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SMOOTH IMAGES OF THE IRRATIONALS

Abstract

In this note we study descriptive set theoretic as well as measure
theoretic properties of smooth images of the irrationals.

1 Introduction.

Let I = [0, 1]. In [3], we characterized the set of points where the level sets of
smooth functions are large. Namely, the following three theorems were proved.

Theorem 1.1. The following are equivalent.

• M ⊆ I is closed, H 1
n (M) = 0, and βn(M) < ∞.

• There is f ∈ Cn(I, I) such that M = f(Zf ) where Zf = {x : f ′(x) =
· · · = f (n)(x) = 0}.

Theorem 1.2. The following are equivalent.

• M ⊆ I is the union of a Gδ set and a countable set, H 1
n (M) = 0, and

βn(M) < ∞.

• There is f ∈ Cn(I, I) such that M = {y : f−1({y}) is perfect}.
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Theorem 1.3. The following are equivalent.

• M ⊆ I is an analytic set, H 1
n (M) = 0, and βn(M) < ∞.

• There is f ∈ Cn(I, I) such that M = {y : f−1({y}) is uncountable}.

In the above statements, βn(M) =
∑∞

i=1 |Ji|
1
n , where Ji are components

of I \M .
Theorem 1.3 can be regarded in some sense as a parametrization of the

Hausdorff dimension of certain analytic sets by smooth functions. Let us
consider this idea in detail. Suppose we have a compact set K of Hausdorff
dimension s with 1/s an integer and Hs(K) = 0. Furthermore, assume that
K satisfies the βn condition. Then, using Theorem 1.3, we can associate in a
natural way a Cn function, n = 1

s , to each analytic subset A of K. Of course,
the dimension of A may be smaller than s. To each analytic set A we would
like to associate a smooth function where the degree of the smoothness of the
function depends on the Hausdorff dimension of A.

Problem 1.4. Parameterize the Hausdorff dimension of analytic sets by
smooth functions.

Let us discuss the meaning of word “parameterize” here. Ideally, what
we would like is a constructive procedure or an “algorithm” which assigns a
function f of nth degree of smoothness to each analytic set A where 1/n is the
Hausdorff dimension of A. The notion of “smoothness” has to be somewhat
flexible here. It is interpreted as some function which has some form of nth

derivative. The proof of Theorem 1.3 can be viewed as parametrization of
those analytic sets A such that dimH(A) = dimH A = s, Hs(A) = 0 and A
satisfies the condition βn, where n = 1/s. More specifically, given such an
analytic set A, the proof of Theorem 1.3 produces a Cn function f such that
A = {y : f−1(y) is uncountable}.

Two major obstacles arise when attacking this problem. The first one is
how to circumvent having to consider the Hausdorff dimension of the closure
of the analytic set A. The second obstacle is how to get rid of the condition
βn. These problems are interrelated. The condition βn arises from Taylor’s
theorem on the intervals contiguous to the set of points where the first n
derivatives of the functions are zero. Our first attempt was to consider smooth
images of P, the set of irrationals on I. This is discussed in Section 2. Several
surprising facts emerge. First, the descriptive complexity of smooth images
of P can not be very high. The set must be of type A \ B where A is Fσ

and B is countable. Second, the ordinary notion of differentiation on P is not
enough. Indeed, we show that given a set N of measure zero which is of type
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A \ B where A is Fσ and B is countable, there is a function f : P → R such
that f(P) = M and f ′(x) = 0 for all x ∈ P. Hence, the higher order of usual
differentiation on P does not imply smaller Hausdorff dimension. However,
given any analytic set M ⊆ I of Lebesgue measure zero there are a set N ⊆ I
with N ∼= P and a function f such that f(N) = M and f ′(x) = 0 for all
x ∈ N . We also show that such a set N can not have the property that the
Lebesgue measure of N \N is zero.

The results of Section 2 lead us to consider alternate notion of smoothness
in order to tackle the “parametrization” problem. The appropriate notion of
smoothness here is to consider Peano derivatives. In Section 3, we state some
results concerning smooth images of the irrationals where smoothness is in
terms of Peano derivatives. These results bring us closer to a solution of the
“parametrization” problem, but the general problem is still open.

