Károly Simon, Institute of Mathematics, Technical University of Budapest, H-1529 B.O. Box 91, Hungary. email: simonk@math.bme.hu Boris Solomvak[†] Box 354350. Department of Mathematics. University of

Washington, Seattle WA, 98195. email: solomyak@math.washington.edu

VISIBILITY FOR SELF-SIMILAR SETS OF DIMENSION ONE IN THE PLANE[‡]

Abstract

We prove that a purely unrectifiable self-similar set of finite 1-dimensional Hausdorff measure in the plane, satisfying the Open Set Condition, has radial projection of zero length from every point.

1 Introduction.

For $a \in \mathbb{R}^2$, let P_a be the radial projection from a,

$$P_a: \mathbb{R}^2 \setminus \{a\} \to S^1, \quad P_a(x) = \frac{(x-a)}{|x-a|}$$

A special case of our theorem asserts that the "four corner Cantor set" of contraction ratio 1/4 has radial projection of zero length from all points $a \in \mathbb{R}^2$. See Figure ??, where we show the second-level approximation of the four corner Cantor set and the radial projection of some of its points.

Denote by \mathcal{H}^1 the one-dimensional Hausdorff measure. A Borel set Λ is a 1-set if $0 < \mathcal{H}^1(\Lambda) < \infty$. It is said to be *invisible from a* if $P_a(\Lambda \setminus \{a\})$ has zero length.

Theorem 1.1. Let Λ be a self-similar 1-set in \mathbb{R}^2 satisfying the Open Set Condition, which is not on a line. Then, Λ is invisible from every $a \in \mathbb{R}^2$.

Key Words: Hausdorff measure, purely unrectifiable, self-similar set Mathematical Reviews subject classification: Primary 28A80

Received by the editors October 23, 2005

Communicated by: Clifford E. Weil *Supported in part by OTKA Foundation grant T42496.

[†]supported in part by NSF grant DMS-0355187.

^{\ddagger}This collaboration was supported by NSF-MTA-OTKA grant #77.

⁶⁷

Figure 1: The radial projection of the four corner set.

Recall that a nonempty compact Λ is self-similar if $\Lambda = \bigcup_{i=1}^{m} S_i(\Lambda)$ for some contracting similitudes S_i . This means that $S_i(x) = \lambda_i \mathcal{O}_i x + b_i$, where $0 < \lambda_i < 1, \mathcal{O}_i$ is an orthogonal transformation of the plane, and $b_i \in \mathbb{R}^2$. The Open Set Condition holds if there exists an open set $V \neq \emptyset$ such that $S_i(V) \subset V$ for all i, and $S_i(V) \cap S_j(V) = \emptyset$ for all $i \neq j$. For a self-similar set satisfying the Open Set Condition, being a 1-set is equivalent to $\sum_{i=1}^{m} \lambda_i = 1$.

A Borel set Λ is purely unrectifiable (or irregular), if $\mathcal{H}^1(\Lambda \cap \Gamma) = 0$ for every rectifiable curve Γ . A set Λ satisfying the assumptions of Theorem 1.1 is purely unrectifiable by Hutchinson [5] (see also [8]). A classical theorem of Besicovitch [2] (see also [4, Theorem 6.13]) says that a purely unrectifiable 1-set has orthogonal projections of zero length on almost every line through the origin. We use it in our proof.

In [10, Problem 12] (see also [9, 10.12]), Mattila raised the following question. Let Λ be a Borel set in \mathbb{R}^2 with $\mathcal{H}^1(\Lambda) < \infty$. Is it true that for \mathcal{H}^1 almost all $a \in \Lambda$, the intersection $\Lambda \cap L$ is a finite set for almost all lines L through a? If Λ is purely unrectifiable, is it true that $\Lambda \cap L = \{a\}$ for almost all lines through a? Note that the latter property is equivalent to Λ being invisible from a. Thus, our theorem implies a positive answer for a purely unrectifiable self-similar 1-set Λ satisfying the Open Set Condition. The general case of a purely unrectifiable set remains open. On the other hand, M. Csörnyei and D. Preiss proved recently that the answer to the first part of the question is negative [personal communication].

