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ON =-A.E. CONTINUOUS DARBOUX
FUNCTIONS MAPPING Rk INTO Rk

Abstract

This paper completes the results of the paper [8]. We will investigate
mutual relations between classes of functions which are continuous =-
a.e. with respect to various σ-ideals of subsets of Rk.

1 Introduction.

Throughout the paper, we will consider functions whose sets of discontinuity
points belong to certain σ-ideals consisting of boundary sets (i.e., sets having
the empty interior). Such functions will be called =-almost everywhere (=-
a.e.) continuous with respect to a specified σ-ideal =. In particular we will
consider

Kk – σ-ideal of first category subsets of Rk,
Lk – σ-ideal of Lebesgue null subsets of Rk,
Nk – σ-ideal of countable subsets of Rk.

If k = 1, then we will write simply K, L and N rather than K1, L1 and N1 .
From Theorem 1.4 of [4] it follows that in some spaces, every =-a.e. con-

tinuous function is Kk-a.e. continuous one. The converse isn’t true. There
exists a family of σ-ideals =, such that the set of =-a.e. continuous functions
is topologically small in the space of Kk-a.e. continuous ones. In Theorem
2.3 [8] it was proved that this set is uniformly porous in the space of Darboux
functions mapping R2 into R2. This paper is an extension of the paper [8].

This extension consists in increasing of the dimension of considered spaces
and the number of investigated σ-ideals. Additionally we replace uniformly
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porous set by strongly porous set. For that purpose, we make use of certain
σ-ideals in Rk (they are investigated in Section 2) and certain sets called in
this paper the box-Cantor sets in Rk (they are introduced in Section 3). Our
main results are stated and proved in Section 4.

Basic notation used in this paper is standard. In particular, R stands for
the set of real numbers and N = {1, 2, 3, . . . }. Let k and j < k be natural
numbers and let X(i)(i = 1, . . . , k) be a topological space. For convenience
write X ′

j = X(1) × · · · × X(j) and X ′′
j = X(j+1) × · · · × X(k). For x′ ∈ X ′

j ,
x′′ ∈ X ′′

j and A ⊂ X ′
j ×X ′′

j , let Ax′ = {x′′ ∈ X ′′
j : (x′, x′′) ∈ A}.

If A ⊂ Rk, z ∈ Rk and s ∈ R, let z + A = {z + a : a ∈ A}, s · A = {s · a :
a ∈ A} and in particular −A = (−1)A.

Let k ∈ N and let c1, . . . , ck be positive real numbers. The k-dimensional
cube Kz(c1, . . . , ck) centered at z ∈ Rk is defined by

Kz(c1, . . . , ck) = z +×k
i=1[−ci, ci].

If z = {0, . . . , 0} and c1 = · · · = ck = 1, the cube Kz(c1, . . . , ck) will be
denoted by K, for simplicity.

In the space Rk we will use the Euclidean metric dk and in the space of func-
tions mapping Rk into Rk we will use the metric ρ (ρ(f, h) = min{1, sup{x ∈
Rk : dk(f(x), h(x))}}). In these spaces we will consider an open ball B(z, r)
of radius r centered at z. The symbols diaA, clA, intA and FrA stand for the
diameter, closure, interior and boundary of the set A, respectively.

By Cf (Df ) we will denote the set of continuity (discontinuity) points of
the function f and its oscillatory will be denoted by oscf .

In the last section we will need the definition of strong porosity of a set in
a metric space (see [11]). Let P be a metric space, S ⊂ P , x ∈ P , R > 0 and
γ(x,R, S) = sup{r > 0;∃z∈P B(z, r) ⊂ B(x,R) \ S}. The number p(S, x) =
2 · lim supR→0+

γ(x,R,S)
R is called the porosity of S at x. We say that the set S

is strongly porous if p(S, x) ≥ 1 at each point x ∈ S.
We say that f : Rk → Rk is a Darboux function if the image of any arc

belonging to Rk is a connected set (see [5],[6]).

2 Products of σ-Ideals.

Definition 2.1. Let k > 2 be a natural number and let =(i) be a σ-ideal of
subsets of a topological space X(i)(i = 1, 2, . . . , k). The product of σ-ideals is
defined by

=(1) ×=(2) = {A ⊂ X(1) ×X(2) : {x(1) ∈ X(1) : Ax(1) 6∈ =(2)} ∈ =(1)}.
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Let us suppose that =(1)×· · ·×=(n) has been defined for 2 ≤ n < k. For n+ 1
we put

=(1) × · · · × =(n) ×=(n+1) = (=(1) × · · · × =(n))×=(n+1).

