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INEQUALITIES FOR GENERALIZED
RATIONAL FUNCTIONS

Abstract

In this paper, we obtain two inequalities for generalized rational
functions of one variable in Lp spaces when a partition of the domain
with a suitable number of measurable subsets is considered.

1 Introduction.

Let µ be the Lebesgue measure on R, and let n,m ∈ N. Set {φ1, φ2, ..., φn} is a
set of linearly independent continuous functions on [a, b], and let {ψ1, ψ2, ..., ψm}
be a linearly independent continuous function set on the interval [a, b] satis-

fying a Haar condition [2]; i.e., 0 is the only function of the form
m∑

i=1

ciψi(x)

which has m or more roots on [a, b]. We denote by V and W , respectively, the
subspaces generated by them. We consider the set of generalized rational func-
tions R := {P/Q : P ∈ V,Q ∈ W,Q 6= 0 in [a, b]}. Clearly, all elements in R
can be written as P/Q, with ‖Q‖1 = 1, where ‖

∑m
j=1 ajψj(x)‖1 :=

∑m
j=1 |aj |.

Henceforth, we assume that ‖Q‖1 = 1 for all Q ∈W. If D is a measurable set
and g is a measurable function on D, we consider the p-norm

‖g‖p,D :=
(∫

D

|g(x)|p dµ
)1/p

, 0 < p <∞,

and ‖g‖∞,D = sup essx∈D|g(x)|. If Dj ⊂ [a, b], 1 ≤ j ≤ m, are pairwise disjoint
closed sets of positive measure, D = ∪m

i=1Di, and f is a measurable function
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defined on [a, b] which satisfies a suitable condition, we obtain in Section 2 an
inequality of the following type:

min
1≤j≤m

∥∥∥∥f − P

Q

∥∥∥∥
∞,Dj

≤ K

∥∥∥∥f − P

Q

∥∥∥∥
p,D

, (1.1)

for all P/Q ∈ R. The function f ≡ 0 satisfies the required condition over f .
Therefore, (1.1) is true in this case.

The Nikolskii type inequalities for algebraic polynomials ([3]); i.e., inequal-
ities of the form (1.1) when m = 1, ψ1(x) = 1, and φj(x) = xj−1, 1 ≤ j ≤ n
does not hold for rational functions, as we shall show with an example. The
theory of inequalities for univariate and multivariate algebraic polynomials has
been developed extensively in the literature ([1], [3]). For certain classes of
polynomials, Nikolskii type inequalities have been considered in [1]. In Section
3, we give an estimate of the constant K of the inequality (1.1) in terms of
the µ(Dj), 1 ≤ j ≤ m, when f = 0, n = 1, φ1(x) = 1, and ψi(x) = xi−1, 1 ≤
i ≤ m. Moreover, we prove that if g is a continuous function which oscillates
r times; i.e., |g| has r local maximum or minimum in the interval (a, b), then
for any collection of measurable sets Dj ⊂ [a, b], µ(Dj) > 0, 1 ≤ j ≤ r + 2,
with supDj ≤ infDj+1, 1 ≤ j ≤ r + 1, it has

min
1≤j≤r+2

‖g‖∞,Dj
≤ 1

min
1≤i≤r+2

µ(Di)1/p
‖g‖p,∪r+2

j=1Dj
. (1.2)

As an application of (1.2) we prove that for any partition of the interval [a, b],
say a = a0 < a1 < ... < ar+2 = b, there exists a finite set of points, C ⊂ [a, b],
such that

‖g‖p,[a,b] ≥ min
0≤j≤r+1

|aj − aj+1|1/p min
y∈C

|g(y)| (1.3)

for all continuous functions g who oscillate at most r times on [a, b].
As example of a class whose members oscillate at the most r-times on [a, b]

for some r ∈ N, we can mention R in the following cases:

• φi(x) = xi−1, 1 ≤ i ≤ n, ψi(x) = xi−1, 1 ≤ i ≤ m; i.e., algebraic
rational functions;

• For n real numbers, λ1 < λ2 < ... < λn, let φi(x) = eλix, 1 ≤ i ≤
n, ψ1(x) = 1,m = 1;

• Quotients of trigonometric polynomials.
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2 Generalized Rational Functions.