Note that we prove a stronger property for our class of sets, namely, that

the set is invisible from *every* point $a \in \mathbb{R}^2$. It is easy to construct examples of non-self-similar purely unrectifiable 1-sets for which this property fails. Marstrand [6, p. 281–284] has an example of a purely unrectifiable 1-set which is visible from a set of dimension one. It is obtained by an iterative construction which is far from being self-similar and is too complicated to describe here.

We do not discuss here other results and problems related to visibility; see [9, Section 6] for a recent survey. We only mention a result of Mattila [7, Th.5.1]. If a set Λ has projections of zero length on almost every line (which could have $\mathcal{H}^1(\Lambda) = \infty$), then the set of points Ξ from which Λ is visible is a purely unrectifiable set of zero 1-capacity. A different proof of this and a characterization of such sets Ξ is due to Csörnyei [3].

2 Preliminaries.

We have $S_i(x) := \lambda_i \mathcal{O}_i x + b_i$, where $0 < \lambda_i < 1$,

$$\mathcal{O}_i = \begin{bmatrix} \cos(\varphi_i) & -\varepsilon_i \sin(\varphi_i) \\ \sin(\varphi_i) & \varepsilon_i \cos(\varphi_i) \end{bmatrix},$$

 $\varphi_i \in [0, 2\pi)$, and $\varepsilon_i \in \{-1, 1\}$ shows whether \mathcal{O}_i is a rotation through the angle φ_i or a reflection about the line through the origin making the angle $\varphi_i/2$ with the *x*-axis.

Let $\Sigma := \{1, \ldots, m\}^{\mathbb{N}}$ be the symbolic space. The natural projection $\Pi : \Sigma \to \Lambda$ is defined by

$$\Pi(\mathbf{i}) = \lim_{n \to \infty} S_{i_1 \dots i_n}(x_0), \text{ where } \mathbf{i} = (i_1 i_2 i_3 \dots) \in \Sigma,$$
(1)

and $S_{i_1...i_n} = S_{i_1} \circ \cdots \circ S_{i_n}$. The limit in (1) exists and does not depend on x_0 . Let $\lambda_{i_1...i_n} = \lambda_{i_1} \cdots \lambda_{i_n}$ and $\varepsilon_{i_1...i_k} = \varepsilon_{i_1} \cdots \varepsilon_{i_k}$. We can write

$$S_{i_1\dots i_n}(x) = \lambda_{i_1\dots i_n} \mathcal{O}_{i_1\dots i_n} x + b_{i_1\dots i_n},$$

where

$$\mathcal{O}_{i_1\dots i_n} := \mathcal{O}_{i_1} \circ \dots \circ \mathcal{O}_{i_n} = \begin{bmatrix} \cos(\varphi_{i_1\dots i_n}) & -\varepsilon_{i_1\dots i_n}\sin(\varphi_{i_1\dots i_n}) \\ \sin(\varphi_{i_1\dots i_n}) & \varepsilon_{i_1\dots i_n}\cos(\varphi_{i_1\dots i_n}) \end{bmatrix},$$
$$\varphi_{i_1\dots i_n} := \varphi_{i_1} + \varepsilon_{i_1}\varphi_{i_2} + \varepsilon_{i_1i_2}\varphi_{i_3} + \dots + \varepsilon_{i_1\dots i_{n-1}}\varphi_{i_n},$$

and

$$b_{i_1\dots i_n} = b_{i_1} + \lambda_{i_1}\mathcal{O}_{i_1}b_{i_2} + \dots + \lambda_{i_1\dots i_{n-1}}\mathcal{O}_{i_1\dots i_{n-1}}b_{i_n}$$

Since $\sum_{i=1}^{m} \lambda_i = 1$, we can consider the probability product measure $\mu = (\lambda_1, \ldots, \lambda_m)^{\mathbb{N}}$ on the symbolic space Σ and define the *natural measure* on Λ , $\nu = \mu \circ \Pi^{-1}$. By a result of Hutchinson [5, Theorem 5.3.1(iii)], as a consequence of the Open Set Condition, we have

$$\nu = c\mathcal{H}^1|_{\Lambda}$$
, where $c = (\mathcal{H}^1(\Lambda))^{-1}$. (2)

