R. Pawlak, Faculty of Mathematics, University of Łódź, ul. Stefana Banacha 22, 90-238 Łódź, Poland. email: rpawlak@math.uni.lodz.pl

A. Tomaszewska, Faculty of Mathematics, University of Łódź, ul. Stefana Banacha 22, 90-238 Łódź, Poland. email: atomasz@math.uni.lodz.pl

ON S-A.E. CONTINUOUS DARBOUX FUNCTIONS MAPPING \mathbb{R}^k INTO \mathbb{R}^k

Abstract

This paper completes the results of the paper [8]. We will investigate mutual relations between classes of functions which are continuous Sa.e. with respect to various σ -ideals of subsets of \mathbb{R}^k .

1 Introduction.

Throughout the paper, we will consider functions whose sets of discontinuity points belong to certain σ -ideals consisting of boundary sets (i.e., sets having the empty interior). Such functions will be called \Im -almost everywhere (\Im a.e.) continuous with respect to a specified σ -ideal \Im . In particular we will consider

 $\mathcal{K}_k - \sigma$ -ideal of first category subsets of \mathbb{R}^k ,

 $\mathcal{L}_k - \sigma$ -ideal of Lebesgue null subsets of \mathbb{R}^k

 $\mathcal{N}_k - \sigma$ -ideal of countable subsets of \mathbb{R}^k .

If k = 1, then we will write simply \mathcal{K} , \mathcal{L} and \mathcal{N} rather than \mathcal{K}_1 , \mathcal{L}_1 and \mathcal{N}_1 .

From Theorem 1.4 of [4] it follows that in some spaces, every \Im -a.e. continuous function is \mathcal{K}_k -a.e. continuous one. The converse isn't true. There exists a family of σ -ideals \Im , such that the set of \Im -a.e. continuous functions is topologically small in the space of \mathcal{K}_k -a.e. continuous ones. In Theorem 2.3 [8] it was proved that this set is uniformly porous in the space of Darboux functions mapping \mathbb{R}^2 into \mathbb{R}^2 . This paper is an extension of the paper [8].

This extension consists in increasing of the dimension of considered spaces and the number of investigated σ -ideals. Additionally we replace uniformly

Key Words: σ -ideal, product of σ -ideals, Cantor-like sets, \Im -a.e. continuous functions, Darboux functions Mathematical Reviews subject classification: 54B10, 54H05, 28A05

Received by the editors June 18, 2005

Communicated by: Krzysztof Chris Ciesielski

³⁸⁵

porous set by strongly porous set. For that purpose, we make use of certain σ -ideals in \mathbb{R}^k (they are investigated in Section 2) and certain sets called in this paper the box-Cantor sets in \mathbb{R}^k (they are introduced in Section 3). Our main results are stated and proved in Section 4.

Basic notation used in this paper is standard. In particular, \mathbb{R} stands for the set of real numbers and $\mathbb{N} = \{1, 2, 3, ...\}$. Let k and j < k be natural numbers and let $X^{(i)}(i = 1, ..., k)$ be a topological space. For convenience write $X'_j = X^{(1)} \times \cdots \times X^{(j)}$ and $X''_j = X^{(j+1)} \times \cdots \times X^{(k)}$. For $x' \in X'_j$, $x'' \in X''_j$ and $A \subset X'_j \times X''_j$, let $A_{x'} = \{x'' \in X''_j : (x', x'') \in A\}$. If $A \subset \mathbb{R}^k$, $z \in \mathbb{R}^k$ and $s \in \mathbb{R}$, let $z + A = \{z + a : a \in A\}$, $s \cdot A = \{s \cdot a : A\}$.

 $a \in A$ and in particular -A = (-1)A.

Let $k \in \mathbb{N}$ and let c^1, \ldots, c^k be positive real numbers. The k-dimensional cube $K_z(c^1,\ldots,c^k)$ centered at $z \in \mathbb{R}^k$ is defined by

$$K_z(c^1, \dots, c^k) = z + \times_{i=1}^k [-c^i, c^i].$$

If $z = \{0, ..., 0\}$ and $c^1 = \cdots = c^k = 1$, the cube $K_z(c^1, ..., c^k)$ will be denoted by \mathbf{K} , for simplicity.

In the space \mathbb{R}^k we will use the Euclidean metric d_k and in the space of functions mapping \mathbb{R}^k into \mathbb{R}^k we will use the metric ρ ($\rho(f,h) = \min\{1, \sup\{x \in I\}\}$ \mathbb{R}^k : $d_k(f(x), h(x))$ }). In these spaces we will consider an open ball B(z, r)of radius r centered at z. The symbols diaA, clA, intA and FrA stand for the diameter, closure, interior and boundary of the set A, respectively.

By $C_f(D_f)$ we will denote the set of continuity (discontinuity) points of the function f and its oscillatory will be denoted by osc_f .