We begin with a lemma, which is the key to prove the main theorem of this
Section. It can be interesting itself. We denote g|D the restriction of a function
g on the set D and V |D := {g|D : g ∈ V }.

Lemma 2.1. Let Dj ⊂ [a, b], 1 ≤ j ≤ m, be pairwise disjoint closed subsets
of positive measure. Let D := ∪m

j=1Dj and suppose that f : D → R is an
essentially bounded function such that fW |Dj

⋂
V |Dj

= {0}, 1 ≤ j ≤ m.
Then, for each 0 < s < 1, there exists a constant α = α(s) > 0 that satisfies

µ
({
x ∈ D :

∣∣∣f(x)− P (x)
Q(x)

∣∣∣ ≥ s min
1≤j≤m

{∥∥∥f − P

Q

∥∥∥
∞,Dj

}})
≥ α, (2.1)

for all P/Q ∈ R. The constant α depends only on W,V, f,Dj, and s.

Proof. Clearly, (2.1) is equivalent to

µ
({
x ∈ D :

∣∣∣λf(x)− P (x)
Q(x)

∣∣∣ ≥ s min
1≤j≤m

{∥∥∥λf − P

Q

∥∥∥
∞,Dj

}})
≥ α, (2.2)

for all P/Q ∈ R, λ ∈ R− {0}. Suppose that (2.2) is not true, then we can get
0 < s < 1, 1 ≤ j0 ≤ m, a sequence λk ∈ R− {0}, and a sequence Pk/Qk ∈ R
such that:

i) 0 < Bk := ‖λkf − Pk

Qk
‖∞,Dj0

= min
1≤j≤m

{‖λkf − Pk

Qk
‖∞,Dj}, and

ii) the sets

Ak :=
{
x ∈ D :

∣∣∣λkf(x)− Pk(x)
Qk(x)

∣∣∣ ≥ s
∥∥∥λkf −

Pk

Qk

∥∥∥
∞,Dj0

}
,

satisfy µ(Ak) → 0, for k →∞.

If we substitute 1
Bk

(λkf− Pk

Qk
) instead of λkf− Pk

Qk
in i) and ii), we can assume

without loss of generality that ‖λkf− Pk

Qk
‖∞,Dj0

= 1. Only two cases can occur:
a) f 6= 0 on a measure positive subset of Dj0 , and b) f = 0 on Dj0(µ-a.e.).
First, we suppose a). The condition fW |Dj0

⋂
V |Dj0

= {0} implies that all
elements in fW |Dj0

+V |Dj0
can only be written as (Qf −P )|Dj0

, Q ∈W,P ∈
V . We consider the norms over the linear space fW |Dj0

⊕
V |Dj0

defined by
ρ1(Qf − P ) := ‖Qf − P‖∞,Dj0

and ρ2(Qf − P ) := ‖Q‖∞,Dj0
‖f‖∞,Dj0

+
‖P‖∞,Dj0

. On the other hand, we have

‖Qkλkf − Pk‖∞,Dj0
≤ ‖Qk‖∞,Dj0

∥∥∥λkf −
Pk

Qk

∥∥∥
∞,Dj0

≤ K, (2.3)
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for some constant K. Since ‖f‖∞,Dj0
> 0, by the equivalence of the norms

ρ1 and ρ2, we get that λk and ‖Pk‖∞,Dj0
are bounded sequences. Therefore,

there are subsequences, denoted with the same index, such that Qk → Q0 ∈
W, Pk → P0 ∈ V , and λk → λ0 ∈ R. Since W satisfies a Haar condition,
there exists 1 ≤ i ≤ m such that |Q0(x)| > 0 for all x ∈ Di. In addition, Di is
closed, thus, we have

λkf −
Pk

Qk
→ λ0f −

P0

Q0
(2.4)

uniformly on Di. As ‖λkf − Pk

Qk
‖∞,Di

≥ ‖λkf − Pk

Qk
‖∞,Dj0

= 1, we obtain∥∥∥λ0f −
P0

Q0

∥∥∥
∞,Di

≥ 1. (2.5)

Let t ∈ (s, 1). From (2.5) it follows that there is a µ-measurable set B ⊂
Di, µ(B) > 0 such that |λ0f(x)− P0(x)

