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Abstract

We prove that a purely unrectifiable self-similar set of finite 1-dimensional
Hausdorff measure in the plane, satisfying the Open Set Condition, has
radial projection of zero length from every point.

1 Introduction.

For a ∈ R2, let Pa be the radial projection from a,

Pa : R2 \ {a} → S1, Pa(x) =
(x− a)
|x− a|

.

A special case of our theorem asserts that the “four corner Cantor set”
of contraction ratio 1/4 has radial projection of zero length from all points
a ∈ R2. See Figure ??, where we show the second-level approximation of the
four corner Cantor set and the radial projection of some of its points.

Denote by H1 the one-dimensional Hausdorff measure. A Borel set Λ is a
1-set if 0 < H1(Λ) < ∞. It is said to be invisible from a if Pa(Λ \ {a}) has
zero length.

Theorem 1.1. Let Λ be a self-similar 1-set in R2 satisfying the Open Set
Condition, which is not on a line. Then, Λ is invisible from every a ∈ R2.

Key Words: Hausdorff measure, purely unrectifiable, self-similar set
Mathematical Reviews subject classification: Primary 28A80
Received by the editors October 23, 2005
Communicated by: Clifford E. Weil

∗Supported in part by OTKA Foundation grant T42496.
†supported in part by NSF grant DMS-0355187.
‡This collaboration was supported by NSF-MTA-OTKA grant #77.

67
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Figure 1: The radial projection of the four corner set.

Recall that a nonempty compact Λ is self-similar if Λ =
⋃m

i=1 Si(Λ) for
some contracting similitudes Si. This means that Si(x) = λiOix + bi, where
0 < λi < 1, Oi is an orthogonal transformation of the plane, and bi ∈ R2.
The Open Set Condition holds if there exists an open set V 6= ∅ such that
Si(V ) ⊂ V for all i, and Si(V ) ∩ Sj(V ) = ∅ for all i 6= j. For a self-similar set
satisfying the Open Set Condition, being a 1-set is equivalent to

∑m
i=1 λi = 1.

A Borel set Λ is purely unrectifiable (or irregular), if H1(Λ ∩ Γ) = 0 for
every rectifiable curve Γ. A set Λ satisfying the assumptions of Theorem 1.1
is purely unrectifiable by Hutchinson [5] (see also [8]). A classical theorem
of Besicovitch [2] (see also [4, Theorem 6.13]) says that a purely unrectifiable
1-set has orthogonal projections of zero length on almost every line through
the origin. We use it in our proof.

In [10, Problem 12] (see also [9, 10.12]), Mattila raised the following ques-
tion. Let Λ be a Borel set in R2 with H1(Λ) < ∞. Is it true that for H1 almost
all a ∈ Λ, the intersection Λ ∩ L is a finite set for almost all lines L through
a? If Λ is purely unrectifiable, is it true that Λ ∩ L = {a} for almost all lines
through a? Note that the latter property is equivalent to Λ being invisible
from a. Thus, our theorem implies a positive answer for a purely unrectifiable
self-similar 1-set Λ satisfying the Open Set Condition. The general case of a
purely unrectifiable set remains open. On the other hand, M. Csörnyei and
D. Preiss proved recently that the answer to the first part of the question is
negative [personal communication].

Note that we prove a stronger property for our class of sets, namely, that
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the set is invisible from every point a ∈ R2. It is easy to construct exam-
ples of non-self-similar purely unrectifiable 1-sets for which this property fails.
Marstrand [6, p. 281–284] has an example of a purely unrectifiable 1-set which
is visible from a set of dimension one. It is obtained by an iterative construc-
tion which is far from being self-similar and is too complicated to describe
here.

We do not discuss here other results and problems related to visibility; see
[9, Section 6] for a recent survey. We only mention a result of Mattila [7,
Th.5.1]. If a set Λ has projections of zero length on almost every line (which
could have H1(Λ) = ∞), then the set of points Ξ from which Λ is visible is
a purely unrectifiable set of zero 1-capacity. A different proof of this and a
characterization of such sets Ξ is due to Csörnyei [3].

2 Preliminaries.

We have Si(x) := λiOix + bi, where 0 < λi < 1,

Oi =
[

cos(ϕi) −εi sin(ϕi)
sin(ϕi) εi cos(ϕi)

]
,

ϕi ∈ [0, 2π), and εi ∈ {−1, 1} shows whether Oi is a rotation through the
angle ϕi or a reflection about the line through the origin making the angle
ϕi/2 with the x-axis.