Of course the family =(1)×· · ·×=(k) forms a σ-ideal. If X(1) = · · · = X(k)

and =(1) = · · · = =(k) = =, then the σ-ideal =(1) × · · · × =(k) will be denoted
simply by =k. If k = 1, then =1 = =.

Theorem 2.2 (see [9], Th.2.3 and Th.2.5). For any natural number k > 1
and for a subset A ⊂ X(1)×· · ·×X(k) the following conditions are equivalent:

(a) A ∈ =(1) × · · · × =(k),

(b) {x(1) : {. . . {x(k) : (x(1), . . . , x(k)) ∈ A} 6∈ =(k) . . . } 6∈ =(2)} ∈ =(1)

(c) ∀m<k {(x(1), . . . , x(m)) ∈ X(1) × · · · ×X(m) : (A)(x(1),...,x(m)) 6∈
=(m+1) × · · · × =(k)} ∈ =(1) × · · · × =(m)

(d) ∃m<k {(x(1), . . . , x(m)) ∈ X(1) × · · · ×X(m) : (A)(x(1),...,x(m)) 6∈
=(m+1) × · · · × =(k)} ∈ =(1) × · · · × =(m)

The following definitions and properties will be needed in the next section.
A σ-ideal = of subsets of a topological space X is called admissible if it

is contained in the family of boundary subsets of X and contains all singleton
subsets of X.

Theorem 2.3. Let k ∈ N. If =(i) (i = 1, 2, . . . , k) are admissible σ-ideals,
then the product =(1) × · · · × =(k) is an admissible σ-ideal as well.

Proof. It is easy to prove the above theorem by induction with use of the
method presented in [9] (Proposition 2.1).

We say that a family = of subsets of the space Rk is a-invariant if for any
A ⊂ Rk, z ∈ Rk and s ∈ R \ {0}, the sets z + A and s ·A belong to =.

Theorem 2.4. Let k ∈ N. If σ-ideals =(j) are a-invariant for any j = 1, . . . , k,
then the σ-ideal =(1) × · · · × =(k) is a-invariant as well.

Proof. The proof is by induction with respect to k. We use Theorem 2.2 and
the following properties of sections. For any set A ⊂ Rn × Rm (n, m ∈ N),
points a = (a1, a2), x = (x1, x2) ∈ Rn × Rm and a number s ∈ R \ {0} we
have (see [1], Lemma 2.1):

(a + A)x1 = a2 + (A)x1−a1 (1)
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and
(s ·A)x1 = s · (A)x1/s. (2)

For k = 1 the a-invariance is obvious. Let k ∈ N, A ⊂ Rk × R, and a =
(a1, a2), x = (x1, x2) ∈ Rk × R. Assume the σ-ideals =(1), . . . ,=(k+1) and
=(1)×· · ·×=(k) are a-invariant. From (1) and the above assumptions we have

{(x1 ∈ Rk : (a + A)x1 6∈ =(k+1)} = {(x1 ∈ Rk : (A)x1−a1 6∈ =(k+1)}
= a1 + {(x1 − a1 ∈ Rk : (A)x1−a1 6∈ =(k+1)} ∈ =(1) × · · · × =(k).

By Theorem 2.2(d) we have shown that a + A ∈ =(1) × · · · × =(k+1). In the
same manner, owing to (2), we can see that s ·A ∈ =(1)×· · ·×=(k+1), for any
s ∈ R \ {0}.

In the end of this section we compare σ-ideals constructed on the basis of
σ-ideals L and K . We will denote by Lk (Kk ) the product of k σ-ideals L
(K). Moreover use:

Lk– the σ-algebra of Lebesgue measurable subsets of Rk

Kk– the σ-algebra of subsets of Rk having the property of Baire.
If k = 1, then we will write simply L, K, L and K rather than L1, K1, L1 and
K1 . Observe that above-mentioned families are a-invariant.

In order to prove the next theorem we need the following lemmas.

Lemma 2.5. If a subset A ⊂ Rm × Rn belongs to the σ-algebra Lm+n, then
the set {x ∈ Rm : Ax 6∈ Ln} belongs to the σ-algebra Lm.

Lemma 2.6. If a subset A ⊂ Rm × Rn belongs to the σ-algebra Km+n, then
the set {x ∈ Rm : Ax 6∈ Kn} belongs to the σ-algebra Km.

