Héctor H. Cuenya and C. N. Rodriguez*, Departamento de Matemática, Universidad Nacional de Rio Cuarto, 5800 Rio Cuarto, Argentina. email: hcuenya@exa.unrc.edu.ar, crodriguez@exa.unrc.edu.ar

INEQUALITIES FOR GENERALIZED RATIONAL FUNCTIONS

Abstract

In this paper, we obtain two inequalities for generalized rational functions of one variable in L^{p} spaces when a partition of the domain with a suitable number of measurable subsets is considered.

1 Introduction.

Let μ be the Lebesgue measure on \mathbb{R}, and let $n, m \in \mathbb{N}$. Set $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right\}$ is a set of linearly independent continuous functions on $[a, b]$, and let $\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{m}\right\}$ be a linearly independent continuous function set on the interval $[a, b]$ satisfying a Haar condition [2]; i.e., 0 is the only function of the form $\sum_{i=1}^{m} c_{i} \psi_{i}(x)$ which has m or more roots on $[a, b]$. We denote by V and W, respectively, the subspaces generated by them. We consider the set of generalized rational functions $\mathcal{R}:=\{P / Q: P \in V, Q \in W, Q \neq 0$ in $[a, b]\}$. Clearly, all elements in \mathcal{R} can be written as P / Q, with $\|Q\|_{1}=1$, where $\left\|\sum_{j=1}^{m} a_{j} \psi_{j}(x)\right\|_{1}:=\sum_{j=1}^{m}\left|a_{j}\right|$. Henceforth, we assume that $\|Q\|_{1}=1$ for all $Q \in W$. If D is a measurable set and g is a measurable function on D, we consider the p-norm

$$
\|g\|_{p, D}:=\left(\int_{D}|g(x)|^{p} d \mu\right)^{1 / p}, \quad 0<p<\infty
$$

and $\|g\|_{\infty, D}=\sup \operatorname{ess}_{x \in D}|g(x)|$. If $D_{j} \subset[a, b], 1 \leq j \leq m$, are pairwise disjoint closed sets of positive measure, $D=\cup_{i=1}^{m} D_{i}$, and f is a measurable function

[^0]defined on $[a, b]$ which satisfies a suitable condition, we obtain in Section 2 an inequality of the following type:
\[

$$
\begin{equation*}
\min _{1 \leq j \leq m}\left\|f-\frac{P}{Q}\right\|_{\infty, D_{j}} \leq K\left\|f-\frac{P}{Q}\right\|_{p, D} \tag{1.1}
\end{equation*}
$$

\]

for all $P / Q \in \mathcal{R}$. The function $f \equiv 0$ satisfies the required condition over f. Therefore, (1.1) is true in this case.

The Nikolskii type inequalities for algebraic polynomials ([3]); i.e., inequalities of the form (1.1) when $m=1, \psi_{1}(x)=1$, and $\phi_{j}(x)=x^{j-1}, 1 \leq j \leq n$ does not hold for rational functions, as we shall show with an example. The theory of inequalities for univariate and multivariate algebraic polynomials has been developed extensively in the literature ([1], [3]). For certain classes of polynomials, Nikolskii type inequalities have been considered in [1]. In Section 3, we give an estimate of the constant K of the inequality (1.1) in terms of the $\mu\left(D_{j}\right), 1 \leq j \leq m$, when $f=0, n=1, \phi_{1}(x)=1$, and $\psi_{i}(x)=x^{i-1}, 1 \leq$ $i \leq m$. Moreover, we prove that if g is a continuous function which oscillates r times; i.e., $|g|$ has r local maximum or minimum in the interval (a, b), then for any collection of measurable sets $D_{j} \subset[a, b], \mu\left(D_{j}\right)>0,1 \leq j \leq r+2$, with $\sup D_{j} \leq \inf D_{j+1}, 1 \leq j \leq r+1$, it has

$$
\begin{equation*}
\min _{1 \leq j \leq r+2}\|g\|_{\infty, D_{j}} \leq \frac{1}{\min _{1 \leq i \leq r+2} \mu\left(D_{i}\right)^{1 / p}}\|g\|_{p, \cup_{j=1}^{r+2} D_{j}} \tag{1.2}
\end{equation*}
$$

