-1}} \mathcal{O}_{i_{1} \ldots i_{n-1}} b_{i_{n}}
$$

Since $\sum_{i=1}^{m} \lambda_{i}=1$, we can consider the probability product measure $\mu=$ $\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{\mathbb{N}}$ on the symbolic space Σ and define the natural measure on Λ, $\nu=\mu \circ \Pi^{-1}$. By a result of Hutchinson [5, Theorem 5.3.1(iii)], as a consequence of the Open Set Condition, we have

$$
\begin{equation*}
\nu=\left.c \mathcal{H}^{1}\right|_{\Lambda}, \text { where } c=\left(\mathcal{H}^{1}(\Lambda)\right)^{-1} . \tag{2}
\end{equation*}
$$

To $\theta \in[0, \pi)$, we associate the unit vector $e_{\theta}=(\cos \theta, \sin \theta)$, the line $L_{\theta}=$ $\left\{t e_{\theta}: t \in \mathbb{R}\right\}$, and the orthogonal projection onto L_{θ} given by $x \mapsto\left(e_{\theta} \cdot x\right) e_{\theta}$. It is more convenient to work with the signed distance of the projection to the origin, which we denote by p_{θ},

$$
p_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}, p_{\theta} x=e_{\theta} \cdot x .
$$

Let $\mathcal{A}:=\{1, \ldots, m\}$ and let $\mathcal{A}^{*}=\bigcup_{i=1}^{\infty} \mathcal{A}^{i}$ be the set of all finite words over the alphabet \mathcal{A}. For $u=u_{1} \ldots u_{k} \in \mathcal{A}^{k}$ we define the corresponding "symbolic" cylinder set by

$$
[u]=\left[u_{1} \ldots u_{k}\right]:=\left\{\mathbf{i} \in \Sigma: i_{\ell}=u_{\ell}, 1 \leq \ell \leq k\right\} .
$$

We also let

$$
\Lambda_{u}=S_{u}(\Lambda)=\lambda_{u} \mathcal{O}_{u} \Lambda+b_{u}
$$

and call Λ_{u} the cylinder set of Λ corresponding to the word u. Let d_{Λ} be the diameter of Λ. Then $\operatorname{diam}\left(\Lambda_{u}\right)=\lambda_{u} d_{\Lambda}$. For $\rho>0$, consider the "cut-set"

$$
\mathcal{W}(\rho)=\left\{u \in \mathcal{A}^{*}: \lambda_{u} \leq \rho, \lambda_{u^{\prime}}>\rho\right\}
$$

where u^{\prime} is obtained from u by deleting the last symbol. Observe that for every $0<\rho<\lambda_{\text {min }}$,

$$
\Lambda=\bigcup_{u \in \mathcal{W}(\rho)} \Lambda_{u}
$$

where we denote $\lambda_{\min }:=\min \left\{\lambda_{i}: 1 \leq i \leq m\right\}$. In view of (2), we have $\nu\left(\Lambda_{u} \cap \Lambda_{v}\right)=0$ for distinct $u, v \in \mathcal{W}(\rho)$. Hence

$$
\nu\left(\Lambda_{u}\right)=\lambda_{u} \text { for all } u \in \mathcal{A}^{*} .
$$

We identify the unit circle S^{1} with $[0,2 \pi)$ and use additive notation $\theta_{1}+\theta_{2}$ understood $\bmod 2 \pi$ for points on the circle. For a Radon measure η on the line or on S^{1}, the upper density of η with respect to \mathcal{H}^{1} is defined by

$$
\bar{D}(\eta, t)=\limsup _{r \rightarrow 0} \frac{\eta([t-r, t+r])}{2 r} .
$$

The open ball of radius r centered at x is denoted by $B(x, r)$.

3 Proof of the Main Theorem.

In the proof of Theorem 1.1, we may assume, without loss of generality, that $a \notin \Lambda$, and

$$
\begin{equation*}
P_{a}(\Lambda) \text { is contained in an arc of length less than } \pi . \tag{3}
\end{equation*}
$$

Indeed, $\Lambda \backslash\{a\}$ can be written as a countable union of self-similar sets Λ_{u} for $u \in \mathcal{A}^{*}$, of arbitrarily small diameter. If each of them is invisible from a, then Λ is invisible from a. We denote the usual left shift on Σ by σ. Let

$$
\Omega:=\left\{\mathbf{i} \in \Sigma: \forall u \in \mathcal{A}^{*} \exists n \text { such that } \sigma^{n} \mathbf{i} \in[u]\right\}
$$

that is, Ω is the set of sequences which contain each finite word over the alphabet $\mathcal{A}=\{1, \ldots, m\}$. It is clear that every $\mathbf{i} \in \Omega$ contains each finite word infinitely many times and $\mu(\Sigma \backslash \Omega)=0$.