In the last section we will need the definition of strong porosity of a set in a metric space (see [11]). Let P be a metric space, $S \subset P, x \in P, R > 0$ and $\gamma(x, R, S) = \sup\{r > 0; \exists_{z \in P} B(z, r) \subset B(x, R) \setminus S\}.$ The number $p(S, x) = 2 \cdot \limsup_{R \to 0^+} \frac{\gamma(x, R, S)}{R}$ is called the porosity of S at x. We say that the set S is strongly porous if $p(S, x) \ge 1$ at each point $x \in S$.

We say that $f: \mathbb{R}^k \to \mathbb{R}^k$ is a Darboux function if the image of any arc belonging to \mathbb{R}^k is a connected set (see [5],[6]).

$\mathbf{2}$ Products of σ -Ideals.

Definition 2.1. Let k > 2 be a natural number and let $\mathfrak{I}^{(i)}$ be a σ -ideal of subsets of a topological space $X^{(i)}$ (i = 1, 2, ..., k). The product of σ -ideals is defined by

$$\mathfrak{S}^{(1)} \times \mathfrak{S}^{(2)} = \{ A \subset X^{(1)} \times X^{(2)} : \{ x^{(1)} \in X^{(1)} : A_{x^{(1)}} \notin \mathfrak{S}^{(2)} \} \in \mathfrak{S}^{(1)} \}.$$

Let us suppose that $\mathfrak{S}^{(1)} \times \cdots \times \mathfrak{S}^{(n)}$ has been defined for $2 \leq n < k$. For n+1 we put

$$\mathfrak{S}^{(1)} \times \cdots \times \mathfrak{S}^{(n)} \times \mathfrak{S}^{(n+1)} = (\mathfrak{S}^{(1)} \times \cdots \times \mathfrak{S}^{(n)}) \times \mathfrak{S}^{(n+1)}$$

Of course the family $\mathfrak{S}^{(1)} \times \cdots \times \mathfrak{S}^{(k)}$ forms a σ -ideal. If $X^{(1)} = \cdots = X^{(k)}$ and $\mathfrak{S}^{(1)} = \cdots = \mathfrak{S}^{(k)} = \mathfrak{S}$, then the σ -ideal $\mathfrak{S}^{(1)} \times \cdots \times \mathfrak{S}^{(k)}$ will be denoted simply by \mathfrak{S}^k . If k = 1, then $\mathfrak{S}^1 = \mathfrak{S}$.

Theorem 2.2 (see [9], Th.2.3 and Th.2.5). For any natural number k > 1 and for a subset $A \subset X^{(1)} \times \cdots \times X^{(k)}$ the following conditions are equivalent:

(a) $A \in \mathfrak{S}^{(1)} \times \cdots \times \mathfrak{S}^{(k)}$,

(b)
$$\{x^{(1)}: \{\dots, \{x^{(k)}: (x^{(1)}, \dots, x^{(k)}) \in A\} \notin \mathfrak{I}^{(k)} \dots\} \notin \mathfrak{I}^{(2)}\} \in \mathfrak{I}^{(1)}$$

(c) $\forall_{m < k} \{ (x^{(1)}, \dots, x^{(m)}) \in X^{(1)} \times \dots \times X^{(m)} : (A)_{(x^{(1)}, \dots, x^{(m)})} \notin \mathfrak{S}^{(m+1)} \times \dots \times \mathfrak{S}^{(k)} \} \in \mathfrak{S}^{(1)} \times \dots \times \mathfrak{S}^{(m)}$

(d)
$$\exists_{m < k} \{ (x^{(1)}, \dots, x^{(m)}) \in X^{(1)} \times \dots \times X^{(m)} : (A)_{(x^{(1)}, \dots, x^{(m)})} \notin \mathfrak{S}^{(m+1)} \times \dots \times \mathfrak{S}^{(k)} \} \in \mathfrak{S}^{(1)} \times \dots \times \mathfrak{S}^{(m)}$$

The following definitions and properties will be needed in the next section.

A σ -ideal \Im of subsets of a topological space X is called **admissible** if it is contained in the family of boundary subsets of X and contains all singleton subsets of X.

Theorem 2.3. Let $k \in \mathbb{N}$. If $\mathfrak{S}^{(i)}$ (i = 1, 2, ..., k) are admissible σ -ideals, then the product $\mathfrak{S}^{(1)} \times \cdots \times \mathfrak{S}^{(k)}$ is an admissible σ -ideal as well.

PROOF. It is easy to prove the above theorem by induction with use of the method presented in [9] (Proposition 2.1). \Box

We say that a family \Im of subsets of the space \mathbb{R}^k is *a*-invariant if for any $A \subset \mathbb{R}^k$, $z \in \mathbb{R}^k$ and $s \in \mathbb{R} \setminus \{0\}$, the sets z + A and $s \cdot A$ belong to \Im .

Theorem 2.4. Let $k \in \mathbb{N}$. If σ -ideals $\mathfrak{S}^{(j)}$ are a-invariant for any $j = 1, \ldots, k$, then the σ -ideal $\mathfrak{S}^{(1)} \times \cdots \times \mathfrak{S}^{(k)}$ is a-invariant as well.

