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Abstract

We prove that a purely unrectifiable self-similar set of finite 1-dimensional
Hausdorff measure in the plane, satisfying the Open Set Condition, has
radial projection of zero length from every point.

1 Introduction.

For a € R?, let P, be the radial projection from a,

P R2\ {a} - S, P,(x) (z—a)

R

A special case of our theorem asserts that the “four corner Cantor set”
of contraction ratio 1/4 has radial projection of zero length from all points
a € R%. See Figure ?7?, where we show the second-level approximation of the
four corner Cantor set and the radial projection of some of its points.

Denote by H! the one-dimensional Hausdorff measure. A Borel set A is a
L-set if 0 < H'(A) < oco. It is said to be invisible from a if P,(A\ {a}) has
zero length.

Theorem 1.1. Let A be a self-similar 1-set in R? satisfying the Open Set
Condition, which is not on a line. Then, A is invisible from every a € R2.
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Figure 1: The radial projection of the four corner set.

Recall that a nonempty compact A is self-similar if A = (J;~, S;(A) for
some contracting similitudes S;. This means that S;(z) = X\;O;x + b;, where
0 < \; < 1, O; is an orthogonal transformation of the plane, and b; € R2.
The Open Set Condition holds if there exists an open set V' # () such that
S;(V) c V for all 4, and S;(V) N S;(V) = 0 for all i # j. For a self-similar set
satisfying the Open Set Condition, being a 1-set is equivalent to > .~ \; = 1.

A Borel set A is purely unrectifiable (or irregular), if HX(ANT) = 0 for
every rectifiable curve I'. A set A satisfying the assumptions of Theorem 1.1
is purely unrectifiable by Hutchinson [5] (see also [8]). A classical theorem
of Besicovitch [2] (see also [4, Theorem 6.13]) says that a purely unrectifiable
1-set has orthogonal projections of zero length on almost every line through
the origin. We use it in our proof.

In [10, Problem 12] (see also [9, 10.12]), Mattila raised the following ques-
tion. Let A be a Borel set in R? with H1(A) < oo. Is it true that for H! almost
all @ € A, the intersection A N L is a finite set for almost all lines L through
a? If A is purely unrectifiable, is it true that AN L = {a} for almost all lines
through a? Note that the latter property is equivalent to A being invisible
from a. Thus, our theorem implies a positive answer for a purely unrectifiable
self-similar 1-set A satisfying the Open Set Condition. The general case of a
purely unrectifiable set remains open. On the other hand, M. Csornyei and
D. Preiss proved recently that the answer to the first part of the question is
negative [personal communication].

Note that we prove a stronger property for our class of sets, namely, that
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the set is invisible from every point a € R2. It is easy to construct exam-
ples of non-self-similar purely unrectifiable 1-sets for which this property fails.
Marstrand [6, p. 281-284] has an example of a purely unrectifiable 1-set which
is visible from a set of dimension one. It is obtained by an iterative construc-
tion which is far from being self-similar and is too complicated to describe
here.

We do not discuss here other results and problems related to visibility; see
[9, Section 6] for a recent survey. We only mention a result of Mattila [7,
Th.5.1]. If a set A has projections of zero length on almost every line (which
could have H'(A) = 00), then the set of points = from which A is visible is
a purely unrectifiable set of zero 1-capacity. A different proof of this and a
characterization of such sets Z is due to Csornyei [3].

2 Preliminaries.
We have S;(x) := \;O;x + b;, where 0 < \; < 1,

cos(p;) —eisin(p;)
0, = .
sin(g;) €; cos(¢;)

)

i € [0,27), and e; € {—1,1} shows whether O, is a rotation through the
angle ¢; or a reflection about the line through the origin making the angle
©;/2 with the z-axis.