To $\theta \in [0, \pi)$, we associate the unit vector $e_{\theta} = (\cos \theta, \sin \theta)$, the line $L_{\theta} = \{te_{\theta} : t \in \mathbb{R}\}$, and the orthogonal projection onto L_{θ} given by $x \mapsto (e_{\theta} \cdot x)e_{\theta}$. It is more convenient to work with the signed distance of the projection to the origin, which we denote by p_{θ} ,

$$p_{\theta}: \mathbb{R}^2 \to \mathbb{R}, \ p_{\theta}x = e_{\theta} \cdot x.$$

Let $\mathcal{A} := \{1, \ldots, m\}$ and let $\mathcal{A}^* = \bigcup_{i=1}^{\infty} \mathcal{A}^i$ be the set of all finite words over the alphabet \mathcal{A} . For $u = u_1 \ldots u_k \in \mathcal{A}^k$ we define the corresponding "symbolic" cylinder set by

$$[u] = [u_1 \dots u_k] := \{ \mathbf{i} \in \Sigma : \ i_\ell = u_\ell, \ 1 \le \ell \le k \}.$$

We also let

$$_{u} = S_{u}(\Lambda) = \lambda_{u}\mathcal{O}_{u}\Lambda + b_{u}$$

Λ

and call Λ_u the cylinder set of Λ corresponding to the word u. Let d_{Λ} be the diameter of Λ . Then diam $(\Lambda_u) = \lambda_u d_{\Lambda}$. For $\rho > 0$, consider the "cut-set"

$$\mathcal{W}(\rho) = \{ u \in \mathcal{A}^* : \lambda_u \le \rho, \ \lambda_{u'} > \rho \}$$

where u' is obtained from u by deleting the last symbol. Observe that for every $0 < \rho < \lambda_{\min}$,

$$\Lambda = \bigcup_{u \in \mathcal{W}(\rho)} \Lambda_u,$$

where we denote $\lambda_{\min} := \min\{\lambda_i : 1 \leq i \leq m\}$. In view of (2), we have $\nu(\Lambda_u \cap \Lambda_v) = 0$ for distinct $u, v \in \mathcal{W}(\rho)$. Hence

$$\nu(\Lambda_u) = \lambda_u$$
 for all $u \in \mathcal{A}^*$.

We identify the unit circle S^1 with $[0, 2\pi)$ and use additive notation $\theta_1 + \theta_2$ understood mod 2π for points on the circle. For a Radon measure η on the line or on S^1 , the upper density of η with respect to \mathcal{H}^1 is defined by

$$\overline{D}(\eta, t) = \limsup_{r \to 0} \frac{\eta([t - r, t + r])}{2r}$$

The open ball of radius r centered at x is denoted by B(x, r).

3 Proof of the Main Theorem.

In the proof of Theorem 1.1, we may assume, without loss of generality, that $a \notin \Lambda$, and

$$P_a(\Lambda)$$
 is contained in an arc of length less than π . (3)

Indeed, $\Lambda \setminus \{a\}$ can be written as a countable union of self-similar sets Λ_u for $u \in \mathcal{A}^*$, of arbitrarily small diameter. If each of them is invisible from a, then A is invisible from a. We denote the usual left shift on Σ by σ . Let

$$\Omega := \{ \mathbf{i} \in \Sigma : \forall u \in \mathcal{A}^* \; \exists \, n \text{ such that } \sigma^n \mathbf{i} \in [u] \};$$

that is, Ω is the set of sequences which contain each finite word over the alphabet $\mathcal{A} = \{1, \ldots, m\}$. It is clear that every $\mathbf{i} \in \Omega$ contains each finite word infinitely many times and $\mu(\Sigma \setminus \Omega) = 0$.

Lemma 3.1 (Recurrence Lemma). For every $\mathbf{i} \in \Omega$, $\delta > 0$, and $j_1, \ldots, j_k \in$ $\{1,\ldots,m\}$, there are infinitely many $n \in \mathbb{N}$ such that

$$\varphi_{i_1\dots i_n} \in [0, \delta], \ \varepsilon_{i_1\dots, i_n} = 1, \ and \ \sigma^n \mathbf{i} \in [j_1 \dots j_k].$$
 (4)

If the similitudes have no rotations or reflections; that is, $\varphi_i = 0$ and $\varepsilon_i = 1$ for all $i \leq m$ (as in the case of the four corner Cantor set), then the conditions on φ and ε in (4) hold automatically and the lemma is true by the definition of Ω . The proof in the general case is not difficult, but requires a detailed case analysis, so we postpone it to the next section. Let

$$\Theta := \{ \theta \in [0,\pi) : \mathcal{H}^1(p_\theta(\Lambda)) = 0 \} \text{ and } \Theta' := (\Theta + \pi/2) \cup (\Theta + 3\pi/2).$$