PROOF. The proof is by induction with respect to k. We use Theorem 2.2 and the following properties of sections. For any set $A \subset \mathbb{R}^n \times \mathbb{R}^m$ $(n, m \in \mathbb{N})$, points $a = (a_1, a_2), x = (x_1, x_2) \in \mathbb{R}^n \times \mathbb{R}^m$ and a number $s \in \mathbb{R} \setminus \{0\}$ we have (see [1], Lemma 2.1):

$$(a+A)_{x_1} = a_2 + (A)_{x_1-a_1} \tag{1}$$

R. PAWLAK AND A. TOMASZEWSKA

and

388

$$(s \cdot A)_{x_1} = s \cdot (A)_{x_1/s}.\tag{2}$$

For k = 1 the *a*-invariance is obvious. Let $k \in \mathbb{N}$, $A \subset \mathbb{R}^k \times \mathbb{R}$, and $a = (a_1, a_2)$, $x = (x_1, x_2) \in \mathbb{R}^k \times \mathbb{R}$. Assume the σ -ideals $\mathfrak{I}^{(1)}, \ldots, \mathfrak{I}^{(k+1)}$ and $\mathfrak{I}^{(1)} \times \cdots \times \mathfrak{I}^{(k)}$ are *a*-invariant. From (1) and the above assumptions we have

$$\{(x_1 \in \mathbb{R}^k : (a+A)_{x_1} \notin \mathfrak{S}^{(k+1)}\} = \{(x_1 \in \mathbb{R}^k : (A)_{x_1-a_1} \notin \mathfrak{S}^{(k+1)}\}\)$$
$$= a_1 + \{(x_1 - a_1 \in \mathbb{R}^k : (A)_{x_1-a_1} \notin \mathfrak{S}^{(k+1)}\} \in \mathfrak{S}^{(1)} \times \dots \times \mathfrak{S}^{(k)}.$$

By Theorem 2.2(d) we have shown that $a + A \in \mathfrak{S}^{(1)} \times \cdots \times \mathfrak{S}^{(k+1)}$. In the same manner, owing to (2), we can see that $s \cdot A \in \mathfrak{S}^{(1)} \times \cdots \times \mathfrak{S}^{(k+1)}$, for any $s \in \mathbb{R} \setminus \{0\}$.

In the end of this section we compare σ -ideals constructed on the basis of σ -ideals \mathcal{L} and \mathcal{K} . We will denote by \mathcal{L}^k (\mathcal{K}^k) the product of $k \sigma$ -ideals \mathcal{L} (\mathcal{K}). Moreover use:

 L_k - the σ -algebra of Lebesgue measurable subsets of \mathbb{R}^k

 K_k - the σ -algebra of subsets of \mathbb{R}^k having the property of Baire.

If k = 1, then we will write simply $\mathcal{L}, \mathcal{K}, L$ and K rather than $\mathcal{L}^1, \mathcal{K}^1, L_1$ and K_1 . Observe that above-mentioned families are *a*-invariant.

In order to prove the next theorem we need the following lemmas.

Lemma 2.5. If a subset $A \subset \mathbb{R}^m \times \mathbb{R}^n$ belongs to the σ -algebra L_{m+n} , then the set $\{x \in \mathbb{R}^m : A_x \notin \mathcal{L}_n\}$ belongs to the σ -algebra L_m .

Lemma 2.6. If a subset $A \subset \mathbb{R}^m \times \mathbb{R}^n$ belongs to the σ -algebra K_{m+n} , then the set $\{x \in \mathbb{R}^m : A_x \notin \mathcal{K}_n\}$ belongs to the σ -algebra K_m .

Theorem 2.7. For any natural number k

(a) $\mathcal{L}_k = \mathcal{L}^k \cap L_k$ and (b) $\mathcal{K}_k = \mathcal{K}^k \cap K_k$

PROOF. (a) Let us first show that for any natural number k

$$\mathcal{L}_k \subset \mathcal{L}^k. \tag{3}$$

The proof is by induction on k. For k = 1 the inclusion (3) is obvious, because $\mathcal{L}_1 = \mathcal{L} = \mathcal{L}^1$. Assume the inclusion (3) holds for a natural number $k \geq 1$. Let A be a Lebesgue null subset of \mathbb{R}^{k+1} . From Fubini's Theorem (Th. 21.12 [2]) and induction assumption we have

$$\{(x^{(1)},\ldots,x^{(k)})\in\mathbb{R}^k:(A)_{(x^{(1)},\ldots,x^{(k)})}\notin\mathcal{L}\}\in\mathcal{L}_k\subset\mathcal{L}^k.$$

A.E. CONTINUOUS DARBOUX FUNCTIONS

By Theorem 2.2(d) we have shown that $A \in \mathcal{L}^{k+1}$ and finally that inclusion (3) is true.