Lemma 3.1 (Recurrence Lemma). For every $\mathbf{i} \in \Omega, \delta>0$, and $j_{1}, \ldots, j_{k} \in$ $\{1, \ldots, m\}$, there are infinitely many $n \in \mathbb{N}$ such that

$$
\begin{equation*}
\varphi_{i_{1} \ldots i_{n}} \in[0, \delta], \varepsilon_{i_{1} \ldots, i_{n}}=1, \text { and } \sigma^{n} \mathbf{i} \in\left[j_{1} \ldots j_{k}\right] \tag{4}
\end{equation*}
$$

If the similitudes have no rotations or reflections; that is, $\varphi_{i}=0$ and $\varepsilon_{i}=1$ for all $i \leq m$ (as in the case of the four corner Cantor set), then the conditions on φ and ε in (4) hold automatically and the lemma is true by the definition of Ω. The proof in the general case is not difficult, but requires a detailed case analysis, so we postpone it to the next section. Let

$$
\Theta:=\left\{\theta \in[0, \pi): \mathcal{H}^{1}\left(p_{\theta}(\Lambda)\right)=0\right\} \text { and } \Theta^{\prime}:=(\Theta+\pi / 2) \cup(\Theta+3 \pi / 2)
$$

(Recall that addition is considered mod 2π.) Since Λ is purely unrectifiable, $\mathcal{H}^{1}\left([0, \pi) \backslash \Theta^{\prime}\right)=0$ by Besicovitch's Theorem [2]. The following proposition is the key step of the proof. We need the following measures,

$$
\nu_{a}:=\nu \circ P_{a}^{-1} \text { and } \nu_{\theta}:=\nu \circ p_{\theta}^{-1}, \theta \in[0, \pi)
$$

We also let $\Lambda^{\prime}=\Pi(\Omega)$.
Proposition 3.2. If $\theta^{\prime} \in P_{a}\left(\Lambda^{\prime}\right) \cap \Theta^{\prime}$, then $\bar{D}\left(\nu_{a}, \theta^{\prime}\right)=\infty$.
Proof of Theorem 1.1 assuming Proposition 3.2. By Proposition 3.2 and [9, Lemma 2.13] (a corollary of the Vitali covering theorem), we obtain that $\mathcal{H}^{1}\left(P_{a}\left(\Lambda^{\prime}\right) \cap \Theta^{\prime}\right)=0$. As noted above, Θ^{\prime} has full \mathcal{H}^{1} measure in S^{1}. On the other hand,

$$
\mu(\Sigma \backslash \Omega)=0 \Rightarrow \nu\left(\Lambda \backslash \Lambda^{\prime}\right)=0 \Rightarrow \mathcal{H}^{1}\left(\Lambda \backslash \Lambda^{\prime}\right)=0 \Rightarrow \mathcal{H}^{1}\left(P_{a}\left(\Lambda \backslash \Lambda^{\prime}\right)\right)=0
$$

and we conclude that $\mathcal{H}^{1}\left(P_{a}(\Lambda)\right)=0$, as desired.

Proof of Proposition 3.2. Let $x \in \Lambda^{\prime}$ and $\theta^{\prime}=P_{a}(x) \in \Theta^{\prime}$. Let $\theta:=$ $\theta^{\prime}-\pi / 2 \bmod [0, \pi)$. By the definition of Θ^{\prime}, we have $\mathcal{H}^{1}\left(p_{\theta}(\Lambda)\right)=0$.