Theorem 2.7. For any natural number k

(a) Lk = Lk ∩ Lk and (b) Kk = Kk ∩Kk

Proof. (a) Let us first show that for any natural number k

Lk ⊂ Lk. (3)

The proof is by induction on k. For k = 1 the inclusion (3) is obvious, because
L1 = L = L1. Assume the inclusion (3) holds for a natural number k ≥ 1.
Let A be a Lebesgue null subset of Rk+1. From Fubini’s Theorem (Th. 21.12
[2]) and induction assumption we have

{(x(1), . . . , x(k)) ∈ Rk : (A)(x(1),...,x(k)) 6∈ L} ∈ Lk ⊂ Lk.
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By Theorem 2.2(d) we have shown that A ∈ Lk+1 and finally that inclusion
(3) is true.

Now it is enough to prove that for any natural number k

Lk ∩ Lk ⊂ Lk. (4)

The proof is by induction on k. For k = 1 the inclusion (4) is obvious. Assume
the inclusion (4) holds for a natural number k ≥ 1. Let A be a Lebesgue
measurable subset of Rk+1. From Theorem 2.2(c), Lemma 2.5 and induction
assumption we have

{(x(1), . . . , x(k)) ∈ Rk : (A)(x(1),...,x(k)) 6∈ L} ∈ Lk ∩ Lk ⊂ Lk.

By the above and Fubini’s Theorem (Th. 21.12 [2]) we have proved that the
set A belongs to the σ-ideal Lk+1. This gives the inclusion (4) and the proof
is complete.

(b) The proof is similar. We use the Kuratowski - Ulam Theorem (Th.15.1
[3]), Theorem 15.5 [3], Theorem 15.4 [3] and Lemma 2.6 .

In [9] and [10] it was also proved that Lk ⊆6 Lk and Kk ⊆6 Kk for any
k > 1.

3 Box-Cantor Sets in Rk.

A sketch of the construction of a symmetric Cantor set in R can be found, for
example, in [11]. It is similar to the construction of the Cantor ternary set.

Let ξ = (ξn)n∈N be a sequence of real numbers ξn ∈ (0, 1) and let I = [0, 1]
be a closed interval whose length will be denoted by δ1. In the first step of the
construction, we remove from I the concentric open interval (a11, b11) of the
length δ1 ·ξ1. In the m-th (m > 1) step of the construction, from the remaining
2m−1 closed intervals of length equal to δm we remove the concentric open
intervals (ami, bmi)(i = 1, 2, . . . , 2m−1) of the length δm · ξm. Additionally, we
assume am1 < am2 < . . . . < am2m−1 .

The set

C(ξ) = I \
∞⋃

m=1

2m−1⋃
i=1

(ami, bmi) (5)

is called the symmetric Cantor set with respect to the sequence ξ = (ξn)n∈N.
Throughout the paper we assume that numbers 0 and 1 are one-side accumu-
lation points of every symmetric Cantor set C(ξ). Of course, if ξn = 1

3 for
n = 1, 2, . . . ., then the set C(ξ) is the classical Cantor ternary set.
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From the construction it appears that the set C(ξ) is closed, nowhere dense
and uncountable. Of course, some properties are connected with the sequence
ξ = (ξn)n∈N. The following fact will be needed to investigate box-Cantor sets
in Rk.

Lemma 3.1 ([7],[11]). The set C(ξ) has Lebesgue measure zero iff

∞∑
n=1

ξn = ∞.

Now, we are going to define the box-Cantor set in Rk (k ∈ N). For simplic-
ity we construct this set in the k-dimensional closed cube K = K(1, . . . .1) ⊂
Rk. Let C(ξ(j)) = I \

⋃∞
m=1

⋃2m−1

i=1 (a(j)
mi, b

(j)
mi) (j = 1, . . . , k) be a symmet-

ric Cantor set with respect to a sequence ξ(j) = (ξ(j)
n )n∈N of real numbers

ξ
(j)
n ∈ (0, 1). Throughout the paper we assume that for any m ∈ N and

j = 1, . . . , k we have a
(j)
m1 < a

(j)
m2 < . . . . < a

(j)
m2m−1 .

Definition 3.2. The set

R(ξ(1), . . . , ξ(k)) = K \
∞⋃

m=1

2m−1⋃
i=1

int(K(b(1)
mi, . . . , b

(k)
mi ) \K(a(1)

mi, . . . , a
(k)
mi ))

is called the box-Cantor set with respect to sequences ξ(j) = (ξ(j)
n )n∈N of real

numbers ξ
(j)
n ∈ (0, 1) (j = 1, . . . , k).