Let ¥ :={1,... ,m}N be the symbolic space. The natural projection II :
3 — A is defined by

II(i) = lim S;, . 4, (x0), where i = (i1igiz...) € X, (1)
n—oo
and S;, 4, = Si; 0---08; . The limit in (1) exists and does not depend on
xo. Let Ai, 4, = Xiy -+ X, and &4, 4, = €4, - - €4, We can write

in

Sivin (@) =Xiy 0, Oiy i@+ iy s

n

where
Oil. ’in e O’il O-+++0 O’in — ?QS(gpil~<-i71) _Eiln-in Slrf(goilu.in) ,
sin(piy..i,) €.y €O8(0i; i)
Pig.iy = Piy T €3 Piy T EiinPiy T T iy 1 Pins
and
biy..ip, =biy ¥ X3 05, biy + -+ Xy iy 104y i1 Ui
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Since >, A; = 1, we can consider the probability product measure y =
(A1, .-, Am)Y on the symbolic space ¥ and define the natural measure on A,
v = poll~t. By a result of Hutchinson [5, Theorem 5.3.1(iii)], as a consequence
of the Open Set Condition, we have

v = cH'|5, where c = (H'(A)) . (2)

To 6 € [0, ), we associate the unit vector eg = (cos,sin ), the line Ly =
{teg : t € R}, and the orthogonal projection onto Ly given by = — (eg - x)eg.
It is more convenient to work with the signed distance of the projection to the
origin, which we denote by pg,

pg:R2—>R, PoT = eg - T.

Let A:={1,...,m} and let A* = |J;=, A" be the set of all finite words over the
alphabet A. For v = u; ... u; € AF we define the corresponding “symbolic”
cylinder set by

[l =(uy...ux] ={i€eX: ip=up 1 <<k}

We also let
Ay = Su(A) = A O A + by,

and call A, the cylinder set of A corresponding to the word u. Let dp be the
diameter of A. Then diam(A,,) = Auda. For p > 0, consider the “cut-set”

W(p)={ue A" : A, < p, A > p}

where u' is obtained from u by deleting the last symbol. Observe that for
every 0 < p < Amin,

where we denote Apin = min{\; : 1 <4 < m}. In view of (2), we have
v(A, NA,) = 0 for distinct u,v € W(p). Hence

v(A,) = A, for all u e A",

We identify the unit circle S* with [0, 27) and use additive notation 6 + 6
understood mod 27 for points on the circle. For a Radon measure n on the
line or on S*, the upper density of 1 with respect to H! is defined by

— ([t —rt+7])

D(n,t) = i
(n,t) i sup 5

The open ball of radius r centered at x is denoted by B(x, ).
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3 Proof of the Main Theorem.
In the proof of Theorem 1.1, we may assume, without loss of generality, that
a ¢ A, and

P,(A) is contained in an arc of length less than 7. (3)

Indeed, A\ {a} can be written as a countable union of self-similar sets A,, for
u € A*, of arbitrarily small diameter. If each of them is invisible from a, then
A is invisible from a. We denote the usual left shift on 3 by o. Let

Q:={ieX:Vue A" In such that o™i € [u]};

that is, Q is the set of sequences which contain each finite word over the
alphabet A = {1,...,m}. It is clear that every i € {2 contains each finite word
infinitely many times and (X \ ) = 0.

Lemma 3.1 (Recurrence Lemma). For everyi€ Q, § >0, and j1,...,j; €
{1,...,m}, there are infinitely many n € N such that

©iq..in € [0, (5], Einunyin = 1, and o™i € []1 .. ]k] (4)

If the similitudes have no rotations or reflections; that is, ¢, = 0 and ¢; = 1
for all ¢ < m (as in the case of the four corner Cantor set), then the conditions
on ¢ and € in (4) hold automatically and the lemma is true by the definition
of Q. The proof in the general case is not difficult, but requires a detailed case
analysis, so we postpone it to the next section. Let

O:={0c(0,7): H'(po(A)) =0} and O := (O + /2) U (O© + 37/2).