First, we sketch the idea of the proof. Since $\mathcal{H}^{1}\left(p_{\theta}(\Lambda)\right)=0$, we have $\nu_{\theta} \perp \mathcal{H}^{1}$, and this implies that for every $N \in \mathbb{N}$ there exist N cylinders of Λ approximately the same diameter (say, $\sim r$), such that their projections to L_{θ} are r-close to each other. Then, there is a line parallel to the segment $[a, x]$, whose $C r$-neighborhood contains all $\Lambda_{u_{j}}, j=1, \ldots, N$. By the definition of $\Lambda^{\prime}=\Pi(\Omega)$, we can find similar copies of this picture near $x \in \Lambda^{\prime}$ at arbitrarily small scales. The Recurrence Lemma 3.1 guarantees that these copies can be chosen with a small relative rotation. This will give N cylinders of Λ of diameter $\sim r_{0} r$ contained in a $C^{\prime} r_{0} r$-neighborhood of the ray obtained by extending $[a, x]$. Since a is assumed to be separated from Λ, we will conclude that $\bar{D}\left(\nu_{a}, \theta^{\prime}\right) \geq C^{\prime \prime} N$, and the proposition will follow. Now we make this precise. The proof is illustrated in Figure 2.

Claim. For each $N \in \mathbb{N}$, there exists $r>0$ and distinct $u^{(1)}, \ldots, u^{(N)} \in$ $\mathcal{W}(r)$ such that

$$
\begin{equation*}
\left|p_{\theta}\left(b_{u^{(j)}}-b_{u^{(i)}}\right)\right| \leq r, \forall i, j \leq N \tag{5}
\end{equation*}
$$

Indeed, for every $u \in \mathcal{A}^{*}$,

$$
\Lambda_{u}=\lambda_{u} \mathcal{O}_{u} \Lambda+b_{u} \Rightarrow \Lambda_{u} \subset B\left(b_{u}, d_{\Lambda} \lambda_{u}\right)
$$

Hence for every interval $I \subset \mathbb{R}$ and $r>0$,

$$
\nu_{\theta}(I) \leq \sum_{u \in \mathcal{W}(r)}\left\{\lambda_{u}: \operatorname{dist}\left(p_{\theta}\left(b_{u}\right), I\right) \leq d_{\Lambda} r\right\}
$$

If the claim does not hold, then there exists $N \in \mathbb{N}$ such that for every $t \in \mathbb{R}$ and $r>0$,

$$
\nu_{\theta}([t-r, t+r]) \leq N\left(2\left(1+d_{\Lambda}\right)+1\right) r
$$

Then ν_{θ} is absolutely continuous with respect to \mathcal{H}^{1}, which is a contradiction. The claim is verified.

We are given that $x \in \Lambda^{\prime}=\Pi(\Omega)$, which means that $x=\pi(\mathbf{i})$ for an infinite sequence \mathbf{i} containing all finite words. We fix $N \in \mathbb{N}$ and find $r>0$, $u^{(1)}, \ldots, u^{(N)} \in \mathcal{W}(r)$ from the Claim. Then we apply Recurrence Lemma 3.1 with $j_{1} \ldots j_{k}:=u^{(1)}$ and $\delta=r$ to obtain infinitely many $n \in \mathbb{N}$ satisfying (4). Fix such an n. Let

$$
w:=i_{1} \ldots i_{n} \text { and } v^{(j)}=w u^{(j)}, j=1, \ldots, N
$$

Observe that \mathbf{i} starts with $v^{(1)}$, so $x=\Pi(\mathbf{i}) \in \Lambda_{v^{(1)}}$. Hence

$$
\left|p_{\theta}\left(x-b_{v^{(1)}}\right)\right| \leq\left|x-b_{v^{(1)}}\right| \leq d_{\Lambda} \lambda_{v^{(1)}} \leq d_{\Lambda} \lambda_{w} r
$$

Figure 2: The cylinders of Λ causing high density.

Here we used that $u^{(1)} \in \mathcal{W}(r)$, so $\lambda_{v^{(1)}}=\lambda_{w} \lambda_{u^{(1)}} \leq \lambda_{w} r$. We have for $z \in \mathbb{R}^{2}$, $\lambda_{v^{(j)}} \mathcal{O}_{v^{(j)}} z+b_{v^{(j)}}=S_{v^{(j)}}(z)=S_{w} \circ S_{u^{(j)}}(z)=\lambda_{w} \mathcal{O}_{w}\left(\lambda_{u^{(j)}} \mathcal{O}_{u^{(j)}} z+b_{u^{(j)}}\right)+b_{w}$.