Now it is enough to prove that for any natural number k

$$\mathcal{L}^k \cap L_k \subset \mathcal{L}_k. \tag{4}$$

The proof is by induction on k. For k = 1 the inclusion (4) is obvious. Assume the inclusion (4) holds for a natural number $k \ge 1$. Let A be a Lebesgue measurable subset of \mathbb{R}^{k+1} . From Theorem 2.2(c), Lemma 2.5 and induction assumption we have

$$\{(x^{(1)},\ldots,x^{(k)})\in\mathbb{R}^k:(A)_{(x^{(1)},\ldots,x^{(k)})}\notin\mathcal{L}\}\in\mathcal{L}^k\cap L_k\subset\mathcal{L}_k.$$

By the above and Fubini's Theorem (Th. 21.12 [2]) we have proved that the set A belongs to the σ -ideal \mathcal{L}_{k+1} . This gives the inclusion (4) and the proof is complete.

(b) The proof is similar. We use the Kuratowski - Ulam Theorem (Th.15.1 [3]), Theorem 15.5 [3], Theorem 15.4 [3] and Lemma 2.6 . \Box

In [9] and [10] it was also proved that $\mathcal{L}_k \subsetneq \mathcal{L}^k$ and $\mathcal{K}_k \subsetneq \mathcal{K}^k$ for any k > 1.

3 Box-Cantor Sets in \mathbb{R}^k .

A sketch of the construction of a symmetric Cantor set in \mathbb{R} can be found, for example, in [11]. It is similar to the construction of the Cantor ternary set.

Let $\xi = (\xi_n)_{n \in \mathbb{N}}$ be a sequence of real numbers $\xi_n \in (0, 1)$ and let $\mathbf{I} = [0, 1]$ be a closed interval whose length will be denoted by δ_1 . In the first step of the construction, we remove from \mathbf{I} the concentric open interval (a_{11}, b_{11}) of the length $\delta_1 \cdot \xi_1$. In the *m*-th (m > 1) step of the construction, from the remaining 2^{m-1} closed intervals of length equal to δ_m we remove the concentric open intervals $(a_{mi}, b_{mi})(i = 1, 2, \dots, 2^{m-1})$ of the length $\delta_m \cdot \xi_m$. Additionally, we assume $a_{m1} < a_{m2} < \dots < a_{m2^{m-1}}$.

The set

$$C(\xi) = \mathbf{I} \setminus \bigcup_{m=1}^{\infty} \bigcup_{i=1}^{2^{m-1}} (a_{mi}, b_{mi})$$
(5)

is called the symmetric Cantor set with respect to the sequence $\xi = (\xi_n)_{n \in \mathbb{N}}$. Throughout the paper we assume that numbers 0 and 1 are one-side accumulation points of every symmetric Cantor set $C(\xi)$. Of course, if $\xi_n = \frac{1}{3}$ for $n = 1, 2, \ldots$, then the set $C(\xi)$ is the classical Cantor ternary set. From the construction it appears that the set $C(\xi)$ is closed, nowhere dense and uncountable. Of course, some properties are connected with the sequence $\xi = (\xi_n)_{n \in \mathbf{N}}$. The following fact will be needed to investigate box-Cantor sets in \mathbb{R}^k .

Lemma 3.1 ([7],[11]). The set $C(\xi)$ has Lebesgue measure zero iff

$$\sum_{n=1}^{\infty} \xi_n = \infty$$

Now, we are going to define the box-Cantor set in \mathbb{R}^k $(k \in \mathbb{N})$. For simplicity we construct this set in the k-dimensional closed cube $\mathbf{K} = K(1, \ldots, 1) \subset \mathbb{R}^k$. Let $C(\xi^{(j)}) = \mathbf{I} \setminus \bigcup_{m=1}^{\infty} \bigcup_{i=1}^{2^{m-1}} (a_{mi}^{(j)}, b_{mi}^{(j)}) \quad (j = 1, \ldots, k)$ be a symmetric Cantor set with respect to a sequence $\xi^{(j)} = (\xi_n^{(j)})_{n \in \mathbb{N}}$ of real numbers $\xi_n^{(j)} \in (0, 1)$. Throughout the paper we assume that for any $m \in \mathbb{N}$ and $j = 1, \ldots, k$ we have $a_{m1}^{(j)} < a_{m2}^{(j)} < \ldots < a_{m2^{m-1}}^{(j)}$.

Definition 3.2. The set

$$R(\xi^{(1)},\ldots,\xi^{(k)}) = \mathbf{K} \setminus \bigcup_{m=1}^{\infty} \bigcup_{i=1}^{2^{m-1}} \operatorname{int}(K(b_{mi}^{(1)},\ldots,b_{mi}^{(k)}) \setminus K(a_{mi}^{(1)},\ldots,a_{mi}^{(k)}))$$

is called the box-Cantor set with respect to sequences $\xi^{(j)} = (\xi_n^{(j)})_{n \in \mathbb{N}}$ of real numbers $\xi_n^{(j)} \in (0,1)$ (j = 1, ..., k).