Q0(x) | ≥ t for all x ∈ B. Then, there exists
N such that ∣∣∣λkf(x)− Pk(x)

Qk(x)

∣∣∣ ≥ s, ∀k ≥ N, ∀x ∈ B. (2.6)

It follows from (2.6) that B ⊂ Ak for all k ≥ N. As consequence of ii), we
obtain µ(B) = 0, which is a contradiction. Now we assume b). As in item
a), we obtain subsequences Pk and Qk, converging to P0 and Q0, respectively,
and 1 ≤ i ≤ m such that |Q0(x)| > 0 for all x ∈ Di. If f = 0 on Di (µ-a.e.),
in a similar way to a), we get a contradiction. On the contrary, there is a set
T ⊂ Di, µ(T ) > 0 such that |f | has a positive lower bound on T . In the case
that the sequence λk is bounded, it has a convergent subsequence, and again
we get a contradiction. If the sequence λk is not bounded, there exists N1 > 0
such that |λkf(x) − P0

Q0
| ≥ 1, for all k ≥ N1, x ∈ T . Since Pk

Qk
uniformly

converges to P0
Q0

on T , there is N2 > 0 such that |λkf(x) − Pk

Qk
| ≥ |λkf(x) −

P0
Q0
| − 1−s

2 for all k ≥ N2, x ∈ T. Finally, we obtain |λkf(x) − Pk

Qk
| ≥ s, for

all k ≥ max{N1, N2}, x ∈ T which implies T ⊂ Ak for all k ≥ max{N1, N2}.
Therefore, µ(T ) = 0, which is a contradiction.

Now, we prove the main result of this Section.

Theorem 2.2. Let Dj ⊂ [a, b], 1 ≤ j ≤ m, be pairwise disjoint closed subsets
of positive measure, and let 0 < p < ∞. Let D := ∪m

j=1Dj, and suppose that
f : D → R is an essentially bounded function such that fW |Dj

⋂
V |Dj

=
{0}, 1 ≤ j ≤ m. Then there exists a constant K > 0 such that

min
1≤j≤m

∥∥∥f − P

Q

∥∥∥
∞,Dj

≤ K
∥∥∥f − P

Q

∥∥∥
p,D
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for all P/Q ∈ R. The constant K depends only on p,Dj ,W, V, and f .
In particular, when f = 0, there exists a constant K > 0 such that

min
1≤j≤m

∥∥∥∥PQ
∥∥∥∥
∞,Dj

≤ K

∥∥∥∥PQ
∥∥∥∥

p,D

(2.7)

for all P/Q ∈ R.

Proof. Fix 0 < s < 1. Let 0 < α = α(s) be as in Lemma 2.1. For P
Q ∈ R,

we consider the set

A = A(P/Q) :=
{
x ∈ D :

∣∣∣f(x)− P (x)
Q(x)

∣∣∣ ≥ s min
1≤j≤m

∥∥∥f − P

Q

∥∥∥
∞,Dj

}
.

By the Lemma 2.1, we have µ(A) ≥ α. Then for all P/Q ∈ R,∥∥∥f − P

Q

∥∥∥p

p,D
=

∫
D

∣∣∣f(x)− P (x)
Q(x)

∣∣∣pdµ
≥

∫
A

∣∣∣f(x)− P (x)
Q(x)

∣∣∣pdµ
≥ α

(
s min

1≤j≤m

∥∥∥f − P

Q

∥∥∥
∞,Dj

)p

.

(2.8)

The result follows with K = 1/sα1/p.

We observe with a simple example that the inequality (2.7) is not true, in
general, if we consider only r sets Dj with r < m. In fact, we can consider
m = 2, p = 1, and the sequence

Pk(x)
Qk(x)

=
1/k

1/k + (1− 1/k)x
and D1 = [0, 1].

It is easy to see that there is not a constant M such that ‖Pk/Qk‖∞,D1 ≤
M‖Pk/Qk‖1,D1 , for all k ∈ N. Next, we see that the condition that the Dj are
closed sets cannot be removed in Theorem 2.2. We take f = 0, n = 1, m =
2, φ1(x) = 1, and ψi(x) = xi−1, i = 1, 2. Let

D1 :=
∞⋃

n=1

[ 1
2n
,

1
2n− 1

]
and D2 :=

∞⋃
n=1

( 1
2n+ 1

,
1
2n

)
.