Hence

$$
b_{v^{(j)}}=\lambda_{w} \mathcal{O}_{w} b_{u^{(j)}}+b_{w}
$$

It follows that

$$
p_{\theta}\left(b_{v^{(i)}}-b_{v^{(j)}}\right)=\lambda_{w} p_{\theta} \mathcal{O}_{w}\left(b_{u^{(i)}}-b_{u^{(j)}}\right)
$$

By (4), we have $\varepsilon_{w}=1$ and $\varphi:=\varphi_{w} \in[0, r)$; therefore, $\mathcal{O}_{w}=R_{\theta}$ is the
rotation through the angle φ. One can check that $p_{\theta} R_{\varphi}=p_{\theta-\varphi}$, which yields

$$
\begin{equation*}
\left|p_{\theta}\left(b_{v^{(i)}}-b_{v^{(j)}}\right)\right|=\lambda_{w}\left|p_{\theta-\varphi}\left(b_{u^{(i)}}-b_{u^{(j)}}\right)\right| . \tag{6}
\end{equation*}
$$

Clearly, $\left\|p_{\theta}-p_{\theta-\varphi}\right\| \leq|\varphi| \leq r$, where $\|\cdot\|$ is the operator norm, so we obtain from (5) and (6) that

$$
\left|p_{\theta}\left(b_{v^{(i)}}-b_{v^{(j)}}\right)\right| \leq \lambda_{w}\left(\left|b_{u^{(i)}}-b_{u^{(j)}}\right| r+r\right) \leq \lambda_{w}\left(d_{\Lambda}+1\right) r .
$$

Recall that \mathbf{i} starts with $v^{(1)}$, so $x=\Pi(\mathbf{i}) \in \Lambda_{v^{(1)}}$, hence for each $j \leq N$, for every $y \in \Lambda_{v^{(j)}}$,

$$
\begin{align*}
\left|p_{\theta}(x-y)\right| & \leq\left|x-b_{v^{(1)}}\right|+\left|p_{\theta}\left(b_{v^{(1)}}-b_{v^{(j)}}\right)\right|+\left|b_{v^{(j)}}-y\right| \tag{7}\\
& \leq d_{\Lambda}\left(\lambda_{v^{(1)}}+\lambda_{v^{(j)}}\right)+\lambda_{w}\left(d_{\Lambda}+1\right) r \leq \lambda_{w}\left(3 d_{\Lambda}+1\right) r .
\end{align*}
$$

Now we need a simple geometric fact: given that
$P_{a}(x)=\theta^{\prime}, \quad \theta=\theta^{\prime}+\pi / 2 \bmod [0, \pi),\left|p_{\theta}(x-y)\right| \leq \rho,|y-a| \geq c_{1}$, and (3) holds, we have

$$
\left|P_{a}(y)-\theta^{\prime}\right|=\left|P_{a}(y)-P_{a}(x)\right|=\arcsin \frac{\left|p_{\theta}(y-x)\right|}{|y-a|} \leq \frac{\pi}{2 c_{1}} \rho .
$$

This implies, in view of (7), that for $c_{2}=\pi\left(3 d_{\Lambda}+1\right) /\left(2 c_{1}\right)$,
$\nu_{a}\left(\left[\theta^{\prime}-c_{2} \lambda_{w} r, \theta^{\prime}+c_{2} \lambda_{w} r\right]\right) \geq \sum_{j=1}^{N} \nu\left(\Lambda_{v^{(j)}}\right)=\sum_{j=1}^{N} \lambda_{v^{(j)}}=\lambda_{w} \sum_{j=1}^{N} \lambda_{u^{(j)}} \geq \lambda_{w} N \lambda_{\min } r$,
by the definition of $\mathcal{W}(r)$. Recall that n can be chosen arbitrarily large, so λ_{w} can be arbitrarily small, and we obtain that $\bar{D}\left(\nu_{a}, \theta^{\prime}\right) \geq c_{2}^{-1} \lambda_{\min } N$. Since $N \in \mathbb{N}$ is arbitrary, the proposition follows.

4 Proof of the Recurrence Lemma 3.1.

Let $K \in\{0, \ldots, m\}$ be the number of i for which $\varphi_{i} \notin \pi \mathbb{Q}$. Without loss of generality we may assume the following. If $K \geq 1$, then $\varphi_{1}, \ldots, \varphi_{K} \notin \pi \mathbb{Q}$.