The box-Cantor set $R(\xi^{(1)}, \ldots, \xi^{(k)})$ can be also defined as follows. Let ϕ_j : $\mathbf{I} \to \mathbf{I}, (j = 1, \ldots, k)$ be an increasing homeomorphism such that $\phi_j(C(\xi^{(1)})) = C(\xi^{(j)}), \phi_j(a_{mi}^{(1)}) = a_{mi}^{(j)}, \phi_j(b_{mi}^{(1)}) = b_{mi}^{(j)}$ for any $j = 1, \ldots, k$ and

$$\operatorname{Fr}(K(\phi_1(x_1),\ldots,\phi_k(x_1))) \cap \operatorname{Fr}(K(\phi_1(x_2),\ldots,\phi_k(x_2))) = \emptyset$$

for any $x_1 \neq x_2$. Observe that

$$R(\xi^{(1)}, \dots, \xi^{(k)}) = \bigcup_{c \in C(\xi^{(1)})} \operatorname{Fr}(K(\phi_1(c), \dots, \phi_k(c))).$$
(6)

Theorem 3.3. Let $k \in \mathbb{N}$. If σ -ideals $\mathfrak{S}^{(j)}$ are a-invariant and admissible for any $j = 1, \ldots, k$, then the box-Cantor set $R(\xi^{(1)}, \ldots, \xi^{(k)})$ belongs to the σ -ideal $\mathfrak{S}^{(1)} \times \cdots \times \mathfrak{S}^{(k)}$ iff $C(\xi^{(j)}) \in \mathfrak{S}^{(j)}$ for any $j = 1, \ldots, k$. PROOF. Let $C^* = C(\xi^{(1)}) \setminus \{0\}$ and

$$F_j = \bigcup_{c \in C^*} \{ (x^{(1)}, \dots, x^{(k)}) \in K(\phi_1(c), \dots, \phi_k(c)) : x^{(j)} = \phi_j(c) \}$$

for $j \leq k$. We first show the following equivalency for any $m \leq k$.

$$F_m \in \mathfrak{S}^{(1)} \times \dots \times \mathfrak{S}^{(k)} \iff C(\xi^{(m)}) \in \mathfrak{S}^{(m)}$$
 (7)

Let 1 < m < k. Then

$$F_m = \bigcup_{c \in C^*} \left((\times_{i=1}^{m-1} [-\phi_i(c), \phi_i(c)]) \times \{\phi_m(c)\} \times (\times_{i=m+1}^k [-\phi_i(c), \phi_i(c)]) \right).$$

For any $x = (x^{(1)}, \ldots, x^{(k)}) \in F_m$ there exists $c \in C^*$ such that

$$x \in \left(\times_{i=1}^{m-1} [-\phi_i(c), \phi_i(c)]\right) \times \{\phi_m(c)\} \times \left(\times_{i=m+1}^k [-\phi_i(c), \phi_i(c)]\right).$$

Observe that

$$(F_m)_{(x^{(1)},\dots,x^{(m-1)})} = \{\phi_m(c)\} \times (\times_{i=m+1}^k [-\phi_i(c),\phi_i(c)])$$
(8)

and

$$\left(\{\phi_m(c)\} \times (\times_{i=m+1}^k [-\phi_i(c), \phi_i(c)])\right)_{x^{(m)}} = \times_{i=m+1}^k [-\phi_i(c), \phi_i(c)].$$
(9)

Since $\times_{i=m+1}^k [-\phi_i(c),\phi_i(c)]$ isn't a boundary set in the (k-m)-dimension cube ${\bf K}$ we have

$$\times_{i=m+1}^{k} [-\phi_i(c), \phi_i(c)] \notin \mathfrak{S}^{(m+1)} \times \cdots \times \mathfrak{S}^{(k)}$$

and

$$\{x^{(m)} : (\{\phi_m(c)\} \times (\times_{i=m+1}^k [-\phi_i(c), \phi_i(c)]))_{x^{(m)}} \notin \mathfrak{S}^{(m+1)} \times \dots \times \mathfrak{S}^{(k)} \}$$

= $C(\xi^{(m)}) \setminus \{0\}.$ (10)

We will consider the following cases:

A) $C(\xi^{(m)}) \in \mathfrak{S}^{(m)}$; then $C(\xi^{(m)}) \setminus \{0\} \in \mathfrak{S}^{(m)}$. From above and Theorem 2.2(d) we have

$$(F_m)_{(x^{(1)},\dots,x^{(m-1)})} \in \mathfrak{S}^{(m)} \times \dots \times \mathfrak{S}^{(k)}$$

and

$$\{(x^{(1)},\ldots,x^{(m-1)}):(F_m)_{(x^{(1)},\ldots,x^{(m-1)})}\notin\mathfrak{S}^{(m)}\times\cdots\times\mathfrak{S}^{(k)}\}\$$
$$=\emptyset\in\mathfrak{S}^{(1)}\times\cdots\times\mathfrak{S}^{(m-1)}.$$

Therefore $F_m \in \mathfrak{S}^{(1)} \times \cdots \times \mathfrak{S}^{(k)}$ by Theorem 2.2(d).

B) $C(\xi^{(m)}) \notin \mathfrak{I}^{(m)}$. Since $\mathfrak{I}^{(m)}$ is an admissible σ -ideal $C(\xi^{(m)}) \setminus \{0\} \notin \mathfrak{I}^{(m)}$.