(Recall that addition is considered mod 27.) Since A is purely unrectifiable,
HL([0,7)\ ©") = 0 by Besicovitch’s Theorem [2]. The following proposition is
the key step of the proof. We need the following measures,

v :=vo P ! and v = l/ope_l, 6 € [0,m).
We also let A" =TI(Q).
Proposition 3.2. If ¢ € P,(A')N @', then D(v,,0") = .

PROOF OF THEOREM 1.1 ASSUMING PROPOSITION 3.2. By Proposition 3.2
and [9, Lemma 2.13] (a corollary of the Vitali covering theorem), we obtain
that H(P,(A’)N©’) = 0. As noted above, © has full H! measure in S*. On
the other hand,

p(E\NQ) =0 = v(A\A)=0 = HY(A\AN)=0 = H'(P,(A\A)) =0,

and we conclude that H(P,(A)) = 0, as desired. O
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PROOF OF PROPOSITION 3.2. Let z € A’ and ' = P,(x) € ©'. Let 0 :=
¢’ — /2 mod [0, 7). By the definition of ©’, we have H!(pg(A)) = 0.

First, we sketch the idea of the proof. Since H!(ps(A)) = 0, we have
vg L H', and this implies that for every N € N there exist N cylinders of A
approximately the same diameter (say, ~ r), such that their projections to Ly
are r-close to each other. Then, there is a line parallel to the segment [a, 2],
whose Cr-neighborhood contains all A,,,j = 1,..., N. By the definition of
A =TI(Q), we can find similar copies of this picture near x € A’ at arbitrarily
small scales. The Recurrence Lemma 3.1 guarantees that these copies can
be chosen with a small relative rotation. This will give N cylinders of A of
diameter ~ 7or contained in a C’rgr-neighborhood of the ray obtained by
extending [a,x]. Since a is assumed to be separated from A, we will conclude
that D(v,,0") > C”N, and the proposition will follow. Now we make this
precise. The proof is illustrated in Figure 2.

CLAIM. For each N € N, there exists r > 0 and distinct vV, ..., u®) €
W(r) such that
|p9(bu(j) - bu(i))‘ <r Vi, j <N. (5)

Indeed, for every u € A*,
Ay = MO A+ by = Ay C B(by,daMy).
Hence for every interval I C R and r > 0,
vo(I) < Y { A dist(pg(bu), I) < dar}.
ueW(r)

If the claim does not hold, then there exists N € N such that for every ¢t € R
and r > 0,
vo(ft —rt+71]) < N2 +da)+ 1)

Then vy is absolutely continuous with respect to 7!, which is a contradiction.
The claim is verified. O

We are given that z € A’ = II(Q2), which means that x = m(i) for an
infinite sequence i containing all finite words. We fix N € N and find r > 0,
u ) u) e W(r) from the Claim. Then we apply Recurrence Lemma 3.1
with j; ... 7k := u(®) and 6 = 7 to obtain infinitely many n € N satisfying (4).
Fix such an n. Let

w =1 ...i, and v :wu(j), j=1,...,N.
Observe that i starts with vV, so z = II(i) € A, ). Hence

Ipo(x —bym)| < |z —b,on| < dad,) < dadwr.
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Figure 2: The cylinders of A causing high density.

Here we used that u!) e W(r), 50 Ayy = AwAy) < Apr. We have for z € R?,
M@ Opin 2+ byin = Sy (2) = Sw oS, (2) = A Ouw(Ayi) Ouiy 2+ by ) + baw.