As an application of (1.2) we prove that for any partition of the interval $[a, b]$, say $a=a_{0}<a_{1}<\ldots<a_{r+2}=b$, there exists a finite set of points, $C \subset[a, b]$, such that

$$
\begin{equation*}
\|g\|_{p,[a, b]} \geq \min _{0 \leq j \leq r+1}\left|a_{j}-a_{j+1}\right|^{1 / p} \min _{y \in C}|g(y)| \tag{1.3}
\end{equation*}
$$

for all continuous functions g who oscillate at most r times on $[a, b]$.
As example of a class whose members oscillate at the most r-times on $[a, b]$ for some $r \in \mathbb{N}$, we can mention \mathcal{R} in the following cases:

- $\phi_{i}(x)=x^{i-1}, 1 \leq i \leq n, \quad \psi_{i}(x)=x^{i-1}, 1 \leq i \leq m$; i.e., algebraic rational functions;
- For n real numbers, $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}$, let $\phi_{i}(x)=e^{\lambda_{i} x}, 1 \leq i \leq$ $n, \psi_{1}(x)=1, m=1$;
- Quotients of trigonometric polynomials.

2 Generalized Rational Functions.

We begin with a lemma, which is the key to prove the main theorem of this Section. It can be interesting itself. We denote $\left.g\right|_{D}$ the restriction of a function g on the set D and $\left.V\right|_{D}:=\left\{\left.g\right|_{D}: g \in V\right\}$.
Lemma 2.1. Let $D_{j} \subset[a, b], 1 \leq j \leq m$, be pairwise disjoint closed subsets of positive measure. Let $D:=\cup_{j=1}^{m} D_{j}$ and suppose that $f: D \rightarrow \mathbb{R}$ is an essentially bounded function such that $\left.\left.f W\right|_{D_{j}} \cap V\right|_{D_{j}}=\{0\}, 1 \leq j \leq m$. Then, for each $0<s<1$, there exists a constant $\alpha=\alpha(s)>0$ that satisfies

$$
\begin{equation*}
\mu\left(\left\{x \in D:\left|f(x)-\frac{P(x)}{Q(x)}\right| \geq s \min _{1 \leq j \leq m}\left\{\left\|f-\frac{P}{Q}\right\|_{\infty, D_{j}}\right\}\right\}\right) \geq \alpha \tag{2.1}
\end{equation*}
$$

for all $P / Q \in \mathcal{R}$. The constant α depends only on W, V, f, D_{j}, and s.
Proof. Clearly, (2.1) is equivalent to

$$
\begin{equation*}
\mu\left(\left\{x \in D:\left|\lambda f(x)-\frac{P(x)}{Q(x)}\right| \geq s \min _{1 \leq j \leq m}\left\{\left\|\lambda f-\frac{P}{Q}\right\|_{\infty, D_{j}}\right\}\right\}\right) \geq \alpha \tag{2.2}
\end{equation*}
$$

for all $P / Q \in \mathcal{R}, \lambda \in \mathbb{R}-\{0\}$. Suppose that (2.2) is not true, then we can get $0<s<1,1 \leq j_{0} \leq m$, a sequence $\lambda_{k} \in \mathbb{R}-\{0\}$, and a sequence $P_{k} / Q_{k} \in \mathcal{R}$ such that:
i) $0<B_{k}:=\left\|\lambda_{k} f-\frac{P_{k}}{Q_{k}}\right\|_{\infty, D_{j_{0}}}=\min _{1 \leq j \leq m}\left\{\left\|\lambda_{k} f-\frac{P_{k}}{Q_{k}}\right\|_{\infty, D_{j}}\right\}$, and
ii) the sets

$$
A_{k}:=\left\{x \in D:\left|\lambda_{k} f(x)-\frac{P_{k}(x)}{Q_{k}(x)}\right| \geq s\left\|\lambda_{k} f-\frac{P_{k}}{Q_{k}}\right\|_{\infty, D_{j_{0}}}\right\}
$$