By the above, (8) - (10) and Theorem 2.2(c) we have

$$(F_m)_{(x^{(1)},\dots,x^{(m-1)})} \notin \mathfrak{S}^{(m)} \times \dots \times \mathfrak{S}^{(k)}$$

and

$$\left\{ (x^{(1)}, \dots, x^{(m-1)}) : (F_m)_{(x^{(1)}, \dots, x^{(m-1)})} \notin \mathfrak{S}^{(m)} \times \dots \times \mathfrak{S}^{(k)} \right\}$$
$$= \times_{i=1}^{m-1} [-\phi_i(c), \phi_i(c)] \notin \mathfrak{S}^{(1)} \times \dots \times \mathfrak{S}^{(m-1)}.$$

Consequently, $F_m \notin \mathfrak{S}^{(1)} \times \cdots \times \mathfrak{S}^{(k)}$.

In this way we have shown equivalency (7) (for m = 1 and m = k the proof is similar). By equivalency (7) and Theorem 2.4 we have

$$-F_m \in \mathfrak{S}^{(1)} \times \cdots \times \mathfrak{S}^{(k)} \Longleftrightarrow C(\xi^{(m)}) \in \mathfrak{S}^{(m)}.$$

From Theorem 2.3 it follows that $\{(0, \ldots, 0)\} \in \mathfrak{S}^{(1)} \times \cdots \times \mathfrak{S}^{(k)}$. It is easily seen that

$$R(\xi^{(1)},\ldots,\xi^{(k)}) = \{(0,\ldots,0)\} \cup \bigcup_{i=1}^{k} F_i \cup \bigcup_{i=1}^{k} (-F)_i.$$

This equality and the above remarks complete the proof.

It appears that the set $R(\xi^{(1)}, \ldots, \xi^{(k)})$ has similar properties as the set $C(\xi^{(j)})$.

Lemma 3.4. The box-Cantor set $R(\xi^{(1)}, \ldots, \xi^{(k)})$ with respect to sequences $\xi^{(j)} = (\xi_n^{(j)})_{n \in \mathbb{N}} \subset (0, 1)$ $(j = 1, \ldots, k)$ is closed and nowhere dense in \mathbb{R}^k .

PROOF. Observe that $C(\xi^{(i)}) \in \mathcal{K}$ for any $i = 1, \ldots, k$. By Theorem 3.3, the set $R(\xi^{(1)}, \ldots, \xi^{(k)})$ belongs to the σ -ideal \mathcal{K}^k . Hence $R(\xi^{(1)}, \ldots, \xi^{(k)})$ is a boundary set. From (6) it follows that $R(\xi^{(1)}, \ldots, \xi^{(k)})$ is a closed set and, in consequence, it is a nowhere dense subset of the space \mathbb{R}^k . \Box

Corollary 3.5. The box-Cantor set $R(\xi^{(1)}, \ldots, \xi^{(k)})$ with respect to sequences $\xi^{(j)} = (\xi_n^{(j)})_{n \in \mathbb{N}} \subset (0, 1)$ $(j = 1, \ldots, k)$ belongs to the σ -ideal \mathcal{K}_k of first category subsets of \mathbb{R}^k .

392

Lemma 3.6. The box-Cantor set $R(\xi^{(1)}, \ldots, \xi^{(k)})$ with respect to sequences $\xi^{(j)} = (\xi_n^{(j)})_{n \in \mathbb{N}} \subset (0, 1)$ $(j = 1, \ldots, k)$ has the Lebesgue measure zero iff

$$\sum_{n=1}^{\infty} \xi_n^{(j)} = \infty, \text{ for } j = 1, \dots, k.$$

PROOF. Let $\sum_{n=1}^{\infty} \xi_n^{(j)} = \infty$, for any $j = 1, \ldots, k$. By Lemma 3.1, it appears that $C(\xi^{(i)})$ belongs to the σ -ideal of Lebesgue null subsets of \mathbb{R} (for any $i = 1, \ldots, k$). Since the σ -ideal \mathcal{L} is *a*-invariant and admissible, Theorem 3.3 shows that $R(\xi^{(1)}, \ldots, \xi^{(k)}) \in \mathcal{L}^k$. Additionally $R(\xi^{(1)}, \ldots, \xi^{(k)})$ is closed (see(6)), and hence Lebesgue measurable. From Theorem 2.7(a) we conclude that $R(\xi^{(1)}, \ldots, \xi^{(k)})$ has Lebesgue measure zero.

4 On 3-A.E. Continuous Darboux Functions.

From Theorem 1.4 [4] we obtain the following.

Theorem 4.1. If a function $f : \mathbb{R}^k \longrightarrow \mathbb{R}^k$ is continuous \Im -a.e. with respect to a σ -ideal \Im of subsets of the space \mathbb{R}^k , then this function is continuous \mathcal{K}_k -a.e.