We distinguish the following cases:
A $\varphi_{i} \in \pi \mathbb{Q}$ for all $i \leq m$.
B there exists i such that $\varphi_{i} \notin \pi \mathbb{Q}$ and $\varepsilon_{i}=1$.

C $K \geq 1$ and $\varepsilon_{i}=-1$ for all $i \leq K$.
$\mathbf{C 1}$ there exist $i, j \leq K$ such that $\varphi_{i}-\varphi_{j} \notin \pi \mathbb{Q}$.
$\mathbf{C 2}$ there exists $r_{i} \in \mathbb{Q}$ such that $\varphi_{i}=\varphi_{1}+r_{i} \pi$ for $1 \leq i \leq K$.
C2a $K<m$ and there exists $j \geq K+1$ such that $\varepsilon_{j}=-1$.
C2b $K<m$ and for all $j \geq K+1$ we have $\varepsilon_{j}=1$.
C2c $K=m$.
Denote by R_{φ} the rotation through the angle φ. We call it an irrational rotation if $\varphi \notin \pi \mathbb{Q}$. Consider the semigroup generated by $\mathcal{O}_{i}, i \leq m$, which we denote by \mathcal{S}. We begin with the following observation.

Claim. Either \mathcal{S} is finite, or \mathcal{S} contains an irrational rotation.
The semigroup \mathcal{S} is clearly finite in Case A and contains an irrational rotation in Case B. In Case C 1 we have $\mathcal{O}_{i} \mathcal{O}_{j}=R_{\varphi_{i}-\varphi_{j}}$, which is an irrational rotation. In Case C 2 a we also have that $\mathcal{O}_{i} \mathcal{O}_{j}=R_{\varphi_{i}-\varphi_{j}}$ is an irrational rotation, since $\varphi_{i} \notin \pi \mathbb{Q}$ and $\varphi_{j} \in \pi \mathbb{Q}$. We claim that in remaining Cases C2b and C2c the semigroup is finite. This follows easily; then \mathcal{S} is generated by one irrational reflection and finitely many rational rotations.

Proof of Lemma 3.1 when \mathcal{S} is finite. A finite semigroup of invertible transformations is necessarily a group. Let $\mathcal{S}=\left\{s_{1}, \ldots, s_{t}\right\}$. By the definition of the semigroup \mathcal{S} we have $s_{i}=\mathcal{O}_{w^{(i)}}$ for some $w^{(i)} \in \mathcal{A}^{*}, i=1, \ldots, t$. For every $v \in \mathcal{A}^{*}$, we can find $\widehat{v} \in \mathcal{A}^{*}$ such that $\mathcal{O}_{\widehat{v}}=\mathcal{O}_{v}^{-1}$. Fix $u=j_{1} \ldots j_{k}$ from the statement of the lemma. Consider the following finite word over the alphabet \mathcal{A}.

$$
\omega:=\tau_{1} \ldots \tau_{t}, \quad \text { where } \tau_{j}=\left(w^{(j)} u\right) \widehat{\left(w^{(j)} u\right)}, j=1, \ldots, t
$$

Note that $\mathcal{O}_{\tau_{j}}=I$ (the identity). By the definition of Ω, the sequence $\mathbf{i} \in \Omega$ contains ω infinitely many times. Suppose that $\sigma^{\ell} \mathbf{i} \in[\omega]$. Put $\mathbf{i} \mid \ell:=i_{1} \ldots i_{\ell}$. Since $\mathcal{O}_{\mathbf{i} \mid \ell} \in \mathcal{S}$, there exists $w^{(j)}$ such that $\mathcal{O}_{w^{(j)}}=\mathcal{O}_{\mathbf{i} \mid \ell}^{-1}$. Then, the occurrence of u in τ_{j}, the j th factor of ω, will be at the position n such that $\mathcal{O}_{\mathbf{i} \mid n}=I$, so we will have $\varphi_{\mathbf{i} \mid n}=0 \in[0, \delta]$ and $\varepsilon_{\mathbf{i} \mid n}=1$, as desired.