satisfy $\mu\left(A_{k}\right) \rightarrow 0$, for $k \rightarrow \infty$.
If we substitute $\frac{1}{B_{k}}\left(\lambda_{k} f-\frac{P_{k}}{Q_{k}}\right)$ instead of $\lambda_{k} f-\frac{P_{k}}{Q_{k}}$ in i) and ii), we can assume without loss of generality that $\left\|\lambda_{k} f-\frac{P_{k}}{Q_{k}}\right\|_{\infty, D_{j_{0}}}=1$. Only two cases can occur: a) $f \neq 0$ on a measure positive subset of $D_{j_{0}}$, and b) $f=0$ on $D_{j_{0}}$ (μ-a.e.). First, we suppose a). The condition $\left.\left.f W\right|_{D_{j_{0}}} \cap V\right|_{D_{j_{0}}}=\{0\}$ implies that all elements in $\left.f W\right|_{D_{j_{0}}}+\left.V\right|_{D_{j_{0}}}$ can only be written as $\left.(Q f-P)\right|_{D_{j_{0}}}, Q \in W, P \in$ V. We consider the norms over the linear space $\left.\left.f W\right|_{D_{j_{0}}} \bigoplus V\right|_{D_{j_{0}}}$ defined by $\rho_{1}(Q f-P):=\|Q f-P\|_{\infty, D_{j_{0}}}$ and $\rho_{2}(Q f-P):=\|Q\|_{\infty, D_{j_{0}}}\|f\|_{\infty, D_{j_{0}}}+$ $\|P\|_{\infty, D_{j_{0}}}$. On the other hand, we have

$$
\begin{equation*}
\left\|Q_{k} \lambda_{k} f-P_{k}\right\|_{\infty, D_{j_{0}}} \leq\left\|Q_{k}\right\|_{\infty, D_{j_{0}}}\left\|\lambda_{k} f-\frac{P_{k}}{Q_{k}}\right\|_{\infty, D_{j_{0}}} \leq K \tag{2.3}
\end{equation*}
$$

for some constant K. Since $\|f\|_{\infty, D_{j_{0}}}>0$, by the equivalence of the norms ρ_{1} and ρ_{2}, we get that λ_{k} and $\left\|P_{k}\right\|_{\infty, D_{j_{0}}}$ are bounded sequences. Therefore, there are subsequences, denoted with the same index, such that $Q_{k} \rightarrow Q_{0} \in$ $W, P_{k} \rightarrow P_{0} \in V$, and $\lambda_{k} \rightarrow \lambda_{0} \in \mathbb{R}$. Since W satisfies a Haar condition, there exists $1 \leq i \leq m$ such that $\left|Q_{0}(x)\right|>0$ for all $x \in D_{i}$. In addition, D_{i} is closed, thus, we have

$$
\begin{equation*}
\lambda_{k} f-\frac{P_{k}}{Q_{k}} \rightarrow \lambda_{0} f-\frac{P_{0}}{Q_{0}} \tag{2.4}
\end{equation*}
$$

uniformly on D_{i}. As $\left\|\lambda_{k} f-\frac{P_{k}}{Q_{k}}\right\|_{\infty, D_{i}} \geq\left\|\lambda_{k} f-\frac{P_{k}}{Q_{k}}\right\|_{\infty, D_{j_{0}}}=1$, we obtain

$$
\begin{equation*}
\left\|\lambda_{0} f-\frac{P_{0}}{Q_{0}}\right\|_{\infty, D_{i}} \geq 1 \tag{2.5}
\end{equation*}
$$

Let $t \in(s, 1)$. From (2.5) it follows that there is a μ-measurable set $B \subset$ $D_{i}, \mu(B)>0$ such that $\left|\lambda_{0} f(x)-\frac{P_{0}(x)}{Q_{0}(x)}\right| \geq t$ for all $x \in B$. Then, there exists N such that

$$
\begin{equation*}
\left|\lambda_{k} f(x)-\frac{P_{k}(x)}{Q_{k}(x)}\right| \geq s, \forall k \geq N, \forall x \in B \tag{2.6}
\end{equation*}
$$