(Recall that addition is considered mod 2π .) Since Λ is purely unrectifiable, $\mathcal{H}^1([0,\pi)\setminus\Theta')=0$ by Besicovitch's Theorem [2]. The following proposition is the key step of the proof. We need the following measures,

$$\nu_a := \nu \circ P_a^{-1}$$
 and $\nu_\theta := \nu \circ p_\theta^{-1}, \ \theta \in [0, \pi).$

We also let $\Lambda' = \Pi(\Omega)$.

Proposition 3.2. If $\theta' \in P_a(\Lambda') \cap \Theta'$, then $\overline{D}(\nu_a, \theta') = \infty$.

PROOF OF THEOREM 1.1 ASSUMING PROPOSITION 3.2. By Proposition 3.2 and [9, Lemma 2.13] (a corollary of the Vitali covering theorem), we obtain that $\mathcal{H}^1(P_a(\Lambda') \cap \Theta') = 0$. As noted above, Θ' has full \mathcal{H}^1 measure in S^1 . On the other hand,

$$\mu(\Sigma \setminus \Omega) = 0 \implies \nu(\Lambda \setminus \Lambda') = 0 \implies \mathcal{H}^1(\Lambda \setminus \Lambda') = 0 \implies \mathcal{H}^1(P_a(\Lambda \setminus \Lambda')) = 0,$$

and we conclude that $\mathcal{H}^1(P_a(\Lambda)) = 0$, as desired. \Box

and we conclude that $\mathcal{H}^1(P_a(\Lambda)) = 0$, as desired.

PROOF OF PROPOSITION 3.2. Let $x \in \Lambda'$ and $\theta' = P_a(x) \in \Theta'$. Let $\theta := \theta' - \pi/2 \mod [0, \pi)$. By the definition of Θ' , we have $\mathcal{H}^1(p_\theta(\Lambda)) = 0$.

First, we sketch the idea of the proof. Since $\mathcal{H}^1(p_\theta(\Lambda)) = 0$, we have $\nu_\theta \perp \mathcal{H}^1$, and this implies that for every $N \in \mathbb{N}$ there exist N cylinders of Λ approximately the same diameter (say, $\sim r$), such that their projections to L_θ are r-close to each other. Then, there is a line parallel to the segment [a, x], whose Cr-neighborhood contains all $\Lambda_{u_j}, j = 1, \ldots, N$. By the definition of $\Lambda' = \Pi(\Omega)$, we can find similar copies of this picture near $x \in \Lambda'$ at arbitrarily small scales. The Recurrence Lemma 3.1 guarantees that these copies can be chosen with a small relative rotation. This will give N cylinders of Λ of diameter $\sim r_0 r$ contained in a $C'r_0r$ -neighborhood of the ray obtained by extending [a, x]. Since a is assumed to be separated from Λ , we will conclude that $\overline{D}(\nu_a, \theta') \geq C''N$, and the proposition will follow. Now we make this precise. The proof is illustrated in Figure 2.

CLAIM. For each $N \in \mathbb{N}$, there exists r > 0 and distinct $u^{(1)}, \ldots, u^{(N)} \in \mathcal{W}(r)$ such that

$$|p_{\theta}(b_{u^{(j)}} - b_{u^{(i)}})| \le r, \ \forall i, j \le N.$$
(5)

Indeed, for every $u \in \mathcal{A}^*$,

$$\Lambda_u = \lambda_u \mathcal{O}_u \Lambda + b_u \implies \Lambda_u \subset B(b_u, d_\Lambda \lambda_u).$$

Hence for every interval $I \subset \mathbb{R}$ and r > 0,

$$u_{\theta}(I) \leq \sum_{u \in \mathcal{W}(r)} \{\lambda_u : \operatorname{dist}(p_{\theta}(b_u), I) \leq d_{\Lambda}r\}.$$

If the claim does not hold, then there exists $N \in \mathbb{N}$ such that for every $t \in \mathbb{R}$ and r > 0,

$$\nu_{\theta}([t-r,t+r]) \le N(2(1+d_{\Lambda})+1)r$$

Then ν_{θ} is absolutely continuous with respect to \mathcal{H}^1 , which is a contradiction. The claim is verified.