Proof of Lemma 3.1 when \mathcal{S} is infinite. By the claim above, there exists $w \in \mathcal{A}^{*}$ such that $\varphi_{w} \notin \pi \mathbb{Q}$ and $\varepsilon_{w}=1$. Fix $u=j_{1} \ldots j_{k}$ from the statement of the lemma. Let

$$
v:= \begin{cases}u u, & \text { if } \varphi_{u} \notin \pi \mathbb{Q} \\ u u w, & \text { if } \varphi_{u} \in \pi \mathbb{Q} .\end{cases}
$$

Observe that $\varphi_{v} \notin \pi \mathbb{Q}$ and $\varepsilon_{v}=1$. Let $v^{k}=v \ldots v$ (the word v repeated k times). Since φ_{v} / π is irrational, there exists an N such that every orbit of $R_{\varphi_{v}}$ of length N contains a point in every subinterval of $[0,2 \pi)$ of length δ. Put

$$
\omega:= \begin{cases}v^{N}, & \text { if } \varepsilon_{i}=1, \forall i \leq m ; \\ v^{N} j^{*} v^{N}, & \text { if } \exists j^{*} \text { such that } \varepsilon_{j^{*}}=-1\end{cases}
$$

By the definition of Ω, the sequence $\mathbf{i} \in \Omega$ contains ω infinitely many times. Let $\ell \in \mathbb{N}$ be such that $\sigma^{\ell} \mathbf{i} \in[\omega]$. Suppose first that $\varepsilon_{\mathbf{i} \mid \ell}=1$. Then we have, denoting the length of v by $|v|$,

$$
\begin{equation*}
\sigma^{\ell+k|v|} \mathbf{i} \in[u], \quad \varphi_{\mathbf{i} \mid(\ell+k|v|)}=\varphi_{\mathbf{i} \mid \ell}+k \varphi_{v}(\bmod 2 \pi), \quad \varepsilon_{\mathbf{i} \mid(\ell+k|v|)}=1 \tag{8}
\end{equation*}
$$

for $k=0, \ldots, N-1$. By the choice of N, we can find $k \in\{0, \ldots, N-1\}$ such that $\varphi_{\mathbf{i} \mid(\ell+k|v|)} \in[0, \delta]$, then $n=\ell+k|v|$ will be as desired. If $\varepsilon_{\mathbf{i} \mid \ell}=-1$, then we replace ℓ by $\ell^{*}:=\ell+N|v|+1$ in (8), that is, we consider the occurrences of u in the second factor v^{N}. The orientation will be switched by $\mathcal{O}_{j^{*}}$ and we can find the desired n analogously.

5 Concluding Remarks.

Consider the special case when the self-similar set Λ is of the form

$$
\begin{equation*}
\Lambda=\bigcup_{i=1}^{m}\left(\lambda_{i} \Lambda+b_{i}\right), \quad b_{i} \in \mathbb{R}^{2} \tag{9}
\end{equation*}
$$

In other words, the contracting similitudes have no rotations or reflections, as for the four corner Cantor set. Then the projection $\Lambda^{\theta}:=p_{\theta}(\Lambda)$ is itself a self-similar set on the line

$$
\Lambda^{\theta}=\bigcup_{i=1}^{m}\left(\lambda_{i} \Lambda^{\theta}+p_{\theta}\left(b_{i}\right)\right), \quad \text { for } \theta \in[0, \pi)
$$

Let $\Lambda_{i}^{\theta}=\lambda_{i} \Lambda^{\theta}+p_{\theta}\left(b_{i}\right)$. As above, ν is the natural measure on Λ. Let ν_{θ} be the natural measure on Λ^{θ}, so that $\nu_{\theta}=\nu \circ p_{\theta}^{-1}$.

Corollary 5.1. Let Λ be a self-similar set of the form (9) that is not on a line, such that $\sum_{i=1}^{m} \lambda_{i} \leq 1$. If Λ satisfies the Open Set Condition condition, then

$$
\nu_{\theta}\left(\Lambda_{i}^{\theta} \cap \Lambda_{j}^{\theta}\right)=0, \quad i \neq j, \quad \text { for a.e. } \theta \in[0, \pi)
$$