2 Pointwise Lipschitz Images of the Irrationals.

We establish some notation and terminology. We use P and Q to denote the
set of irrationals and the set of rationals in the interval (0, 1), respectively.
If A,B ⊆ R, then A ∼= B means that A is homeomorphic to B. If M ⊆ R,
then we let C1

0 (M) denote the set of functions defined on M which have
derivative zero everywhere, and we let Lipp(M) denote the set of pointwise
Lipschitz functions defined on M ; i.e., for each x ∈ M , there exits Lx ∈ R
and ηx > 0 such that for all 0 ≤ |x − y| < ηx and y ∈ M , we have that
|f(x)− f(y)| ≤ Lx|x− y|. Let us recall some standard facts.

Lemma 2.1. Let f : X → R, where X is any subset of a metric space, be
a Lipschitz function with Lipschitz constant L. Then there exists a Lipschitz
function f̃ : X → R with the same Lipschitz constant L and f̃(x) = f(x) for
all x ∈ X.

Lemma 2.2. ([1]) Let A and B be two countable dense subsets of the open
interval J . Then there exists a C1 homeomorphism h from J onto J such that
h(A) = B and h′(x) > 0, for every x ∈ J .

Lemma 2.3. Let f : P → R be pointwise Lipschitz. Then f(P) is of the type
F \D where F is an Fσ set and D is countable.

Proof. For each n ∈ N, let

Pn = {x ∈ P : ∀y ∈ P & |x− y| < 1
n

, |f(x)− f(y)| ≤ n · |x− y|}.

It is clear that Pn is closed relative to P and P =
⋃∞

n=1 Pn. Let 0 ≤ i ≤ n− 1.
Then, on Pn,i = Pn ∩ [ i

n , i+1
n ], f is Lipschitz with the Lipschitz constant n.
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Let fn,i be the restriction of f to Pn,i and let f̃n,i be the Lipschitz extension of
fn,i to Pn,i, the closure of Pn,i relative to [0, 1]. Clearly, f̃n,i(Pn,i) is compact.
Moreover,

f(P) =
∞⋃

n=1

n−1⋃
i=1

f(Pn,i) =
∞⋃

n=1

n−1⋃
i=1

fn,i(Pn,i) =
∞⋃

n=1

n−1⋃
i=1

f̃n,i(Pn,i \Q).

Hence the assertion follows.

From the proposition above it follows that we cannot obtain all the analytic
sets as C1

0 images of the irrationals, but the converse of Lemma 2.3 holds. Let
us start with a simple lemma.

Lemma 2.4. If {Mk}k∈N is a sequence of sets, each one of which is the image
of P under a pointwise Lipschitz map, then so is ∪∞k=1Mk.

Proof. Let I0 = (0, 1/2), and for n > 0, let In = (1 − 1/2n, 1 − 1/2n+1).
Clearly, Mn is the pointwise Lipschitz image of In ∩ P under some map fn.
Let f be the union of fn’s. Then, f is the desired function.

Lemma 2.5. Let J be an open interval and D be a countable subset of R.
Then, there is a pointwise Lipschitz map f : P → J such that f(P) = J \D.

Proof. Let f be a linear increasing function from (0, 1) onto J . Let B be a
countable set such that D ∩ J ⊆ B and B is dense in J . Let A = f(Q). By
Lemma 2.2, there is a homeomorphism h : J → J such that h(A) = B and
h′(x) > 0 for all x ∈ J . Then, h◦f shows that J \B is the pointwise Lipschitz
image of P. Since singletons are the pointwise Lipschitz images of P, we have
by Lemma 2.4 that J \D = J \B ∪ (B \D) is the pointwise Lipschitz image
of P.

Lemma 2.6. Suppose that M ⊆ (0, 1) is a nowhere dense perfect set and D ⊆
(0, 1) is countable. Then, there exists a pointwise Lipschitz map f : P → R
such that f(P) = M \D.

Proof. Let B ⊂ (0, 1) be a countable set such that D ⊆ B, B contains the
endpoints of components of (0, 1) \ M which are in (0, 1), and B is dense in
(0, 1). We will show that M \ B is the pointwise Lipschitz image of P. Since
M \D = M \ B ∪ (B \D), as in the proof of Lemma 2.5, it will follow that
M \D is the pointwise Lipschitz image of P. To this end, we may obtain by
Lemma 2.2 a C1 homeomorphism h : (0, 1) → (0, 1) such that h(Q) = B and
h′(x) > 0 for all x ∈ (0, 1). Let N = h−1(M). Let (ui, vi) be components of
(0, 1) \N . We note that ui, vi ∈ Q∪{0, 1} and that h(ui), h(vi) are endpoints
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of M provided that ui, vi /∈ {0, 1}. For each i, let {xi
k}k∈Z be such that for all

i, we have that

• xi
0 = ui+vi

2 ,

• xi
k ∈ Q,

• xi
j < xi

k whenever j < k, and

• limk→∞ xi
k = vi and limk→−∞ xi

k = ui.