It follows from (2.6) that $B \subset A_{k}$ for all $k \geq N$. As consequence of ii), we obtain $\mu(B)=0$, which is a contradiction. Now we assume b). As in item a), we obtain subsequences P_{k} and Q_{k}, converging to P_{0} and Q_{0}, respectively, and $1 \leq i \leq m$ such that $\left|Q_{0}(x)\right|>0$ for all $x \in D_{i}$. If $f=0$ on D_{i} (μ-a.e.), in a similar way to a), we get a contradiction. On the contrary, there is a set $T \subset D_{i}, \mu(T)>0$ such that $|f|$ has a positive lower bound on T. In the case that the sequence λ_{k} is bounded, it has a convergent subsequence, and again we get a contradiction. If the sequence λ_{k} is not bounded, there exists $N_{1}>0$ such that $\left|\lambda_{k} f(x)-\frac{P_{0}}{Q_{0}}\right| \geq 1$, for all $k \geq N_{1}, x \in T$. Since $\frac{P_{k}}{Q_{k}}$ uniformly converges to $\frac{P_{0}}{Q_{0}}$ on T, there is $N_{2}>0$ such that $\left|\lambda_{k} f(x)-\frac{P_{k}}{Q_{k}}\right| \geq \mid \lambda_{k} f(x)-$ $\left.\frac{P_{0}}{Q_{0}} \right\rvert\,-\frac{1-s}{2}$ for all $k \geq N_{2}, x \in T$. Finally, we obtain $\left|\lambda_{k} f(x)-\frac{P_{k}}{Q_{k}}\right| \geq s$, for all $k \geq \max \left\{N_{1}, N_{2}\right\}, x \in T$ which implies $T \subset A_{k}$ for all $k \geq \max \left\{N_{1}, N_{2}\right\}$. Therefore, $\mu(T)=0$, which is a contradiction.

Now, we prove the main result of this Section.
Theorem 2.2. Let $D_{j} \subset[a, b], 1 \leq j \leq m$, be pairwise disjoint closed subsets of positive measure, and let $0<p<\infty$. Let $D:=\cup_{j=1}^{m} D_{j}$, and suppose that $f: D \rightarrow \mathbb{R}$ is an essentially bounded function such that $\left.\left.f W\right|_{D_{j}} \cap V\right|_{D_{j}}=$ $\{0\}, 1 \leq j \leq m$. Then there exists a constant $K>0$ such that

$$
\min _{1 \leq j \leq m}\left\|f-\frac{P}{Q}\right\|_{\infty, D_{j}} \leq K\left\|f-\frac{P}{Q}\right\|_{p, D}
$$

for all $P / Q \in \mathcal{R}$. The constant K depends only on p, D_{j}, W, V, and f.
In particular, when $f=0$, there exists a constant $K>0$ such that

$$
\begin{equation*}
\min _{1 \leq j \leq m}\left\|\frac{P}{Q}\right\|_{\infty, D_{j}} \leq K\left\|\frac{P}{Q}\right\|_{p, D} \tag{2.7}
\end{equation*}
$$

for all $P / Q \in \mathcal{R}$.
Proof. Fix $0<s<1$. Let $0<\alpha=\alpha(s)$ be as in Lemma 2.1. For $\frac{P}{Q} \in \mathcal{R}$, we consider the set

$$
A=A(P / Q):=\left\{x \in D:\left|f(x)-\frac{P(x)}{Q(x)}\right| \geq s \min _{1 \leq j \leq m}\left\|f-\frac{P}{Q}\right\|_{\infty, D_{j}}\right\}
$$

By the Lemma 2.1, we have $\mu(A) \geq \alpha$. Then for all $P / Q \in \mathcal{R}$,

$$
\begin{align*}
\left\|f-\frac{P}{Q}\right\|_{p, D}^{p}=\int_{D}\left|f(x)-\frac{P(x)}{Q(x)}\right|^{p} d \mu & \\
& \geq \int_{A}\left|f(x)-\frac{P(x)}{Q(x)}\right|^{p} d \mu \tag{2.8}\\
& \geq \alpha\left(s \min _{1 \leq j \leq m}\left\|f-\frac{P}{Q}\right\|_{\infty, D_{j}}\right)^{p}
\end{align*}
$$

The result follows with $K=1 / s \alpha^{1 / p}$.
We observe with a simple example that the inequality (2.7) is not true, in general, if we consider only r sets D_{j} with $r<m$. In fact, we can consider $m=2, p=1$, and the sequence

$$
\frac{P_{k}(x)}{Q_{k}(x)}=\frac{1 / k}{1 / k+(1-1 / k) x} \quad \text { and } \quad D_{1}=[0,1]
$$