Proof. Let $s>0$ be such that $\sum_{i=1}^{m} \lambda_{i}^{s}=1$. By assumption, we have $s \leq 1$. This number is known as the similarity dimension of Λ (and also of Λ^{θ} for all θ). Suppose first that $s=1$. Then we are in the situation covered by Theorem 1.1, and ν is just the normalized restriction of \mathcal{H}^{1} to Λ. Consider the product measure $\nu \times \mathcal{L}$, where \mathcal{L} is the Lebesgue measure on $[0, \pi)$. Theorem 1.1 implies that

$$
(\nu \times \mathcal{L})\left\{(x, \theta) \in \Lambda \times[0, \pi): \exists y \in \Lambda, y \neq x, p_{\theta}(x)=p_{\theta}(y)\right\}=0
$$

By Fubini's Theorem, it follows that for \mathcal{L} a.e. θ, for ν_{θ} a.e. $z \in L^{\theta}$, we have that $p_{\theta}^{-1}(z)$ is a single point. This proves the desired statement, in view of the fact that $\nu\left(\Lambda_{i} \cap \Lambda_{j}\right)=0$ for Λ satisfying the Open Set Condition.

In the case when $s<1$, we can use [11, Proposition 1.3], which implies that the packing measure $\mathcal{P}^{s}\left(\Lambda^{\theta}\right)$ is positive and finite for \mathcal{L} a.e. θ. By selfsimilarity and the properties of \mathcal{P}^{s} (translation invariance and scaling), we have $\mathcal{P}^{s}\left(\Lambda_{i}^{\theta} \cap \Lambda_{j}^{\theta}\right)=0$ for $i \neq j$. Then we use [11, Corollary 2.2], which implies that ν_{θ} is the normalized restriction of \mathcal{P}^{s} to Λ^{θ}, to complete the proof.

Remark. In [1, Proposition 2], it is claimed that if a self-similar set $\mathcal{K}=$ $\bigcup_{i=1}^{m} \mathcal{K}_{i}$ in \mathbb{R}^{d} has the Hausdorff dimension equal to the similarity dimension, then the natural measure of the "overlap set" $\bigcup_{i \neq j}\left(\mathcal{K}_{i} \cap \mathcal{K}_{j}\right)$ is zero. This would imply Corollary 5.1, since the Hausdorff dimension of Λ^{θ} equals s for \mathcal{L} a.e. θ by Marstrand's Projection Theorem. Unfortunately, the proof in [1] contains an error, and it is still unknown whether the result holds [C. Bandt, personal communication]. (It should be noted that [1, Proposition 2] was not used anywhere in [1].)
Acknowledgment. We are grateful to M. Csörnyei, E. Järvenpää, and M. Järvenpää for helpful discussions. This work was done while K. S. was visiting the University of Washington.

References

[1] C. Bandt and S. Graf, Self-similar Sets 7. A Characterization of Selfsimilar Fractals with Positive Hausdorff Measure, Proc. Amer. Math. Soc., 114 (1992), 995-1001.
[2] A. S. Besicovitch, On the Fundamental Geometric Properties of Linearly Measurable Plane Sets of Points II, Math. Annalen, 115 (1938), 296-329.
[3] M. Csörnyei, How to Make Davies' Theorem Visible, Bull. London Math. Soc., 33 (2001), 59-66.
[4] K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Pres, 1985.
[5] J. E. Hutchinson, Fractals and Self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.
[6] J. Marstrand, Some Fundamental Geometrical Properties of Plane Sets of Fractional Dimension, Proc. London Math. Soc., 4 (1954), 257-302.
[7] P. Mattila, Integralgeometric Properties of Capacities, Trans. Amer. Math. Soc., 266 (1981), 539-544.
[8] P. Mattila, On the Structure of Self-similar Fractals, Ann. Acad. Sci. Fenn. Ser. A I Math., 7 (1982), 189-195.
[9] P. Mattila, The Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995.
[10] P. Mattila, Hausdorff Dimension, Projections, and the Fourier Transform, Publ. Math., 48 (2004), 3-48.
[11] Y. Peres, K. Simon and B. Solomyak, Self-similar Sets of Zero Hausdorff Measure and Positive Packing Measure, Israel J. Math., 117 (2000), 353379.

[^0]: Key Words: Hausdorff measure, purely unrectifiable, self-similar set
 Mathematical Reviews subject classification: Primary 28A80
 Received by the editors October 23, 2005
 Communicated by: Clifford E. Weil
 *Supported in part by OTKA Foundation grant T42496.
 ${ }^{\dagger}$ supported in part by NSF grant DMS-0355187.
 \ddagger This collaboration was supported by NSF-MTA-OTKA grant \#77.