Let Σ := {1, . . . ,m}N be the symbolic space. The natural projection Π :
Σ → Λ is defined by

Π(i) = lim
n→∞

Si1...in
(x0), where i = (i1i2i3 . . .) ∈ Σ, (1)

and Si1...in
= Si1 ◦ · · · ◦ Sin

. The limit in (1) exists and does not depend on
x0. Let λi1...in

= λi1 · · ·λin
and εi1...ik

= εi1 · · · εik
. We can write

Si1...in
(x) = λi1...in

Oi1...in
x + bi1...in

,

where

Oi1...in
:= Oi1 ◦ · · · ◦ Oin

=
[

cos(ϕi1...in) −εi1...in sin(ϕi1...in)
sin(ϕi1...in) εi1...in cos(ϕi1...in)

]
,

ϕi1...in
:= ϕi1 + εi1ϕi2 + εi1i2ϕi3 + · · ·+ εi1...in−1ϕin

,

and
bi1...in

= bi1 + λi1Oi1bi2 + · · ·+ λi1...in−1Oi1...in−1bin
.
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Since
∑m

i=1 λi = 1, we can consider the probability product measure µ =
(λ1, . . . , λm)N on the symbolic space Σ and define the natural measure on Λ,
ν = µ◦Π−1. By a result of Hutchinson [5, Theorem 5.3.1(iii)], as a consequence
of the Open Set Condition, we have

ν = cH1|Λ, where c = (H1(Λ))−1. (2)

To θ ∈ [0, π), we associate the unit vector eθ = (cos θ, sin θ), the line Lθ =
{teθ : t ∈ R}, and the orthogonal projection onto Lθ given by x 7→ (eθ · x)eθ.
It is more convenient to work with the signed distance of the projection to the
origin, which we denote by pθ,

pθ : R2 → R, pθx = eθ · x.

LetA := {1, . . . ,m} and letA∗ =
⋃∞

i=1Ai be the set of all finite words over the
alphabet A. For u = u1 . . . uk ∈ Ak we define the corresponding “symbolic”
cylinder set by

[u] = [u1 . . . uk] := {i ∈ Σ : i` = u`, 1 ≤ ` ≤ k}.

We also let
Λu = Su(Λ) = λuOuΛ + bu

and call Λu the cylinder set of Λ corresponding to the word u. Let dΛ be the
diameter of Λ. Then diam(Λu) = λudΛ. For ρ > 0, consider the “cut-set”

W(ρ) = {u ∈ A∗ : λu ≤ ρ, λu′ > ρ}

where u′ is obtained from u by deleting the last symbol. Observe that for
every 0 < ρ < λmin,

Λ =
⋃

u∈W(ρ)

Λu,

where we denote λmin := min{λi : 1 ≤ i ≤ m}. In view of (2), we have
ν(Λu ∩ Λv) = 0 for distinct u, v ∈ W(ρ). Hence

ν(Λu) = λu for all u ∈ A∗.

We identify the unit circle S1 with [0, 2π) and use additive notation θ1 +θ2

understood mod 2π for points on the circle. For a Radon measure η on the
line or on S1, the upper density of η with respect to H1 is defined by

D(η, t) = lim sup
r→0

η([t− r, t + r])
2r

.

The open ball of radius r centered at x is denoted by B(x, r).
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3 Proof of the Main Theorem.

In the proof of Theorem 1.1, we may assume, without loss of generality, that
a 6∈ Λ, and

Pa(Λ) is contained in an arc of length less than π. (3)

Indeed, Λ \ {a} can be written as a countable union of self-similar sets Λu for
u ∈ A∗, of arbitrarily small diameter. If each of them is invisible from a, then
Λ is invisible from a. We denote the usual left shift on Σ by σ. Let

Ω := {i ∈ Σ : ∀u ∈ A∗ ∃n such that σni ∈ [u]};

that is, Ω is the set of sequences which contain each finite word over the
alphabet A = {1, . . . ,m}. It is clear that every i ∈ Ω contains each finite word
infinitely many times and µ(Σ \ Ω) = 0.

Lemma 3.1 (Recurrence Lemma). For every i ∈ Ω, δ > 0, and j1, . . . , jk ∈
{1, . . . ,m}, there are infinitely many n ∈ N such that

ϕi1...in ∈ [0, δ], εi1...,in = 1, and σni ∈ [j1 . . . jk]. (4)

If the similitudes have no rotations or reflections; that is, ϕi = 0 and εi = 1
for all i ≤ m (as in the case of the four corner Cantor set), then the conditions
on ϕ and ε in (4) hold automatically and the lemma is true by the definition
of Ω. The proof in the general case is not difficult, but requires a detailed case
analysis, so we postpone it to the next section. Let

Θ := {θ ∈ [0, π) : H1(pθ(Λ)) = 0} and Θ′ := (Θ + π/2) ∪ (Θ + 3π/2).