It is easy to see that there is not a constant M such that $\left\|P_{k} / Q_{k}\right\|_{\infty, D_{1}} \leq$ $M\left\|P_{k} / Q_{k}\right\|_{1, D_{1}}$, for all $k \in \mathbb{N}$. Next, we see that the condition that the D_{j} are closed sets cannot be removed in Theorem 2.2. We take $f=0, n=1, m=$ $2, \phi_{1}(x)=1$, and $\psi_{i}(x)=x^{i-1}, i=1,2$. Let

$$
D_{1}:=\bigcup_{n=1}^{\infty}\left[\frac{1}{2 n}, \frac{1}{2 n-1}\right] \text { and } D_{2}:=\bigcup_{n=1}^{\infty}\left(\frac{1}{2 n+1}, \frac{1}{2 n}\right)
$$

Then, for $0<\alpha<1$,

$$
\left\|\frac{1}{\alpha+(1-\alpha) x}\right\|_{\infty, D_{j}}=\frac{1}{\alpha}, \quad j=1,2 \text { and }\left\|\frac{1}{\alpha+(1-\alpha) x}\right\|_{1,[0,1]}=\frac{-\ln \alpha}{1-\alpha} .
$$

On the other hand,

$$
\lim _{\alpha \rightarrow 0^{+}} \frac{1 / \alpha}{-\ln \alpha /(1-\alpha)}=\infty
$$

So, the inequality (2.7) is not true.

3 Finite Oscillation Functions.

In this Section, we give an estimate for the constant K in (2.7), as a function of the numbers $\mu\left(D_{j}\right)$. Inequalities of this type for multivariate algebraic polynomials have been given by Ganzburg and other authors (see [3]).

Definition 3.1. We shall say that a continuous function $f:[a, b] \rightarrow \mathbb{R}$ oscillates r-times on $[a, b]$ if $|f|$ has exactly r local maximums or minimums in (a, b).

We begin with an auxiliary lemma.
Lemma 3.2. Let f be a continuous function which oscillates r-times on $[a, b]$. Let $D_{j} \subset[a, b], 1 \leq j \leq r+2$, be a family of measurable sets, $\mu\left(D_{j}\right)>$ $0, \sup D_{j}<\inf D_{j+1}$. Let $\alpha:=\min _{1 \leq j \leq r+2}\|f\|_{\infty, D_{j}}$. If $A:=\{1 \leq j \leq r+2:$ $\left.\|f\|_{\infty, D_{j}}=\alpha\right\}$, then $\sharp A \leq r+1$.

Proof. Let $s:=\sharp A$. Then there are s sets D_{j}, w.l.o.g. say $D_{j}, 1 \leq j \leq s$, such that $\|f\|_{\infty, D_{j}}=\alpha$. Let $x_{j} \in \overline{D_{j}}, \quad 1 \leq j \leq s$, for $i \neq k$ such that $\left|f\left(x_{j}\right)\right|=\alpha$. Clearly, we must have a local maximum or minimum in each interval $\left(x_{i}, x_{i+1}\right), \quad 1 \leq i \leq s-1$. As the sets $\overline{D_{j}}$ are pairwise disjoint, it follows that $s-1 \leq r$.

Theorem 3.3. Let f be a continuous function which oscillates r-times on $[a, b]$, and let $0<p \leq \infty$. Let $D_{j} \subset[a, b], 1 \leq j \leq r+2$, be a family of measurable sets, $\mu\left(D_{j}\right)>0$, $\sup D_{j} \leq \inf D_{j+1}, 1 \leq j \leq r+1$. Then

$$
\begin{equation*}
\min _{1 \leq j \leq r+2}\|f\|_{\infty, D_{j}} \leq \frac{1}{\min _{1 \leq i \leq r+2} \mu\left(D_{i}\right)^{1 / p}}\|f\|_{p, \cup_{j=1}^{r+2} D_{j}} \tag{3.1}
\end{equation*}
$$