The box-Cantor set R(ξ(1), . . . , ξ(k)) can be also defined as follows. Let φj :
I → I, (j = 1, . . . , k) be an increasing homeomorphism such that φj(C(ξ(1))) =
C(ξ(j)), φj(a(1)

mi) = a
(j)
mi, φj(b(1)

mi) = b
(j)
mi for any j = 1, . . . , k and

Fr(K(φ1(x1), . . . , φk(x1))) ∩ Fr(K(φ1(x2), . . . , φk(x2))) = Ø

for any x1 6= x2. Observe that

R(ξ(1), . . . , ξ(k)) =
⋃

c∈C(ξ(1))

Fr(K(φ1(c), . . . , φk(c))). (6)

Theorem 3.3. Let k ∈ N. If σ-ideals =(j) are a-invariant and admissible
for any j = 1, . . . , k, then the box-Cantor set R(ξ(1), . . . , ξ(k)) belongs to the
σ-ideal =(1) × · · · × =(k) iff C( ξ(j)) ∈ =(j) for any j = 1, . . . , k.
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Proof. Let C∗ = C(ξ(1)) \ {0} and

Fj =
⋃

c∈C∗

{(x(1), . . . , x(k)) ∈ K(φ1(c), . . . , φk(c)) : x(j) = φj(c)}

for j ≤ k. We first show the following equivalency for any m ≤ k.

Fm ∈ =(1) × · · · × =(k) ⇐⇒ C(ξ(m)) ∈ =(m) (7)

Let 1 < m < k. Then

Fm =
⋃

c∈C∗

(
(×m−1

i=1 [−φi(c), φi(c)])× {φm(c)} × (×k
i=m+1[−φi(c), φi(c)])

)
.

For any x = (x(1), . . . , x(k)) ∈ Fm there exists c ∈ C∗ such that

x ∈
(
×m−1

i=1 [−φi(c), φi(c)])× {φm(c)} × (×k
i=m+1[−φi(c), φi(c)]

)
.

Observe that

(Fm)(x(1),...,x(m−1)) = {φm(c)} × (×k
i=m+1[−φi(c), φi(c)]) (8)

and(
{φm(c)} × (×k

i=m+1[−φi(c), φi(c)])
)
x(m) = ×k

i=m+1[−φi(c), φi(c)]. (9)

Since ×k
i=m+1[−φi(c), φi(c)] isn’t a boundary set in the (k−m)-dimension

cube K we have

×k
i=m+1[−φi(c), φi(c)] 6∈ =(m+1) × · · · × =(k)

and{
x(m) :

(
{φm(c)} × (×k

i=m+1[−φi(c), φi(c)])
)
x(m) 6∈ =(m+1) × · · · × =(k)

}
= C(ξ(m)) \ {0}. (10)

We will consider the following cases:

A) C(ξ(m)) ∈ =(m); then C(ξ(m)) \ {0} ∈ =(m). From above and Theorem
2.2(d) we have

(Fm)(x(1),...,x(m−1)) ∈ =(m) × · · · × =(k)

and {
(x(1), . . . , x(m−1)) : (Fm)(x(1),...,x(m−1)) 6∈ =(m) × · · · × =(k)

}
= ∅ ∈ =(1) × · · · × =(m−1).
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Therefore Fm ∈ =(1) × · · · × =(k) by Theorem 2.2(d).

B) C(ξ(m)) 6∈ =(m). Since =(m) is an admissible σ-ideal C(ξ(m)) \ {0} 6∈
=(m).

By the above, (8) - (10) and Theorem 2.2(c) we have

(Fm)(x(1),...,x(m−1)) 6∈ =(m) × · · · × =(k)

and {
(x(1), . . . , x(m−1)) : (Fm)(x(1),...,x(m−1)) 6∈ =(m) × · · · × =(k)

}
=×m−1

i=1 [−φi(c), φi(c)] 6∈ =(1) × · · · × =(m−1).

Consequently, Fm 6∈ =(1) × · · · × =(k).
In this way we have shown equivalency (7) (for m = 1 and m = k the proof

is similar). By equivalency (7) and Theorem 2.4 we have

−Fm ∈ =(1) × · · · × =(k) ⇐⇒ C(ξ(m)) ∈ =(m).