We are given that $x \in \Lambda' = \Pi(\Omega)$, which means that $x = \pi(\mathbf{i})$ for an infinite sequence \mathbf{i} containing all finite words. We fix $N \in \mathbb{N}$ and find r > 0, $u^{(1)}, \ldots, u^{(N)} \in \mathcal{W}(r)$ from the Claim. Then we apply Recurrence Lemma 3.1 with $j_1 \ldots j_k := u^{(1)}$ and $\delta = r$ to obtain infinitely many $n \in \mathbb{N}$ satisfying (4). Fix such an n. Let

$$w := i_1 \dots i_n$$
 and $v^{(j)} = w u^{(j)}, \ j = 1, \dots, N.$

Observe that **i** starts with $v^{(1)}$, so $x = \Pi(\mathbf{i}) \in \Lambda_{v^{(1)}}$. Hence

$$|p_{\theta}(x - b_{v^{(1)}})| \le |x - b_{v^{(1)}}| \le d_{\Lambda}\lambda_{v^{(1)}} \le d_{\Lambda}\lambda_w r.$$

Figure 2: The cylinders of Λ causing high density.

Here we used that $u^{(1)} \in \mathcal{W}(r)$, so $\lambda_{v^{(1)}} = \lambda_w \lambda_{u^{(1)}} \leq \lambda_w r$. We have for $z \in \mathbb{R}^2$, $\lambda_{v^{(j)}} \mathcal{O}_{v^{(j)}} z + b_{v^{(j)}} = S_{v^{(j)}}(z) = S_w \circ S_{u^{(j)}}(z) = \lambda_w \mathcal{O}_w(\lambda_{u^{(j)}} \mathcal{O}_{u^{(j)}} z + b_{u^{(j)}}) + b_w$.

Hence

$$b_{v^{(j)}} = \lambda_w \mathcal{O}_w b_{u^{(j)}} + b_w.$$

It follows that

$$p_{\theta}(b_{v^{(i)}} - b_{v^{(j)}}) = \lambda_w p_{\theta} \mathcal{O}_w(b_{u^{(i)}} - b_{u^{(j)}})$$

By (4), we have $\varepsilon_w = 1$ and $\varphi := \varphi_w \in [0, r)$; therefore, $\mathcal{O}_w = R_\theta$ is the

rotation through the angle φ . One can check that $p_{\theta}R_{\varphi} = p_{\theta-\varphi}$, which yields

$$|p_{\theta}(b_{v^{(i)}} - b_{v^{(j)}})| = \lambda_w |p_{\theta - \varphi}(b_{u^{(i)}} - b_{u^{(j)}})|.$$
(6)

Clearly, $||p_{\theta} - p_{\theta-\varphi}|| \le |\varphi| \le r$, where $||\cdot||$ is the operator norm, so we obtain from (5) and (6) that

$$|p_{\theta}(b_{v^{(i)}} - b_{v^{(j)}})| \le \lambda_w(|b_{u^{(i)}} - b_{u^{(j)}}|r+r) \le \lambda_w(d_{\Lambda} + 1)r.$$

Recall that **i** starts with $v^{(1)}$, so $x = \Pi(\mathbf{i}) \in \Lambda_{v^{(1)}}$, hence for each $j \leq N$, for every $y \in \Lambda_{v^{(j)}}$,

$$\begin{aligned} |p_{\theta}(x-y)| &\leq |x-b_{v^{(1)}}| + |p_{\theta}(b_{v^{(1)}}-b_{v^{(j)}})| + |b_{v^{(j)}}-y| \\ &\leq d_{\Lambda}(\lambda_{v^{(1)}}+\lambda_{v^{(j)}}) + \lambda_{w}(d_{\Lambda}+1)r \leq \lambda_{w}(3d_{\Lambda}+1)r. \end{aligned}$$
(7)

Now we need a simple geometric fact: given that

 $P_a(x) = \theta', \ \theta = \theta' + \pi/2 \mod [0, \pi), \ |p_\theta(x-y)| \le \rho, \ |y-a| \ge c_1, \ \text{and} \ (3) \ \text{holds},$ we have

$$|P_a(y) - \theta'| = |P_a(y) - P_a(x)| = \arcsin \frac{|p_\theta(y - x)|}{|y - a|} \le \frac{\pi}{2c_1}\rho.$$