Hence
by = AwOuwbyiy + by

It follows that
D6 (byr — by)) = Ao O (byiy — byi)-

By (4), we have ¢, = 1 and ¢ := ¢, € [0,7); therefore, O, = Ry is the
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rotation through the angle ¢. One can check that ps R, = ps—,, which yields
o (byr = by)| = AwlPo—p (buc) — byw)|- (6)

Clearly, ||[ps — po—o|| < || < 7, where || - || is the operator norm, so we obtain
from (5) and (6) that

[P (byr — byi))| < Aw([buy — by |7+ 1) < Aw(da + 1)

Recall that i starts with v(!), so 2 = TI(i) € A,q), hence for each j < N, for
every y € Ay,

Ipo(z —y)| < |z = by | + [pe(byy — by )| + [by6) — Y

7
< dA(Avu) + )\v(j)) + )\w(d/\ + 1)7‘ < /\w(3d/\ + 1)7’. ( )

Now we need a simple geometric fact: given that
P,(x)=6, 0 =0+7/2mod [0,7), |pe(z—y)| < p, |y—al > c1, and (3) holds,
we have

Poly — )| T,
ly—a| ~ 2¢1

[Pa(y) = 0’| = |Pa(y) — Pa(2)] = arcsin
This implies, in view of (7), that for c; = 7(3dx +1)/(2¢1),
N N N
va([0'—cadwr, 0'+c2Xur]) =) v(A,0) =D A = Aw D Ay = AwNAminT,
j=1 j=1 j=1

by the definition of W(r). Recall that n can be > chosen arbitrarily large, so
Aw can be arbitrarily small, and we obtain that D(v,,0") > cgl/\minN. Since
N € N is arbitrary, the proposition follows. O

4 Proof of the Recurrence Lemma 3.1.

Let K € {0,...,m} be the number of ¢ for which ¢; ¢ 7Q. Without loss of
generality we may assume the following. If K > 1, then ¢1,...,9ox € TQ.
We distinguish the following cases:

A p; € 7Q for all i < m.

B there exists i such that ¢; € 7Q and ; = 1.
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C K>1landeg; =—1foralli<K.

C1 there exist 7,j < K such that ¢; — ¢; € Q.
C2 there exists r; € Q such that ¢; = 1 + 77w for 1 <i < K.

C2a K < m and there exists 7 > K + 1 such that ¢; = —1.
C2b K <m and for all j > K + 1 we have ¢; = 1.
C2c K =m.

Denote by R, the rotation through the angle . We call it an irrational
rotation if ¢ € mQ. Consider the semigroup generated by O;, i < m, which
we denote by S. We begin with the following observation.

CLAIM. Fither S is finite, or S contains an irrational rotation.

The semigroup S is clearly finite in Case A and contains an irrational
rotation in Case B. In Case C1 we have O;0; = R, _,,, which is an irrational
rotation. In Case C2a we also have that O;0; = Ry, is an irrational
rotation, since ¢; ¢ 7Q and ¢; € 7Q. We claim that in remaining Cases C2b
and C2c the semigroup is finite. This follows easily; then S is generated by
one irrational reflection and finitely many rational rotations.

PROOF OF LEMMA 3.1 WHEN S IS FINITE. A finite semigroup of invertible
transformations is necessarily a group. Let S = {sq,..., s;}. By the definition
of the semigroup S we have s; = O, for some w® € A* i=1,...,t. For
every v € A*, we can find ¥ € A* such that Oy = O, ', Fix u = ji...jk
from the statement of the lemma. Consider the following finite word over the
alphabet A.

—

w:=11...7, where 7; = (wWu) (WD), j=1,....¢

Note that O, = I (the identity). By the definition of €2, the sequence i € 2
contains w infinitely many times. Suppose that ‘i € [w]. Put i|¢ := i1 ...i,.
Since Oj¢ € S, there exists w®) such that O, ;) = O;I@l' Then, the occurrence
of u in 74, the jth factor of w, will be at the position n such that Oy, = I, so

we will have ¢;,, = 0 € [0, 6] and &;),, = 1, as desired. O

PRrROOF OF LEMMA 3.1 WHEN S IS INFINITE. By the claim above, there ex-
ists w € A* such that ¢, € 7Q and e, = 1. Fix u = jj...j from the
statement of the lemma. Let

_ Jouu, iy & TQ;
U www, if @y € TQ.
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Observe that ¢, ¢ 7Q and ¢, = 1. Let v¥ = v...v (the word v repeated k
times). Since ¢, /7 is irrational, there exists an N such that every orbit of
R, of length N contains a point in every subinterval of [0,27) of length 4.
Put
w._{vN, ife; =1, Vi <m;
T oV, if 3% such that g = —1.