(Recall that addition is considered mod 2π.) Since Λ is purely unrectifiable,
H1([0, π) \Θ′) = 0 by Besicovitch’s Theorem [2]. The following proposition is
the key step of the proof. We need the following measures,

νa := ν ◦ P−1
a and νθ := ν ◦ p−1

θ , θ ∈ [0, π).

We also let Λ′ = Π(Ω).

Proposition 3.2. If θ′ ∈ Pa(Λ′) ∩Θ′, then D(νa, θ′) = ∞.

Proof of Theorem 1.1 assuming Proposition 3.2. By Proposition 3.2
and [9, Lemma 2.13] (a corollary of the Vitali covering theorem), we obtain
that H1(Pa(Λ′)∩Θ′) = 0. As noted above, Θ′ has full H1 measure in S1. On
the other hand,

µ(Σ \ Ω) = 0 ⇒ ν(Λ \ Λ′) = 0 ⇒ H1(Λ \ Λ′) = 0 ⇒ H1(Pa(Λ \ Λ′)) = 0,

and we conclude that H1(Pa(Λ)) = 0, as desired.
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Proof of Proposition 3.2. Let x ∈ Λ′ and θ′ = Pa(x) ∈ Θ′. Let θ :=
θ′ − π/2 mod [0, π). By the definition of Θ′, we have H1(pθ(Λ)) = 0.

First, we sketch the idea of the proof. Since H1(pθ(Λ)) = 0, we have
νθ ⊥ H1, and this implies that for every N ∈ N there exist N cylinders of Λ
approximately the same diameter (say, ∼ r), such that their projections to Lθ

are r-close to each other. Then, there is a line parallel to the segment [a, x],
whose Cr-neighborhood contains all Λuj , j = 1, . . . , N . By the definition of
Λ′ = Π(Ω), we can find similar copies of this picture near x ∈ Λ′ at arbitrarily
small scales. The Recurrence Lemma 3.1 guarantees that these copies can
be chosen with a small relative rotation. This will give N cylinders of Λ of
diameter ∼ r0r contained in a C ′r0r-neighborhood of the ray obtained by
extending [a, x]. Since a is assumed to be separated from Λ, we will conclude
that D(νa, θ′) ≥ C ′′N , and the proposition will follow. Now we make this
precise. The proof is illustrated in Figure 2.

Claim. For each N ∈ N, there exists r > 0 and distinct u(1), . . . , u(N) ∈
W(r) such that

|pθ(bu(j) − bu(i))| ≤ r, ∀ i, j ≤ N. (5)

Indeed, for every u ∈ A∗,

Λu = λuOuΛ + bu ⇒ Λu ⊂ B(bu, dΛλu).

Hence for every interval I ⊂ R and r > 0,

νθ(I) ≤
∑

u∈W(r)

{λu : dist(pθ(bu), I) ≤ dΛr}.

If the claim does not hold, then there exists N ∈ N such that for every t ∈ R
and r > 0,

νθ([t− r, t + r]) ≤ N(2(1 + dΛ) + 1)r.

Then νθ is absolutely continuous with respect to H1, which is a contradiction.
The claim is verified.

We are given that x ∈ Λ′ = Π(Ω), which means that x = π(i) for an
infinite sequence i containing all finite words. We fix N ∈ N and find r > 0,
u(1), . . . , u(N) ∈ W(r) from the Claim. Then we apply Recurrence Lemma 3.1
with j1 . . . jk := u(1) and δ = r to obtain infinitely many n ∈ N satisfying (4).
Fix such an n. Let

w := i1 . . . in and v(j) = wu(j), j = 1, . . . , N.

Observe that i starts with v(1), so x = Π(i) ∈ Λv(1) . Hence

|pθ(x− bv(1))| ≤ |x− bv(1) | ≤ dΛλv(1) ≤ dΛλwr.
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Figure 2: The cylinders of Λ causing high density.

Here we used that u(1) ∈ W(r), so λv(1) = λwλu(1) ≤ λwr. We have for z ∈ R2,

λv(j)Ov(j)z + bv(j) = Sv(j)(z) = Sw ◦Su(j)(z) = λwOw(λu(j)Ou(j)z + bu(j))+ bw.

Hence
bv(j) = λwOwbu(j) + bw.

It follows that

pθ(bv(i) − bv(j)) = λwpθOw(bu(i) − bu(j)).