If \Im is the σ -ideal of countable, σ -porous or of Lebesgue measure zero subsets of the space \mathbb{R}^k , then the converse is not true, because there exist functions continuous \mathcal{K}_k -a.e. which are not continuous \Im -a.e. with respect to any of the above-mentioned σ -ideals. Moreover, these functions form a set which is not topologically small in the space of functions continuous \mathcal{K}_k -a.e. In the next theorem we obtain a more general case. Before we formulate this theorem we must first introduce the following definition.

We say that a σ -ideal \Im of subsets of the space \mathbb{R}^k has the **property** (\mathcal{T}) if it is *a*-invariant and admissible and if there exists a box-Cantor set $R(\xi^{(1)}, \ldots, \xi^{(k)})$ which doesn't belong to the σ -ideal \Im . The existence of such ideals is guaranteed by Theorem 3.3.

Theorem 4.2. ¹ The set $D_{(\Im)}$ of functions \Im -a.e. continuous with respect to a σ -ideal \Im having the property (\mathcal{T}) is strongly porous in the space $D_{(\mathcal{K}_k)}$ of Darboux \mathcal{K}_k -a.e. continuous functions.

PROOF. Let $h \in D_{(\mathfrak{F})} \cap D_{(\mathcal{K}_k)}$, $x_0 \in C_h$, $R \in (0,1)$ and $r \in (0,\frac{R}{2})$. Put $s = \frac{R}{2} - r$. Let δ be a positive real number such that

$$h(K_{x_0}(\delta,\ldots,\delta)) \subset B(h(x_0),s).$$
(11)

¹This Theorem is an extension of Theorem 3.3 [8]

Let \mathfrak{S} be a σ -ideal having the property (\mathcal{T}) . We will construct a Darboux \mathcal{K}_k -a.e. continuous function $f : \mathbb{R}^k \to \mathbb{R}^k$ satisfying the condition $B(f,r) \subset B(h,R)$ and show that the set of discontinuity points of an arbitrary function $f_1 \in B(f,r)$ doesn't belong to the σ -ideal \mathfrak{S} .

From the property (\mathcal{T}) of the σ -ideal \mathfrak{F} it follows that there exists a box-Cantor set $R(\xi^{(1)}, \ldots, \xi^{(k)})$ which doesn't belong to the σ -ideal \mathfrak{F} . For the set $R(\xi^{(1)}, \ldots, \xi^{(k)})$ considered in this proof we take notions as for box-Cantor sets defined in Section 3.

In particular (see (6))

$$R(\xi^{(1)}, \dots, \xi^{(k)}) = \bigcup_{c \in C(\xi^{(1)})} \operatorname{Fr}(K(\phi_1(c), \dots, \phi_k(c))).$$

Because the σ -ideal \Im has the property (\mathcal{T}) , it is *a*-invariant and as a result the set $x_0 + \delta \cdot R(\xi^{(1)}, \ldots, \xi^{(k)})$ doesn't belong to the σ -ideal \Im either. We have

$$x_0 + \delta \cdot R(\xi^{(1)}, \dots, \xi^{(k)}) \subset x_o + \delta \cdot \mathbf{K} = K_{x_0}(\delta, \dots, \delta).$$

For simplicity we let

$$C = C(\xi^{(1)}) \setminus \{1\},\$$

$$K = \operatorname{int} K_{x_0}(\delta, \dots, \delta),\$$

$$F = x_0 + \delta \cdot R(\xi^{(1)}, \dots, \xi^{(k)}) \setminus \operatorname{Fr} K.$$

Observe that

$$F = \bigcup_{c \in C} \operatorname{Fr}(K_{x_0}(\delta \cdot \phi_1(c), \dots, \delta \cdot \phi_k(c)))$$
(12)

and

$$K \setminus F = \bigcup_{x \in [0,1] \setminus C} \operatorname{Fr}(K_{x_0}(\delta \cdot \phi_1(x), \dots, \delta \cdot \phi_k(x))).$$

Let \mathcal{U} be a family (of power continuum) of pairwise disjoint and dense subsets of C such that $\bigcup_{U \in \mathcal{U}} U = C$. Without loss of generality we may assume that all one-sided accumulation points of the set C belong to certain set $U_0 \in \mathcal{U}$. Let $g : \mathcal{U} \to B(h(x_0), \frac{R}{2})$ be a one-to-one function such that $g(U_0) = \{h(x_0)\}$. From (12) it follows that for any $x \in F$ there exists exactly one point $c_x \in C$ such that $x \in FrK_{x_0}(\delta \cdot \phi_1(c_x), \ldots, \delta \cdot \phi_k(c_x))$ and there exists exactly one subset $U_{[c_x]} \in \mathcal{U}$ such that $c_x \in U_{[c_x]}$.