This implies, in view of (7), that for $c_2 = \pi (3d_{\Lambda} + 1)/(2c_1)$,

$$\nu_a([\theta' - c_2\lambda_w r, \theta' + c_2\lambda_w r]) \ge \sum_{j=1}^N \nu(\Lambda_{v^{(j)}}) = \sum_{j=1}^N \lambda_{v^{(j)}} = \lambda_w \sum_{j=1}^N \lambda_{u^{(j)}} \ge \lambda_w N \lambda_{\min} r$$

by the definition of $\mathcal{W}(r)$. Recall that n can be chosen arbitrarily large, so λ_w can be arbitrarily small, and we obtain that $\overline{D}(\nu_a, \theta') \geq c_2^{-1}\lambda_{\min}N$. Since $N \in \mathbb{N}$ is arbitrary, the proposition follows.

4 Proof of the Recurrence Lemma 3.1.

Let $K \in \{0, \ldots, m\}$ be the number of *i* for which $\varphi_i \notin \pi \mathbb{Q}$. Without loss of generality we may assume the following. If $K \ge 1$, then $\varphi_1, \ldots, \varphi_K \notin \pi \mathbb{Q}$.

We distinguish the following cases:

- **A** $\varphi_i \in \pi \mathbb{Q}$ for all $i \leq m$.
- **B** there exists *i* such that $\varphi_i \notin \pi \mathbb{Q}$ and $\varepsilon_i = 1$.

C $K \geq 1$ and $\varepsilon_i = -1$ for all $i \leq K$.

C1 there exist $i, j \leq K$ such that $\varphi_i - \varphi_j \notin \pi \mathbb{Q}$.

C2 there exists $r_i \in \mathbb{Q}$ such that $\varphi_i = \varphi_1 + r_i \pi$ for $1 \leq i \leq K$.

C2a K < m and there exists $j \ge K + 1$ such that $\varepsilon_j = -1$. **C2b** K < m and for all $j \ge K + 1$ we have $\varepsilon_j = 1$. **C2c** K = m.

Denote by R_{φ} the rotation through the angle φ . We call it an irrational rotation if $\varphi \notin \pi \mathbb{Q}$. Consider the semigroup generated by \mathcal{O}_i , $i \leq m$, which we denote by \mathcal{S} . We begin with the following observation.

CLAIM. Either S is finite, or S contains an irrational rotation.

The semigroup \mathcal{S} is clearly finite in Case A and contains an irrational rotation in Case B. In Case C1 we have $\mathcal{O}_i \mathcal{O}_j = R_{\varphi_i - \varphi_j}$, which is an irrational rotation. In Case C2a we also have that $\mathcal{O}_i \mathcal{O}_j = R_{\varphi_i - \varphi_j}$ is an irrational rotation, since $\varphi_i \notin \pi \mathbb{Q}$ and $\varphi_j \in \pi \mathbb{Q}$. We claim that in remaining Cases C2b and C2c the semigroup is finite. This follows easily; then \mathcal{S} is generated by one irrational reflection and finitely many rational rotations.

PROOF OF LEMMA 3.1 WHEN S IS FINITE. A finite semigroup of invertible transformations is necessarily a group. Let $S = \{s_1, \ldots, s_t\}$. By the definition of the semigroup S we have $s_i = \mathcal{O}_{w^{(i)}}$ for some $w^{(i)} \in \mathcal{A}^*$, $i = 1, \ldots, t$. For every $v \in \mathcal{A}^*$, we can find $\hat{v} \in \mathcal{A}^*$ such that $\mathcal{O}_{\hat{v}} = \mathcal{O}_v^{-1}$. Fix $u = j_1 \ldots j_k$ from the statement of the lemma. Consider the following finite word over the alphabet \mathcal{A} .

$$\omega := \tau_1 \dots \tau_t$$
, where $\tau_j = (w^{(j)}u) (\widetilde{w^{(j)}u}), \ j = 1, \dots, t$

Note that $\mathcal{O}_{\tau_j} = I$ (the identity). By the definition of Ω , the sequence $\mathbf{i} \in \Omega$ contains ω infinitely many times. Suppose that $\sigma^{\ell} \mathbf{i} \in [\omega]$. Put $\mathbf{i}|\ell := i_1 \dots i_\ell$. Since $\mathcal{O}_{\mathbf{i}|\ell} \in \mathcal{S}$, there exists $w^{(j)}$ such that $\mathcal{O}_{w^{(j)}} = \mathcal{O}_{\mathbf{i}|\ell}^{-1}$. Then, the occurrence of u in τ_j , the *j*th factor of ω , will be at the position *n* such that $\mathcal{O}_{\mathbf{i}|n} = I$, so we will have $\varphi_{\mathbf{i}|n} = 0 \in [0, \delta]$ and $\varepsilon_{\mathbf{i}|n} = 1$, as desired.