By the definition of €2, the sequence i € § contains w infinitely many times.
Let £ € N be such that o‘i € [w]. Suppose first that gij¢ = 1. Then we have,
denoting the length of v by |v],

O’Hklv‘i € [u], Pi|(e+k|v]) = Pile + ke, (mod 271'), Ei|(t+klv]) = 1, (8)

for k=0,...,N — 1. By the choice of N, we can find k € {0,..., N — 1} such
that ojjs+ke)) € [0,0], then n = £+ kfv| will be as desired. If €;, = —1, then
we replace £ by £* := £+ N|v| + 1 in (8), that is, we consider the occurrences
of u in the second factor v™. The orientation will be switched by O;« and we
can find the desired n analogously. O

5 Concluding Remarks.

Consider the special case when the self-similar set A is of the form

A=JOA+b;), b eR% 9)

i=1

In other words, the contracting similitudes have no rotations or reflections, as
for the four corner Cantor set. Then the projection A? := py(A) is itself a
self-similar set on the line

A% = [ JA? + po(by)), for 0 € [0, 7).
i=1

Let Af = \A? + po(b;). As above, v is the natural measure on A. Let vy be
the natural measure on A?, so that vy = v o pgl.

Corollary 5.1. Let A be a self-similar set of the form (9) that is not on a
line, such that Y .* \i < 1. If A satisfies the Open Set Condition condition,
then

vg(AY ﬂA?) =0, i #j4, fora.e 0¢cl0,mn).
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PROOF. Let s > 0 be such that Y ;" Af = 1. By assumption, we have
s < 1. This number is known as the similarity dimension of A (and also
of A? for all #). Suppose first that s = 1. Then we are in the situation
covered by Theorem 1.1, and v is just the normalized restriction of H! to A.
Consider the product measure v x L, where £ is the Lebesgue measure on
[0, 7). Theorem 1.1 implies that

(v x L){(z,0) e Ax[0,7m): Ty e, y#uz, po(x) =po(y)} =0.

By Fubini’s Theorem, it follows that for £ a.e. , for vy a.e. z € LY, we have
that py 1(z) is a single point. This proves the desired statement, in view of the
fact that v(A; NA;) = 0 for A satisfying the Open Set Condition.

In the case when s < 1, we can use [11, Proposition 1.3], which implies
that the packing measure P*(A%) is positive and finite for £ a.e. 6. By self-
similarity and the properties of P* (translation invariance and scaling), we
have P*%(A? ﬂA?—) =0 for i # j. Then we use [11, Corollary 2.2], which implies
that vy is the normalized restriction of P* to A?, to complete the proof. [

Remark. In [1, Proposition 2], it is claimed that if a self-similar set K =
UL, K in R? has the Hausdorff dimension equal to the similarity dimension,
then the natural measure of the “overlap set” (J;,;(K; N K;) is zero. This
would imply Corollary 5.1, since the Hausdorff dimension of A? equals s for
L a.e. § by Marstrand’s Projection Theorem. Unfortunately, the proof in [1]
contains an error, and it is still unknown whether the result holds [C. Bandst,
personal communication]. (It should be noted that [1, Proposition 2] was not
used anywhere in [1].)

Acknowledgment. We are grateful to M. Csornyei, E. Jarvenpad, and M.
Jarvenpad for helpful discussions. This work was done while K. S. was visiting
the University of Washington.
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