From Theorem 2.3 it follows that {(0, . . . , 0)} ∈ =(1) × · · · × =(k). It is easily
seen that

R(ξ(1), . . . , ξ(k)) = {(0, . . . , 0)} ∪
k⋃

i=1

Fi ∪
k⋃

i=1

(−F )i.

This equality and the above remarks complete the proof.

It appears that the set R(ξ(1), . . . , ξ(k)) has similar properties as the set
C(ξ(j)).

Lemma 3.4. The box-Cantor set R(ξ(1), . . . , ξ(k)) with respect to sequences
ξ(j) = (ξ(j)

n )n∈N ⊂ (0, 1) (j = 1, . . . , k) is closed and nowhere dense in Rk.

Proof. Observe that C(ξ(i)) ∈ K for any i = 1, . . . , k. By Theorem 3.3, the
set R(ξ(1), . . . , ξ(k)) belongs to the σ-ideal Kk. Hence R(ξ(1), . . . , ξ(k)) is a
boundary set. From (6) it follows that R(ξ(1), . . . , ξ(k)) is a closed set and, in
consequence, it is a nowhere dense subset of the space Rk.

Corollary 3.5. The box-Cantor set R(ξ(1), . . . , ξ(k)) with respect to sequences
ξ(j) = (ξ(j)

n )n∈N ⊂ (0, 1) (j = 1, . . . , k) belongs to the σ-ideal Kk of first
category subsets of Rk.
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Lemma 3.6. The box-Cantor set R(ξ(1), . . . , ξ(k)) with respect to sequences
ξ(j) = (ξ(j)

n )n∈N ⊂ (0, 1) (j = 1, . . . , k) has the Lebesgue measure zero iff

∞∑
n=1

ξ(j)
n = ∞, for j = 1, . . . , k.

Proof. Let
∑∞

n=1 ξ
(j)
n = ∞, for any j = 1, . . . , k . By Lemma 3.1, it appears

that C(ξ(i)) belongs to the σ-ideal of Lebesgue null subsets of R (for any
i = 1, . . . , k). Since the σ-ideal L is a-invariant and admissible, Theorem
3.3 shows that R(ξ(1), . . . , ξ(k)) ∈ Lk. Additionally R(ξ(1), . . . , ξ(k)) is closed
(see(6)), and hence Lebesgue measurable. From Theorem 2.7(a) we conclude
that R(ξ(1), . . . , ξ(k)) has Lebesgue measure zero.

4 On =-A.E. Continuous Darboux Functions.

From Theorem 1.4 [4] we obtain the following.

Theorem 4.1. If a function f : Rk −→ Rk is continuous =-a.e. with respect
to a σ-ideal = of subsets of the space Rk, then this function is continuous
Kk-a.e.

If = is the σ-ideal of countable, σ-porous or of Lebesgue measure zero
subsets of the space Rk, then the converse is not true, because there exist
functions continuous Kk-a.e. which are not continuous =-a.e. with respect
to any of the above-mentioned σ-ideals. Moreover, these functions form a set
which is not topologically small in the space of functions continuous Kk-a.e.
In the next theorem we obtain a more general case. Before we formulate this
theorem we must first introduce the following definition.

We say that a σ-ideal = of subsets of the space Rk has the property
(T ) if it is a-invariant and admissible and if there exists a box-Cantor set
R(ξ(1), . . . , ξ(k)) which doesn’t belong to the σ-ideal =. The existence of such
ideals is guaranteed by Theorem 3.3.

Theorem 4.2. 1 The set D(=) of functions =-a.e. continuous with respect to
a σ-ideal = having the property (T ) is strongly porous in the space D(Kk) of
Darboux Kk-a.e. continuous functions.

Proof. Let h ∈ D(=) ∩ D(Kk), x0 ∈ Ch, R ∈ (0, 1) and r ∈ (0, R
2 ). Put

s = R
2 − r. Let δ be a positive real number such that

h(Kx0(δ, . . . , δ)) ⊂ B(h(x0), s). (11)
1This Theorem is an extension of Theorem 3.3 [8]
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Let = be a σ-ideal having the property (T ). We will construct a Darboux
Kk-a.e. continuous function f : Rk → Rk satisfying the condition B(f, r) ⊂
B(h, R) and show that the set of discontinuity points of an arbitrary function
f1 ∈ B(f, r) doesn’t belong to the σ-ideal =.

From the property (T ) of the σ-ideal = it follows that there exists a box-
Cantor set R(ξ(1), . . . , ξ(k)) which doesn’t belong to the σ-ideal =. For the
set R(ξ(1), . . . , ξ(k)) considered in this proof we take notions as for box-Cantor
sets defined in Section 3.