Then, for 0 < α < 1,∥∥∥ 1
α+ (1− α)x

∥∥∥
∞,Dj

=
1
α
, j = 1, 2 and

∥∥∥ 1
α+ (1− α)x

∥∥∥
1,[0,1]

=
− lnα
1− α

.
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On the other hand,

lim
α→0+

1/α
− lnα/(1− α)

= ∞.

So, the inequality (2.7) is not true.

3 Finite Oscillation Functions.

In this Section, we give an estimate for the constant K in (2.7), as a func-
tion of the numbers µ(Dj). Inequalities of this type for multivariate algebraic
polynomials have been given by Ganzburg and other authors (see [3]).

Definition 3.1. We shall say that a continuous function f : [a, b] → R os-
cillates r-times on [a, b] if |f | has exactly r local maximums or minimums in
(a, b).

We begin with an auxiliary lemma.

Lemma 3.2. Let f be a continuous function which oscillates r-times on [a, b].
Let Dj ⊂ [a, b], 1 ≤ j ≤ r + 2, be a family of measurable sets, µ(Dj) >
0, supDj < infDj+1. Let α := min

1≤j≤r+2
‖f‖∞,Dj . If A := {1 ≤ j ≤ r + 2 :

‖f‖∞,Dj
= α}, then ]A ≤ r + 1.

Proof. Let s := ]A. Then there are s sets Dj , w.l.o.g. say Dj , 1 ≤ j ≤ s,
such that ‖f‖∞,Dj

= α. Let xj ∈ Dj , 1 ≤ j ≤ s, for i 6= k such that
|f(xj)| = α. Clearly, we must have a local maximum or minimum in each
interval (xi, xi+1), 1 ≤ i ≤ s − 1. As the sets Dj are pairwise disjoint, it
follows that s− 1 ≤ r.

Theorem 3.3. Let f be a continuous function which oscillates r-times on
[a, b], and let 0 < p ≤ ∞. Let Dj ⊂ [a, b], 1 ≤ j ≤ r + 2, be a family of
measurable sets, µ(Dj) > 0, supDj ≤ infDj+1, 1 ≤ j ≤ r + 1. Then

min
1≤j≤r+2

‖f‖∞,Dj
≤ 1

min
1≤i≤r+2

µ(Di)1/p
‖f‖p,∪r+2

j=1Dj
. (3.1)

Proof. If p = ∞, it is trivial. Suppose that 0 < p < ∞. We write α :=
min

1≤j≤r+2
‖f‖∞,Dj , and A := {1 ≤ j ≤ r + 2 : ‖f‖∞,Dj = α}. First, we suppose

that supDj < infDj+1, 1 ≤ j ≤ r+1. Lemma 3.2 implies that B := {1 ≤ j ≤
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r + 2 : j /∈ A} 6= ∅. Suppose that for all i ∈ B, infx∈Di |f(x)| < α. Then for
each i ∈ B, there are xi, yi ∈ Di such that |f(xi)| < α < |f(yi)|. Therefore, for
each i ∈ B, there exists zi belonging to the interval of extremes xi and yi such
that |f(zi)| = α. Since supDj < infDj+1, 1 ≤ j ≤ r + 1, then zi 6= zk, i 6= k.
On the other hand, for each j ∈ A, there exists tj ∈ Dj satisfying |f(tj)| = α.
As the points tj are different from the points zi, we get r + 2 points x with
|f(x)| = α. Thus, the function f does not oscillate r-times on [a, b]. It is a
contradiction. In consequence, there is j0 ∈ B such that infx∈Dj0

|f(x)| ≥ α.
Therefore, we obtain

‖f‖p,∪r+2
j=1Dj

≥ ‖f‖p,Dj0
≥ infx∈Dj0

|f(x)| µ(Dj0)
1/p ≥ αµ(Dj0)

1/p,

as we want to show. Now, suppose supDj ≤ infDj+1, 1 ≤ j ≤ r + 1. Let
Ej(ε) := [infDj +ε, supDj−ε]∩Dj , 1 ≤ j ≤ r+2. For ε sufficiently small, the
sets Ej(ε) satisfy that µ(Ej(ε)) > 0 and supEj(ε) < inf Ej+1(ε), 1 ≤ j ≤ r+1.
We have proved, for the first part, that

min
1≤j≤r+2

‖f‖∞,Ej(ε) ≤
1

min
1≤i≤r+2

µ(Ei(ε))1/p
‖f‖p,∪r+2

j=1Ej(ε)
. (3.2)

Finally, the Theorem follows by a limit process in (3.2) for ε tending to 0.