Fix (ui, vi). Suppose ui 6= 0. For each k ≤ −1, let pi
k ∈ N \ Q be such

that |pi
k − ui| < |ui − xi

k−1|. This is possible since N is perfect. If ui = 0,
then vi 6= 1 and we let pi

k = pi
|k|. Similarly, if vi 6= 1, then, for each k ≥ 0, let

pi
k ∈ N \Q be such that |pi

k − vi| < |vi − xi
k+1|. If vi = 1, then ui 6= 0 and we

let pi
0 = pi

−1 and pi
k = pi

−k for all k ≥ 1. We do this for each (ui, vi).
Define f on P as follows. If x ∈ P \

⋃
i(ui, vi), let f(x) = h(x). If x ∈

P
⋂

(xi
k, xi

k+1), let f(x) = h(pi
k). Our first observation is that f(P) = M \ B.

Let us now show that f is pointwise Lipschitz.
Case 1. x ∈ P \N . In this case f is clearly pointwise Lipschitz at x as it

is constant in a neighborhood of x.
Case 2. x ∈ P ∩N . We will show that f is pointwise Lipschitz at x from

the left. The argument from the right will be analogous. Let L be a Lipschitz
constant for h at x and ε > 0 be such that if |h(x) − h(y)| < L|x − y| for all
|y − x| < ε. Let y ∈ P, y < x and y be sufficiently close to x. If y ∈ P ∩ N ,
then |f(x)− f(y)| = |h(x)− h(y)| < L|x− y|. We next estimate |f(x)− f(y)|
when y /∈ P∩N . Let y ∈ (xi

k, xi
k+1). We may assume that |ui − x| < ε/2. We

first consider the case k ≥ 0.

|f(x)− f(y)| = |h(x)− h(pi
k)| ≤ L|x− pi

k| ≤ L(|x− vi|+ |vi − pi
k|)

≤ L(|x− vi|+ |vi − xi
k+1|) ≤ L(|x− y|+ |x− y|) = 2 · L|x− y|

If k ≤ −1, then

|f(x)− f(y)| = |h(x)− h(pi
k)| ≤ L|x− pi

k| ≤ L(|x− y|+ |y − pi
k|)

≤ L

(
|x− y|+ 2 ·

∣∣∣∣ui − vi

2

∣∣∣∣) ≤ 3 · L|x− y|.

Theorem 2.7. Let M ⊆ [0, 1]. The following are equivalent:
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1. M is of the type F \D where F is an Fσ set and D is countable.

2. There exists a pointwise Lipschitz function f : P → M such that f(P ) =
M .

Proof. (1) ⇒ (2). Every Fσ subset of I can be written as countable union
of sets each one of which is either an open interval, a nowhere dense perfect
set or a singleton set. Now, applying Lemmas 2.5, 2.6, 2.4, we have that
(1) =⇒ (2). That (2) ⇒ (1) follows from Lemma 2.3.

Theorem 2.8. Let M ⊆ [0, 1]. The following are equivalent:

1. M is of the type F \ D where F is an Fσ set and D is countable, and
λ(F ) = 0.

2. There exists a function f : P → M in C1
0 (P ) such that f(P ) = M .

Proof. (1) ⇒ (2). As λ(F \ D) = 0, by ([2]: Theorem 7.6), there exists
a one-to-one continuous function f1 : [0, 1] → [0, 1] such that f1

′(x) = 0 for
every x ∈ f−1

1 (F \D). The set M̃ = f1
−1(F \D) is still of type F̃ \ D̃ where

F̃ is an Fσ set and D̃ is countable. By Theorem 2.7, there exists a pointwise
Lipschitz function f2 : P → M̃ such that f2(P) = M̃ . Hence, f = f1 ◦ f2 is the
function in C1

0 (P ) we are looking for.
(2) ⇒ (1). Let M = f(P) where f : P → M in C1

0 (P). Then, by Lemma 2.3,
M is of the type F \D where F is an Fσ set and D is countable. To see that
λ(M) = 0, for each ε > 0, we find a countable decomposition {Pn,i} of P such
that f is Lipschitz on each Pn,i with Lipschitz constant ε. This fact together
with standard theorems implies that λ(M) = 0. For each n ∈ N, let

Pn = {x ∈ P : ∀y ∈ P & |x− y| < 1
n

, |f(x)− f(y)| ≤ ε · |x− y|}.