By (4), we have εw = 1 and ϕ := ϕw ∈ [0, r); therefore, Ow = Rθ is the



74 Károly Simon and Boris Solomyak

rotation through the angle ϕ. One can check that pθRϕ = pθ−ϕ, which yields

|pθ(bv(i) − bv(j))| = λw|pθ−ϕ(bu(i) − bu(j))|. (6)

Clearly, ‖pθ − pθ−ϕ‖ ≤ |ϕ| ≤ r, where ‖ · ‖ is the operator norm, so we obtain
from (5) and (6) that

|pθ(bv(i) − bv(j))| ≤ λw(|bu(i) − bu(j) |r + r) ≤ λw(dΛ + 1)r.

Recall that i starts with v(1), so x = Π(i) ∈ Λv(1) , hence for each j ≤ N , for
every y ∈ Λv(j) ,

|pθ(x− y)| ≤ |x− bv(1) |+ |pθ(bv(1) − bv(j))|+ |bv(j) − y|
≤ dΛ(λv(1) + λv(j)) + λw(dΛ + 1)r ≤ λw(3dΛ + 1)r.

(7)

Now we need a simple geometric fact: given that

Pa(x) = θ′, θ = θ′+π/2 mod [0, π), |pθ(x−y)| ≤ ρ, |y−a| ≥ c1, and (3) holds,

we have

|Pa(y)− θ′| = |Pa(y)− Pa(x)| = arcsin
|pθ(y − x)|
|y − a|

≤ π

2c1
ρ.

This implies, in view of (7), that for c2 = π(3dΛ + 1)/(2c1),

νa([θ′−c2λwr, θ′+c2λwr]) ≥
N∑

j=1

ν(Λv(j)) =
N∑

j=1

λv(j) = λw

N∑
j=1

λu(j) ≥ λwNλminr,

by the definition of W(r). Recall that n can be chosen arbitrarily large, so
λw can be arbitrarily small, and we obtain that D(νa, θ′) ≥ c−1

2 λminN. Since
N ∈ N is arbitrary, the proposition follows.

4 Proof of the Recurrence Lemma 3.1.

Let K ∈ {0, . . . ,m} be the number of i for which ϕi 6∈ πQ. Without loss of
generality we may assume the following. If K ≥ 1, then ϕ1, . . . , ϕK 6∈ πQ.

We distinguish the following cases:

A ϕi ∈ πQ for all i ≤ m.

B there exists i such that ϕi 6∈ πQ and εi = 1.
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C K ≥ 1 and εi = −1 for all i ≤ K.

C1 there exist i, j ≤ K such that ϕi − ϕj 6∈ πQ.

C2 there exists ri ∈ Q such that ϕi = ϕ1 + riπ for 1 ≤ i ≤ K.

C2a K < m and there exists j ≥ K + 1 such that εj = −1.
C2b K < m and for all j ≥ K + 1 we have εj = 1.
C2c K = m.

Denote by Rϕ the rotation through the angle ϕ. We call it an irrational
rotation if ϕ 6∈ πQ. Consider the semigroup generated by Oi, i ≤ m, which
we denote by S. We begin with the following observation.

Claim. Either S is finite, or S contains an irrational rotation.
The semigroup S is clearly finite in Case A and contains an irrational

rotation in Case B. In Case C1 we have OiOj = Rϕi−ϕj
, which is an irrational

rotation. In Case C2a we also have that OiOj = Rϕi−ϕj
is an irrational

rotation, since ϕi 6∈ πQ and ϕj ∈ πQ. We claim that in remaining Cases C2b
and C2c the semigroup is finite. This follows easily; then S is generated by
one irrational reflection and finitely many rational rotations.

Proof of Lemma 3.1 when S is finite. A finite semigroup of invertible
transformations is necessarily a group. Let S = {s1, . . . , st}. By the definition
of the semigroup S we have si = Ow(i) for some w(i) ∈ A∗, i = 1, . . . , t. For
every v ∈ A∗, we can find v̂ ∈ A∗ such that Obv = O−1

v . Fix u = j1 . . . jk

from the statement of the lemma. Consider the following finite word over the
alphabet A.

ω := τ1 . . . τt, where τj = (w(j)u) ̂(w(j)u), j = 1, . . . , t

Note that Oτj
= I (the identity). By the definition of Ω, the sequence i ∈ Ω

contains ω infinitely many times. Suppose that σ`i ∈ [ω]. Put i|` := i1 . . . i`.
Since Oi|` ∈ S, there exists w(j) such that Ow(j) = O−1

i|` . Then, the occurrence
of u in τj , the jth factor of ω, will be at the position n such that Oi|n = I, so
we will have ϕi|n = 0 ∈ [0, δ] and εi|n = 1, as desired.