PROOF OF LEMMA 3.1 WHEN S IS INFINITE. By the claim above, there exists $w \in \mathcal{A}^*$ such that $\varphi_w \notin \pi \mathbb{Q}$ and $\varepsilon_w = 1$. Fix $u = j_1 \dots j_k$ from the statement of the lemma. Let

$$v := \begin{cases} uu, & \text{if } \varphi_u \notin \pi \mathbb{Q}; \\ uuw, & \text{if } \varphi_u \in \pi \mathbb{Q}. \end{cases}$$

Observe that $\varphi_v \notin \pi \mathbb{Q}$ and $\varepsilon_v = 1$. Let $v^k = v \dots v$ (the word v repeated k times). Since φ_v/π is irrational, there exists an N such that every orbit of R_{φ_v} of length N contains a point in every subinterval of $[0, 2\pi)$ of length δ . Put

$$\omega := \begin{cases} v^N, & \text{if } \varepsilon_i = 1, \ \forall i \le m; \\ v^N j^* v^N, & \text{if } \exists j^* \text{ such that } \varepsilon_{j^*} = -1. \end{cases}$$

By the definition of Ω , the sequence $\mathbf{i} \in \Omega$ contains ω infinitely many times. Let $\ell \in \mathbb{N}$ be such that $\sigma^{\ell} \mathbf{i} \in [\omega]$. Suppose first that $\varepsilon_{\mathbf{i}|\ell} = 1$. Then we have, denoting the length of v by |v|,

$$\sigma^{\ell+k|v|}\mathbf{i} \in [u], \quad \varphi_{\mathbf{i}|(\ell+k|v|)} = \varphi_{\mathbf{i}|\ell} + k\varphi_v \pmod{2\pi}, \quad \varepsilon_{\mathbf{i}|(\ell+k|v|)} = 1, \quad (8)$$

for $k = 0, \ldots, N-1$. By the choice of N, we can find $k \in \{0, \ldots, N-1\}$ such that $\varphi_{\mathbf{i}|(\ell+k|v|)} \in [0, \delta]$, then $n = \ell + k|v|$ will be as desired. If $\varepsilon_{\mathbf{i}|\ell} = -1$, then we replace ℓ by $\ell^* := \ell + N|v| + 1$ in (8), that is, we consider the occurrences of u in the second factor v^N . The orientation will be switched by \mathcal{O}_{j^*} and we can find the desired n analogously.

5 Concluding Remarks.

Consider the special case when the self-similar set Λ is of the form

$$\Lambda = \bigcup_{i=1}^{m} (\lambda_i \Lambda + b_i), \quad b_i \in \mathbb{R}^2.$$
(9)

In other words, the contracting similitudes have no rotations or reflections, as for the four corner Cantor set. Then the projection $\Lambda^{\theta} := p_{\theta}(\Lambda)$ is itself a self-similar set on the line

$$\Lambda^{\theta} = \bigcup_{i=1}^{m} (\lambda_i \Lambda^{\theta} + p_{\theta}(b_i)), \text{ for } \theta \in [0, \pi).$$

Let $\Lambda_i^{\theta} = \lambda_i \Lambda^{\theta} + p_{\theta}(b_i)$. As above, ν is the natural measure on Λ . Let ν_{θ} be the natural measure on Λ^{θ} , so that $\nu_{\theta} = \nu \circ p_{\theta}^{-1}$.