It is clear that Pn is closed relative to P and P =
⋃∞

n=1 Pn. For each n ∈ N
and 1 ≤ i ≤ n, let Pn,i = Pn ∩ ( i−1

n , i
n ). Then, Pn,i is the desired countable

collection on which f is Lipschitz with the Lipschitz constant ε.

Theorem 2.9. Let N ⊆ [0, 1] such that λ(N \ N) = 0. If f : N → R is a
pointwise Lipschitz map, then f(N) is of the type F \Z where F is an Fσ set
and Z has Lebesgue measure zero.

Proof. For each n ∈ N, let

Nn = {x ∈ N : ∀y ∈ N & |x− y| < 1
n

, |f(x)− f(y)| ≤ n · |x− y|}.
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It is clear that Nn is closed relative to N and N =
⋃∞

n=1 Nn. Let 0 ≤ i ≤ n−1.
Then, on Nn,i = Nn ∩ [ i

n , i+1
n ], f is Lipschitz with the Lipschitz constant n.

Let fn,i be the restriction of f to Nn,i and let f̃n,i be the Lipschitz extension of
fn,i to Nn,i, the closure of Nn,i relative to [0, 1]. Clearly, f̃n,(Nn,i) is compact.
Moreover

f(N) =
∞⋃

n=1

n−1⋃
i=1

f(Nn,i) =
∞⋃

n=1

n−1⋃
i=1

fn,i(Nn,i) =
∞⋃

n=1

n−1⋃
i=1

f̃n,i(Nn,i \ (N \N)).

Hence the assertion follows.

Theorem 2.10. Let A ⊆ [0, 1] be an analytic set with λ(A) = 0. Then there
exists a set N homeomorphic to P and a pointwise Lipschitz map f : [0, 1] →
[0, 1] such that f(N) = A and f ′(x) = 0 for every x ∈ N .

Proof. By Theorem 7.6 in [2], there exists an absolutely contiuous, strictly
increasing function h : [0, 1] → [0, 1] such that h′(x) = 0 for every x in h−1(A)
and λ(h−1(A)) = 0. Let B = h−1(A). By Proposition 2.10 in [4], there is a
Gδ set N and Lipschitz map g : [0, 1] → [0, 1] such that g(N) = B. Moreover,
this set can be chosen to be homeomorphic to P. Then, f = h◦g is the desired
function.

Theorem 2.11. Let A ⊆ [0, 1] be an analytic set. Then, there is a set N
homeomorphic to P and a pointwise Lipschitz mapping f : N → A such that
f(N) = A.

Proof. Let F be an Fσ subset of A such that λ(A \ F ) = 0. Now applying
Theorem 2.10 to A \ F and Theorem 2.7 to F , we get our desired result.

Remark 2.12. Theorem 2.9 implies that in order for an analytic set to be
a pointwise Lipschitz image of a Gδ set, the Gδ set has to be special. For
instance, consider a Gδ set M ⊂ [0, 1] such that λ(M) = 0 and M = [0, 1].
Then, M can not be pointwise Lipschitz image of a set N such that N \N has
Lebesgue measure zero.

The remark above leads us to the following problem.

Problem 2.13. Given two homeomorphic sets A,B ⊆ R, when is there a
Lipschitz map from A onto B?

A solution to this problem even for sets homeomorphic to the Cantor set
would be of interest.
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3 Smooth Images of the Irrationals.

In this section, we study smooth images of the irrationals, where smoothness
refers to the order of Peano derivatives. It seems that the Peano derivative
is the right derivative for our context. See [6] for a recent survey on Peano
derivatives. Let us recall the definition of the Peano derivative first.

Let A be a subset of R which has no isolated point and f : A → R be
a function. We say that f has k-th Peano derivative at x ∈ A if there are
numbers f1(x), f2(x), . . ., fk(x) such that

f(x + h) = f(x) + hf1(x) +
h2

2
f2(x) + . . . +

hk

k!
fk(x) + o(hk)

as h → 0. The number fk(x) is called the k-th Peano derivative of f at x. We
are primarily interested in functions which have first n Peano derivatives zero
at every point of its domain. We denote this class by Dn

p .
Fix n ∈ N and ε ≥ 0. We let An(ε) be the set of all analytic subsets M ⊆ R

which satisfies the following properties:

• H1/n(M) = 0.