Proof of Lemma 3.1 when S is infinite. By the claim above, there ex-
ists w ∈ A∗ such that ϕw 6∈ πQ and εw = 1. Fix u = j1 . . . jk from the
statement of the lemma. Let

v :=
{

uu, if ϕu 6∈ πQ;
uuw, if ϕu ∈ πQ.
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Observe that ϕv 6∈ πQ and εv = 1. Let vk = v . . . v (the word v repeated k
times). Since ϕv/π is irrational, there exists an N such that every orbit of
Rϕv

of length N contains a point in every subinterval of [0, 2π) of length δ.
Put

ω :=
{

vN , if εi = 1, ∀ i ≤ m;
vN j∗vN , if ∃ j∗ such that εj∗ = −1.

By the definition of Ω, the sequence i ∈ Ω contains ω infinitely many times.
Let ` ∈ N be such that σ`i ∈ [ω]. Suppose first that εi|` = 1. Then we have,
denoting the length of v by |v|,

σ`+k|v|i ∈ [u], ϕi|(`+k|v|) = ϕi|` + kϕv (mod 2π), εi|(`+k|v|) = 1, (8)

for k = 0, . . . , N − 1. By the choice of N , we can find k ∈ {0, . . . , N − 1} such
that ϕi|(`+k|v|) ∈ [0, δ], then n = ` + k|v| will be as desired. If εi|` = −1, then
we replace ` by `∗ := ` + N |v|+ 1 in (8), that is, we consider the occurrences
of u in the second factor vN . The orientation will be switched by Oj∗ and we
can find the desired n analogously.

5 Concluding Remarks.

Consider the special case when the self-similar set Λ is of the form

Λ =
m⋃

i=1

(λiΛ + bi), bi ∈ R2. (9)

In other words, the contracting similitudes have no rotations or reflections, as
for the four corner Cantor set. Then the projection Λθ := pθ(Λ) is itself a
self-similar set on the line

Λθ =
m⋃

i=1

(λiΛθ + pθ(bi)), for θ ∈ [0, π).

Let Λθ
i = λiΛθ + pθ(bi). As above, ν is the natural measure on Λ. Let νθ be

the natural measure on Λθ, so that νθ = ν ◦ p−1
θ .

Corollary 5.1. Let Λ be a self-similar set of the form (9) that is not on a
line, such that

∑m
i=1 λi ≤ 1. If Λ satisfies the Open Set Condition condition,

then
νθ(Λθ

i ∩ Λθ
j ) = 0, i 6= j, for a.e. θ ∈ [0, π).
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Proof. Let s > 0 be such that
∑m

i=1 λs
i = 1. By assumption, we have

s ≤ 1. This number is known as the similarity dimension of Λ (and also
of Λθ for all θ). Suppose first that s = 1. Then we are in the situation
covered by Theorem 1.1, and ν is just the normalized restriction of H1 to Λ.
Consider the product measure ν × L, where L is the Lebesgue measure on
[0, π). Theorem 1.1 implies that

(ν × L){(x, θ) ∈ Λ× [0, π) : ∃ y ∈ Λ, y 6= x, pθ(x) = pθ(y)} = 0.

By Fubini’s Theorem, it follows that for L a.e. θ, for νθ a.e. z ∈ Lθ, we have
that p−1

θ (z) is a single point. This proves the desired statement, in view of the
fact that ν(Λi ∩ Λj) = 0 for Λ satisfying the Open Set Condition.

In the case when s < 1, we can use [11, Proposition 1.3], which implies
that the packing measure Ps(Λθ) is positive and finite for L a.e. θ. By self-
similarity and the properties of Ps (translation invariance and scaling), we
have Ps(Λθ

i ∩Λθ
j ) = 0 for i 6= j. Then we use [11, Corollary 2.2], which implies

that νθ is the normalized restriction of Ps to Λθ, to complete the proof.

Remark. In [1, Proposition 2], it is claimed that if a self-similar set K =⋃m
i=1Ki in Rd has the Hausdorff dimension equal to the similarity dimension,

then the natural measure of the “overlap set”
⋃

i 6=j(Ki ∩ Kj) is zero. This
would imply Corollary 5.1, since the Hausdorff dimension of Λθ equals s for
L a.e. θ by Marstrand’s Projection Theorem. Unfortunately, the proof in [1]
contains an error, and it is still unknown whether the result holds [C. Bandt,
personal communication]. (It should be noted that [1, Proposition 2] was not
used anywhere in [1].)
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