Remark 3.4. We note that the Theorem 3.3 gives an estimate of the constant
K in the inequality (2.7) for the particular case of algebraic rational functions
mentioned in Section 1, with n = 1. In fact, here r + 2 = m .

The next example shows that the amount r+ 2 of sets Dj in Theorem 3.3
is essential. Let f(x) = x, p = 2, D1 = [0, a], and D2 = [−a, 0] with a > 0.
Then

‖f‖2,D1∪D2 =

√
2
3
a3 < a3/2 = min{µ(D1)1/2, µ(D2)1/2}min ‖f‖∞,D1∪D2 .

Now, we give another example which shows that the condition supDj ≤
infDj+1, 1 ≤ j ≤ r+ 1, in Theorem 3.3 is also essential. Let f(x) = 1

x2+1 and
p = 1. Let ai > 0, 1 ≤ i ≤ 3, and b1 = 1− a1. Consider the following sets

D1 = [b1, 1] ∪ [a2, b1 + a2], D2 = −D1, and D3 = [0, a1] ∪ [a3, b1 + a3].

Then µ(Di) = 1, 1 ≤ i ≤ 3. It is easy to see that ‖f‖1,∪3
i=1Di

→ 0 as a1 → 0,
a2 →∞, and a3 →∞. However, min

1≤i≤3
‖f‖∞,Di

= 1/2. So, (3.1) is not true.

An immediate consequence of Theorem 3.3 is the following Corollary.
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Corollary 3.5. Let B := {aj ∈ [a, b] : 0 ≤ j ≤ r + 2}, a = a0 < a1 < ... <
ar+2 = b, be a partition of the interval [a, b]. If

H := {C ⊂ B : C ∩ [aj , aj+1] 6= ∅, 0 ≤ j ≤ r + 1}.

Then
‖f‖p,[a,b] ≥ min

0≤j≤r+1
|aj − aj+1|1/p max

C∈H
min
y∈C

|f(y)|, (3.3)

for all continuous functions f oscillating at the most r times on [a, b] and for
all 0 < p ≤ ∞.

Proof. If p = ∞, it is trivial. Suppose that 0 < p <∞. Let f be a continuous
function which oscillates at the most r times. We write Dj = [aj , aj+1], 0 ≤
j ≤ r + 1. Given C ∈ H, we have

min
y∈C

|f(y)| ≤ min
0≤j≤r+1

‖f‖∞,Dj
.

Therefore, Theorem 3.3 implies the inequality (3.3).

The inequality (3.3) gives a lower bound for the p-norm of a continuous
function f , oscillating r times, in terms of the values of f on a finite set of
[(r + 3)/2] points, where [ ] denotes the integer part. In fact, we can take in
the Corollary 3.5, aj = a+ j b−a

r+2 , 0 ≤ j ≤ r + 2, and C = {a+ (2j − 1) b−a
r+2 :

1 ≤ j ≤ [(r + 3)/2]}.

Remark 3.6. Let F be the class of algebraic polynomials of degree less than
or equal to n. Let aj = a + j b−a

2n+1 , 0 ≤ j ≤ 2n + 1, be with a, b ∈ R . By
Corollary 3.5, we get

min
1≤j≤2n+1

‖P‖∞,[aj ,aj+1] ≤
(2n+ 1)1/p

(b− a)1/p
‖P‖p,[a,b], ∀P ∈ F . (3.4)

A comparison of (3.4) with the well known Nikolskii inequality (see [3],
p.298),

‖P‖∞,[a,b] ≤
8(n+ 1)2/p

(b− a)1/p
‖P‖p,[a,b], ∀P ∈ F , (3.5)

shows that as the constant for a suitable partition of the domain decreases,
the constant in (3.4) is of order n1/p, while that in (3.5) is of order n2/p.
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