• There is a sequence of compact sets K1,K2, . . . with M ⊆ ∪∞i=1Ki such
that for all i we have that

– Ki ⊆ Ki+1,

– H1/n(Ki) ≤ ε, and

– Ki satisfies the condition βn; i.e.,
∑∞

k=1 |Jk|
1
n < ∞ where Jk’s are

the components of [minKi,max Ki] \Ki.

For notational convenience, we let An = An(0) and A+
n =

⋂
ε>0An(ε). Note

that M ∈ An if H1/n(M) = 0 and M satisfies condition βn.

Lemma 3.1. Let f ∈ Dn
p whose range is set B. Then, H 1

n (B) = 0.

Proof. The proof of this theorem follows by a standard covering argument.
For example, see Theorem 3.4.3 in [5].

Lemma 3.2. Let L ⊆ R be compact and f : L → R be such that

|f(x)− f(y)| ≤ ε|x− y|n

for all x, y ∈ L. Then, H1/n(f(L)) < εH1(L) and f(L) satisfies condition βn.
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Proof. Again, proof of H1/n(f(L)) < εH1(L) follows from a standard cover-
ing argument. That f(L) satisfies condition βn follows by an argument similar
to the proof of Lemma 2.7 in [3].

Theorem 3.3. Let B = f(A) for some f ∈ Dn
p with dom(f) = A, A ⊆ [0, 1].

Then, B ∈ A+
n .

Proof. Fix ε > 0. We need to show that B ∈ An(ε). By Lemma 3.1 we have
that H 1

n (B) = 0. For each j ∈ N, let

Lj = {x ∈ A : |f(x)− f(y)| ≤ ε|x− y|n ∀y ∈ A, |x− y| < 1
j
}.

Note that Lj is the finite union of disjoint compact sets on each piece of which
the hypothesis of Lemma 3.2 are satisfied. Hence, by Lemma 3.2 it follows that
Kj = f(Lj) is a compact set with H 1

n (Kj) ≤ ε and Kj satisfies condition βn.
Now, {Kj} is the required sequence to complete the proof of this theorem.

Theorem 3.4. Let B ∈ An. Then there is A ⊆ [0, 1] homeomorphic to P and
f : A → R in Dn

p such that f(A) = B.

Proof. Let {Ki} be a sequence of compact sets which witnesses the fact that
B ∈ An. By Theorem 2.28 in [3], we may choose a compact set Li with
Lebesgue measure zero and gi ∈ Dn

p such that gi(Li) = Ki. Moreover, we can
make Li ∩ Lj = ∅ if i 6= j. Let L =

⋃
i Li and g =

⋃
i gi. Then, g ∈ Dn

p

and B ⊆ g(L). Let B′ = g−1(B). Then B′ is an analytic set with Lebesgue
measure zero. By Theorem 2.10, there is a set A ⊆ [0, 1] homeomorphic to
P and a pointwise Lipschitz map h : A → R such that h(A) = B′. Letting
f = g ◦ h, we get the desired result.

We next address what can be said about f(P) when f ∈ Dn
p . Of course, it

follows from Lemma 2.3 that f(P) has the form F \D, where F is Fσ and D is
countable. It also follows from Theorem 3.3 that f(P) ∈ A+

n . By an argument
similar to the proof of Theorem 3.4, it can be shown that if B is a set of the
from F \D, where F is an Fσ set and D is countable and B ∈ An, then there
is a function f ∈ Dn

p whose domain is actually P such that f(P) = B. Indeed,
all one has to do is apply Theorem 2.8 instead of Theorem 2.10.

We end this note with some problems.

Problem 3.5. Does An equal A+
n ?

Problem 3.6. Theorem 3.3 gives a necessary condition for a set to be the
image of a function in Dn

p and Theorem 3.4 gives a sufficient condition for a
set to be the image of a function in Dn

p . Is there a natural condition which is
both necessary and sufficient?
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Problem 3.7. More specifically, characterize f(P) when f ∈ Dn
p .

Of course, if the answer to Problem 3.5 is yes, then the answer to Prob-
lem 3.6 is yes.
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