Proof. If $p=\infty$, it is trivial. Suppose that $0<p<\infty$. We write $\alpha:=$ $\min _{1 \leq j \leq r+2}\|f\|_{\infty, D_{j}}$, and $A:=\left\{1 \leq j \leq r+2:\|f\|_{\infty, D_{j}}=\alpha\right\}$. First, we suppose that $\sup D_{j}<\inf D_{j+1}, 1 \leq j \leq r+1$. Lemma 3.2 implies that $B:=\{1 \leq j \leq$
$r+2: j \notin A\} \neq \emptyset$. Suppose that for all $i \in B, \inf _{x \in D_{i}}|f(x)|<\alpha$. Then for each $i \in B$, there are $x_{i}, y_{i} \in D_{i}$ such that $\left|f\left(x_{i}\right)\right|<\alpha<\left|f\left(y_{i}\right)\right|$. Therefore, for each $i \in B$, there exists z_{i} belonging to the interval of extremes x_{i} and y_{i} such that $\left|f\left(z_{i}\right)\right|=\alpha$. Since $\sup D_{j}<\inf D_{j+1}, 1 \leq j \leq r+1$, then $z_{i} \neq z_{k}, i \neq k$. On the other hand, for each $j \in A$, there exists $t_{j} \in \overline{D_{j}}$ satisfying $\left|f\left(t_{j}\right)\right|=\alpha$. As the points t_{j} are different from the points z_{i}, we get $r+2$ points x with $|f(x)|=\alpha$. Thus, the function f does not oscillate r-times on $[a, b]$. It is a contradiction. In consequence, there is $j_{0} \in B$ such that $\inf _{x \in D_{j_{0}}}|f(x)| \geq \alpha$. Therefore, we obtain

$$
\|f\|_{p, \cup_{j=1}^{r+2} D_{j}} \geq\|f\|_{p, D_{j_{0}}} \geq \inf _{x \in D_{j_{0}}}|f(x)| \mu\left(D_{j_{0}}\right)^{1 / p} \geq \alpha \mu\left(D_{j_{0}}\right)^{1 / p}
$$

as we want to show. Now, suppose sup $D_{j} \leq \inf D_{j+1}, 1 \leq j \leq r+1$. Let $E_{j}(\epsilon):=\left[\inf D_{j}+\epsilon, \sup D_{j}-\epsilon\right] \cap D_{j}, 1 \leq j \leq r+2$. For ϵ sufficiently small, the sets $E_{j}(\epsilon)$ satisfy that $\mu\left(E_{j}(\epsilon)\right)>0$ and $\sup E_{j}(\epsilon)<\inf E_{j+1}(\epsilon), 1 \leq j \leq r+1$. We have proved, for the first part, that

$$
\begin{equation*}
\min _{1 \leq j \leq r+2}\|f\|_{\infty, E_{j}(\epsilon)} \leq \frac{1}{\min _{1 \leq i \leq r+2} \mu\left(E_{i}(\epsilon)\right)^{1 / p}}\|f\|_{p, \cup_{j=1}^{r+2} E_{j}(\epsilon)} \tag{3.2}
\end{equation*}
$$

Finally, the Theorem follows by a limit process in (3.2) for ϵ tending to 0 .
Remark 3.4. We note that the Theorem 3.3 gives an estimate of the constant K in the inequality (2.7) for the particular case of algebraic rational functions mentioned in Section 1, with $n=1$. In fact, here $r+2=m$.

The next example shows that the amount $r+2$ of sets D_{j} in Theorem 3.3 is essential. Let $f(x)=x, p=2, D_{1}=[0, a]$, and $D_{2}=[-a, 0]$ with $a>0$. Then

$$
\|f\|_{2, D_{1} \cup D_{2}}=\sqrt{\frac{2}{3} a^{3}}<a^{3 / 2}=\min \left\{\mu\left(D_{1}\right)^{1 / 2}, \mu\left(D_{2}\right)^{1 / 2}\right\} \min \|f\|_{\infty, D_{1} \cup D_{2}}
$$

Now, we give another example which shows that the condition $\sup D_{j} \leq$ $\inf D_{j+1}, 1 \leq j \leq r+1$, in Theorem 3.3 is also essential. Let $f(x)=\frac{1}{x^{2}+1}$ and $p=1$. Let $a_{i}>0,1 \leq i \leq 3$, and $b_{1}=1-a_{1}$. Consider the following sets

$$
D_{1}=\left[b_{1}, 1\right] \cup\left[a_{2}, b_{1}+a_{2}\right], D_{2}=-D_{1}, \text { and } D_{3}=\left[0, a_{1}\right] \cup\left[a_{3}, b_{1}+a_{3}\right]
$$

Then $\mu\left(D_{i}\right)=1,1 \leq i \leq 3$. It is easy to see that $\|f\|_{1, \cup_{i=1}^{3} D_{i}} \rightarrow 0$ as $a_{1} \rightarrow 0$, $a_{2} \rightarrow \infty$, and $a_{3} \rightarrow \infty$. However, $\min _{1 \leq i \leq 3}\|f\|_{\infty, D_{i}}=1 / 2$. So, (3.1) is not true.