A.E. CONTINUOUS DARBOUX FUNCTIONS

Now, we can define the function $f : \mathbb{R}^k \to \mathbb{R}^k$ by

$$f(x) = \begin{cases} h(x) & \text{if } x \in \mathbb{R}^k \setminus K, \\ g(U_{[c_x]}) & \text{if } x \in F, \\ h(x_0) & \text{if } x \in K \setminus F. \end{cases}$$

Observe that the function f is \mathcal{K}_k -a.e. continuous Darboux function (this follows by the same method as in the proof of Theorem 2.3 [8]). We will now show that

$$B(f,r) \subset B(h,R) \tag{13}$$

By the definition of the functions f and g and by (11) we have

$$\sup_{x \in K} (d_k(f(x), h(x))) \le \frac{R}{2} + s \le R - r < 1$$

and consequently

$$\rho(f,h) = \min\{1, \sup_{x \in K} (d_k(f(x), h(x)))\} \le R - r$$

Thus for any function $f_1 \in B(f, r)$

$$\rho(f_1, h) \le \rho(f_1, f) + \rho(f, h) < R,$$

and so (13) is proved.

It remains to prove that

$$B(f,r) \cap D_{(\mathfrak{F})} = \emptyset. \tag{14}$$

Let us take $f_1 \in B(f,r)$, $z \in x_0 + \delta \cdot R(\xi^{(1)}, \dots, \xi^{(k)})$ and $\epsilon > 0$. By the definition of f, it follows that $f(K \cap B(z, \epsilon)) = B(h(x_0), \frac{R}{2})$ and consequently

$$\operatorname{osc}_{f_1}(z) = \inf_{\epsilon > 0} \operatorname{dia}(f_1(B(z, \epsilon))) \ge R - 2r > 0$$

Hence

$$x_0 + \delta \cdot R(\xi^{(1)}, \dots, \xi^{(k)}) \subset D_{f_1}.$$

By our assumption, $x_0 + \delta \cdot R(\xi^{(1)}, \ldots, \xi^{(k)})$ doesn't belong to \Im . We conclude from the above that the function f_1 isn't \Im -a.e. continuous, which implies (14).

We have proved that for a function $h \in D_{(\mathcal{K}_k)} \cap D_{(\mathfrak{F})}$ and a number R > 0there exists the function $f \in D_{(\mathcal{K}_k)}$ such that $B(f, r) \subset B(h, R) \setminus D_{(\mathfrak{F})}$ for any $r \in (0, \frac{R}{2})$. Hence $\gamma(h, R, D_{(\mathfrak{F})}) = \frac{R}{2}$ and finally we conclude that the set $D_{(\mathfrak{F})}$ is strongly porous in the space $D_{(\mathcal{K}_k)}$. **Corollary 4.3.** In the space $D_{(\mathcal{K}_k)}$ of Darboux \mathcal{K}_k -a.e. continuous functions (with the metric of uniform convergence) mapping \mathbb{R}^k into \mathbb{R}^k , the set $D_{(\mathfrak{F})}$ of functions continuous \mathfrak{F} -a.e. with respect to σ -ideal \mathcal{L}_k or \mathcal{N}_k is strongly porous.

PROOF. Let $\xi^{(j)} = \xi_n^{(j)}$ (j = 1, ..., k) be sequences with a general term $\xi_n^{(j)} = \frac{1}{2^n}$ for j = 1, ..., k. Let us consider the box-Cantor set $R(\xi^{(1)}, ..., \xi^{(k)})$ with respect to these sequences. From Lemma 3.6 the set $R(\xi^{(1)}, ..., \xi^{(k)})$ doesn't belong to σ -ideal \mathcal{L}_k (and \mathcal{N}_k) so the σ -ideal \mathcal{L}_k (and \mathcal{N}_k) has the property (\mathcal{T}) . The corollary follows from Theorem 4.2.

References

- M. Balcerzak, J. Hejduk, Density Topologies for Products of σ-ideals, Real Analysis Exchange, 20(1) (1994/95), 163–177.
- [2] E. Hewitt, K. Stromberg, *Real and Abstract Analysis*, Springer-Verlag, Berlin, Heidelberg, New York, 1969.
- [3] J. C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1971.
- [4] R. J. Pawlak, On Functions with the Set of Discontinuity Points Belong to Some σ-ideal, Math. Slovaca, 35 (1985), No 4, 327–341.
- [5] R. J. Pawlak, *Darboux Transformations*, Real Analysis Exchange, 11 (1985/86), 427–446.
- [6] R. J. Pawlak, On Zahorski Classes of Functions of Two Variables, Revue Roumaine de Mathematques Pures et Appliquees, 35.1 (1990), 53–71.
- [7] B. S. Thomson, Real functions, Lect. Notes in Math. 1170, Springer-Verlag, 1985.
- [8] A. Tomaszewska, On Relations Among Various Classes of S-a.e. Continuous Darboux Functions, Real Analysis Exchange, 25(2) (1999/2000), 695–702.
- [9] A. Tomaszewska, On Permuted Products of σ -ideals, Commentatines Mathematicae, XLIV(1) (2004), 137–146.
- [10] A. Tomaszewska, W. Wilczyński, On Permuted and Symmetric Products of σ -ideals, in preparation.
- [11] L. Zajiček, *Porosity and \sigma-porosity*, Real Analysis Exchange, **13** (1987/88), 314–350.