Corollary 5.1. Let Λ be a self-similar set of the form (9) that is not on a line, such that $\sum_{i=1}^{m} \lambda_i \leq 1$. If Λ satisfies the Open Set Condition condition, then

$$u_{\theta}(\Lambda_{i}^{\theta} \cap \Lambda_{j}^{\theta}) = 0, \ i \neq j, \quad for \ a.e. \ \theta \in [0, \pi).$$

PROOF. Let s > 0 be such that $\sum_{i=1}^{m} \lambda_i^s = 1$. By assumption, we have $s \leq 1$. This number is known as the similarity dimension of Λ (and also of Λ^{θ} for all θ). Suppose first that s = 1. Then we are in the situation covered by Theorem 1.1, and ν is just the normalized restriction of \mathcal{H}^1 to Λ . Consider the product measure $\nu \times \mathcal{L}$, where \mathcal{L} is the Lebesgue measure on $[0, \pi)$. Theorem 1.1 implies that

$$(\nu \times \mathcal{L})\{(x,\theta) \in \Lambda \times [0,\pi) : \exists y \in \Lambda, y \neq x, p_{\theta}(x) = p_{\theta}(y)\} = 0.$$

By Fubini's Theorem, it follows that for \mathcal{L} a.e. θ , for ν_{θ} a.e. $z \in L^{\theta}$, we have that $p_{\theta}^{-1}(z)$ is a single point. This proves the desired statement, in view of the fact that $\nu(\Lambda_i \cap \Lambda_j) = 0$ for Λ satisfying the Open Set Condition.

In the case when s < 1, we can use [11, Proposition 1.3], which implies that the packing measure $\mathcal{P}^s(\Lambda^{\theta})$ is positive and finite for \mathcal{L} a.e. θ . By selfsimilarity and the properties of \mathcal{P}^s (translation invariance and scaling), we have $\mathcal{P}^s(\Lambda^{\theta}_i \cap \Lambda^{\theta}_j) = 0$ for $i \neq j$. Then we use [11, Corollary 2.2], which implies that ν_{θ} is the normalized restriction of \mathcal{P}^s to Λ^{θ} , to complete the proof. \Box

Remark. In [1, Proposition 2], it is claimed that if a self-similar set $\mathcal{K} = \bigcup_{i=1}^{m} \mathcal{K}_i$ in \mathbb{R}^d has the Hausdorff dimension equal to the similarity dimension, then the natural measure of the "overlap set" $\bigcup_{i\neq j} (\mathcal{K}_i \cap \mathcal{K}_j)$ is zero. This would imply Corollary 5.1, since the Hausdorff dimension of Λ^{θ} equals *s* for \mathcal{L} a.e. θ by Marstrand's Projection Theorem. Unfortunately, the proof in [1] contains an error, and it is still unknown whether the result holds [C. Bandt, personal communication]. (It should be noted that [1, Proposition 2] was not used anywhere in [1].)

Acknowledgment. We are grateful to M. Csörnyei, E. Järvenpää, and M. Järvenpää for helpful discussions. This work was done while K. S. was visiting the University of Washington.

References

- C. Bandt and S. Graf, Self-similar Sets 7. A Characterization of Selfsimilar Fractals with Positive Hausdorff Measure, Proc. Amer. Math. Soc., 114 (1992), 995–1001.
- [2] A. S. Besicovitch, On the Fundamental Geometric Properties of Linearly Measurable Plane Sets of Points II, Math. Annalen, 115 (1938), 296–329.
- [3] M. Csörnyei, How to Make Davies' Theorem Visible, Bull. London Math. Soc., 33 (2001), 59–66.

- [4] K. J. Falconer, *The Geometry of Fractal Sets*, Cambridge University Pres, 1985.
- [5] J. E. Hutchinson, Fractals and Self-similarity, Indiana Univ. Math. J., 30 (1981), 713–747.
- [6] J. Marstrand, Some Fundamental Geometrical Properties of Plane Sets of Fractional Dimension, Proc. London Math. Soc., 4 (1954), 257–302.
- [7] P. Mattila, Integralgeometric Properties of Capacities, Trans. Amer. Math. Soc., 266 (1981), 539–544.
- [8] P. Mattila, On the Structure of Self-similar Fractals, Ann. Acad. Sci. Fenn. Ser. A I Math., 7 (1982), 189–195.
- [9] P. Mattila, The Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995.
- [10] P. Mattila, Hausdorff Dimension, Projections, and the Fourier Transform, Publ. Math., 48 (2004), 3–48.
- [11] Y. Peres, K. Simon and B. Solomyak, Self-similar Sets of Zero Hausdorff Measure and Positive Packing Measure, Israel J. Math., 117 (2000), 353– 379.