An immediate consequence of Theorem 3.3 is the following Corollary.

Corollary 3.5. Let $B:=\left\{a_{j} \in[a, b]: 0 \leq j \leq r+2\right\}, a=a_{0}<a_{1}<\ldots<$ $a_{r+2}=b$, be a partition of the interval $[a, b]$. If

$$
\mathcal{H}:=\left\{C \subset B: C \cap\left[a_{j}, a_{j+1}\right] \neq \emptyset, 0 \leq j \leq r+1\right\} .
$$

Then

$$
\begin{equation*}
\|f\|_{p,[a, b]} \geq \min _{0 \leq j \leq r+1}\left|a_{j}-a_{j+1}\right|^{1 / p} \max _{C \in \mathcal{H}} \min _{y \in C}|f(y)|, \tag{3.3}
\end{equation*}
$$

for all continuous functions f oscillating at the most r times on $[a, b]$ and for all $0<p \leq \infty$.

Proof. If $p=\infty$, it is trivial. Suppose that $0<p<\infty$. Let f be a continuous function which oscillates at the most r times. We write $D_{j}=\left[a_{j}, a_{j+1}\right], 0 \leq$ $j \leq r+1$. Given $C \in \mathcal{H}$, we have

$$
\min _{y \in C}|f(y)| \leq \min _{0 \leq j \leq r+1}\|f\|_{\infty, D_{j}}
$$

Therefore, Theorem 3.3 implies the inequality (3.3).
The inequality (3.3) gives a lower bound for the p-norm of a continuous function f, oscillating r times, in terms of the values of f on a finite set of $[(r+3) / 2]$ points, where [] denotes the integer part. In fact, we can take in the Corollary 3.5, $a_{j}=a+j \frac{b-a}{r+2}, 0 \leq j \leq r+2$, and $C=\left\{a+(2 j-1) \frac{b-a}{r+2}\right.$: $1 \leq j \leq[(r+3) / 2]\}$.

Remark 3.6. Let \mathcal{F} be the class of algebraic polynomials of degree less than or equal to n. Let $a_{j}=a+j \frac{b-a}{2 n+1}, 0 \leq j \leq 2 n+1$, be with $a, b \in \mathbb{R}$. By Corollary 3.5, we get

$$
\begin{equation*}
\min _{1 \leq j \leq 2 n+1}\|P\|_{\infty,\left[a_{j}, a_{j+1}\right]} \leq \frac{(2 n+1)^{1 / p}}{(b-a)^{1 / p}}\|P\|_{p,[a, b]}, \forall P \in \mathcal{F} \tag{3.4}
\end{equation*}
$$

A comparison of (3.4) with the well known Nikolskii inequality (see [3], p.298),

$$
\begin{equation*}
\|P\|_{\infty,[a, b]} \leq \frac{8(n+1)^{2 / p}}{(b-a)^{1 / p}}\|P\|_{p,[a, b]}, \quad \forall P \in \mathcal{F} \tag{3.5}
\end{equation*}
$$

shows that as the constant for a suitable partition of the domain decreases, the constant in (3.4) is of order $n^{1 / p}$, while that in (3.5) is of order $n^{2 / p}$.

References

[1] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, SpringerVerlag, New York, 1995.
[2] E. W. Cheney, Introduction to Approximation Theory, Chelsea Publishing Company, New York, 1982.
[3] M. I. Ganzburg, Polynomial inequalities on measurable sets and their applications, Constr. Approx., 17 (2001), 275-306.

[^0]: Key Words: L^{p} norm, Inequalities, Rational functions
 Mathematical Reviews subject classification: Primary 41A17; Secondary 41A20,26D07
 Received by the editors September 29, 2005
 Communicated by: Alexander Olevskii
 *This work was supported by Universidad Nacional de Rio Cuarto