In particular (see (6))

R(ξ(1), . . . , ξ(k)) =
⋃

c∈C(ξ(1))

Fr(K(φ1(c), . . . , φk(c))).

Because the σ-ideal = has the property (T ), it is a-invariant and as a result
the set x0 + δ · R(ξ(1), . . . , ξ(k)) doesn’t belong to the σ-ideal = either. We
have

x0 + δ ·R(ξ(1), . . . , ξ(k)) ⊂ xo + δ ·K = Kx0(δ, . . . , δ).

For simplicity we let

C = C(ξ(1)) \ {1},
K = intKx0(δ, . . . , δ),

F = x0 + δ ·R(ξ(1), . . . , ξ(k)) \ FrK.

Observe that
F =

⋃
c∈C

Fr(Kx0(δ · φ1(c), . . . , δ · φk(c))) (12)

and
K \ F =

⋃
x∈[0,1)\C

Fr(Kx0(δ · φ1(x), . . . , δ · φk(x))).

Let U be a family (of power continuum) of pairwise disjoint and dense
subsets of C such that

⋃
U∈U U = C. Without loss of generality we may

assume that all one-sided accumulation points of the set C belong to certain
set U0 ∈ U . Let g : U → B(h(x0), R

2 ) be a one-to-one function such that
g(U0) = {h(x0)}. From (12) it follows that for any x ∈ F there exists exactly
one point cx ∈ C such that x ∈ FrKx0(δ · φ1(cx), . . . , δ · φk(cx)) and there
exists exactly one subset U[cx] ∈ U such that cx ∈ U[cx].



A.E. Continuous Darboux Functions 395

Now, we can define the function f : Rk → Rk by

f(x) =

 h(x) if x ∈ Rk \K,
g(U[cx]) if x ∈ F,
h(x0) if x ∈ K \ F.

Observe that the function f is Kk-a.e. continuous Darboux function (this
follows by the same method as in the proof of Theorem 2.3 [8]). We will now
show that

B(f, r) ⊂ B(h, R) (13)

By the definition of the functions f and g and by (11) we have

sup
x∈K

(dk(f(x), h(x)) ≤ R

2
+ s ≤ R− r < 1

and consequently

ρ(f, h) = min{1, sup
x∈K

(dk(f(x), h(x))} ≤ R− r

Thus for any function f1 ∈ B(f, r)

ρ(f1, h) ≤ ρ(f1, f) + ρ(f, h) < R,

and so (13) is proved.

It remains to prove that

B(f, r) ∩D(=) = Ø. (14)

Let us take f1 ∈ B(f, r), z ∈ x0 + δ ·R(ξ(1), . . . , ξ(k)) and ε > 0. By the
definition of f , it follows that f(K ∩B(z, ε)) = B(h(x0), R

2 ) and consequently

oscf1(z) = inf
ε>0

dia(f1(B(z, ε))) ≥ R− 2r > 0

Hence
x0 + δ ·R(ξ(1), . . . , ξ(k)) ⊂ Df1 .

By our assumption, x0 + δ ·R(ξ(1), . . . , ξ(k)) doesn’t belong to =. We conclude
from the above that the function f1 isn’t =-a.e. continuous, which implies
(14).

We have proved that for a function h ∈ D(Kk) ∩D(=) and a number R > 0
there exists the function f ∈ D(Kk) such that B(f, r) ⊂ B(h, R) \D(=) for any
r ∈ (0, R

2 ). Hence γ(h, R,D(=)) = R
2 and finally we conclude that the set D(=)

is strongly porous in the space D(Kk).



396 R. Pawlak and A.Tomaszewska

Corollary 4.3. In the space D(Kk) of Darboux Kk-a.e. continuous functions
(with the metric of uniform convergence) mapping Rk into Rk, the set D(=)

of functions continuous =-a.e. with respect to σ-ideal Lk or Nk is strongly
porous.

Proof. Let ξ(j) = ξ
(j)
n (j = 1, . . . , k) be sequences with a general term ξ

(j)
n =

1
2n for j = 1, . . . , k. Let us consider the box-Cantor set R(ξ(1), . . . , ξ(k)) with
respect to these sequences. From Lemma 3.6 the set R(ξ(1), . . . , ξ(k)) doesn’t
belong to σ-ideal Lk (and Nk) so the σ-ideal Lk (and Nk) has the property
(T ). The corollary follows from Theorem 4.2.
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