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ON CONVERGENCE OF THE
GAP-INTEGRAL

Abstract

The concept of the GAP-integral was introduced by the authors [5].
In this paper some convergence theorems for the GAP-integral are pre-
sented.

1 Introduction.

The Approximately Continuous Perron integral was introduced by Burkill [1]
and its Riemann-type definition was given by Bullen [2]. Schwabik [6] pre-
sented a generalized version of the Perron integral leading to the new ap-
proach to a generalized ordinary differential equation. The authors introduced
the concept of the Generalized Approximately Continuous Perron integral to-
gether with some important properties of the integral in [5]. In the present
paper we obtain some convergence theorems of the GAP-integral. First we
obtain the uniform convergence theorem. Then we prove the monotone con-
vergence theorem and the basic convergence theorem for the GAP-integral.
As an application of the basic convergence theorem, we obtain the mean con-
vergence theorem for the GAP-integral.

2 Preliminaries.

Definition 2.1. A collection ∆ of closed subintervals of [a, b] is called an
approximate full cover (AFC) if for every x ∈ [a, b] there exists a measurable
set Dx ⊂ [a, b] such that x ∈ Dx and Dx has density 1 at x, with [u, v] ∈ ∆
whenever u, v ∈ Dx and u ≤ x ≤ v.
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For all approximate full covers that occur in this paper the sets Dx ⊂ [a, b]
are the same. Then the relations ∆1 ⊆ ∆2 or ∆1 ∩ ∆2 for approximate full
covers ∆1,∆2 are clear.

A division of [a, b] obtained by a = x0 < x1 < · · · < xn = b and
{ξ1, ξ2, . . . , ξn} is called a ∆-division if ∆ is an approximate full cover with
[xi−1, xi] coming from ∆ or more precisely, if we have xi−1 ≤ ξi ≤ xi and
xi−1, xi ∈ Dξi for all i. We call ξi the associated point of [xi−1, xi] and xi

(i = 0, 1, . . . , n) the division points.
A division of [a, b] given by a ≤ y1 ≤ ζ1 ≤ z1 ≤ y2 ≤ ζ2 ≤ z2 ≤ · · · ≤ ym ≤

ζm ≤ zm ≤ b is called a ∆-partial division if ∆ is an approximate full cover
with ([yi, zi], ζi) ∈ ∆, for i = 1, 2, . . . ,m.

In [5], the GAP-integral is defined as follows :

Definition 2.2. A function U : [a, b]× [a, b] → R is said to be generalized AP
(GAP )-integrable to a real number A if for every ε > 0 there is an AFC ∆ of
[a, b] such that for every ∆-division D = ([α, β], τ) of [a, b] we have

|(D)
∑

{U(τ, β)− U(τ, α)} −A| < ε

and we write A = (GAP )
∫ b

a
U .

The set of all functions U which are Generalized Approximate Perron in-
tegrable on [a, b] is denoted by GAP[a, b]. We use the notation

S(U,D) = (D)
∑

{U(τ, β)− U(τ, α)}

for the Riemann-type sum corresponding to the function U and the ∆-division
D = ([α, β], τ) of [a, b]. Note that the integral is uniquely determined.

Remark 2.3. If the AFC ∆ in Definition 2.2 is replaced by an ordinary full
cover, that is, the family of all ([α, β], τ) which are δ-fine for some δ(τ) > 0,
i.e., τ ∈ [α, β], [α, β] ⊂ [τ − δ(τ), τ + δ(τ)], then we have a general definition
of Henstock integral [4] .

Setting U(τ, t) = f(τ)t and U(τ, t) = f(τ)g(t) where f, g : [a, b] → R
and τ, t ∈ [a, b], we obtain Riemann-type and Riemann-Stieltjes type integrals
respectively for the functions f, g and a given ∆-division D of [a, b].

Considering U(τ, t) = f(τ)t in Definition 2.2, we obtain the classical ap-
proximately continuous Perron integral.

This definition is given in a more general form because of the general form
of the function U .

For a given function U : [a, b]× [a, b] → R and a tagged interval (τ, J) with
τ ∈ J = [α, β] ⊂ [a, b] we will use the notation

U(τ, J) = U(τ, β)− U(τ, α) (2.1)
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for the point-interval function which corresponds to U .
Setting U(τ, t) = f(τ)t, t ∈ [a, b], (2.1) becomes U(τ, J) = f(τ)(β − α) =

f(τ)|J | (|J | denotes the length of the interval J = [α, β]).
Let U : [a, b] × [a, b] → R and let δ be a positive function on [a, b]. Let

D be an ordinary full cover of an interval I ⊂ [a, b], that is, a δ-fine division
D = (J, τ) of the interval I ⊂ [a, b]. We define the following interval functions,
if they exist.

V (I) = sup (D)
∑

U(τ, J)

and
W (I) = inf (D)

∑
U(τ, J),

where the supremum and the infimum are over all δ-fine divisions D = (J, τ)
of I ⊂ [a, b].

The functions V and W serve as major and minor functions for U in a
particular form.

We remark that if f has the Locally Small Riemann Sum (LSRS) property,
then in view of Theorem 17.3 from [4], there exists a positive function δ such
that both V and W exist for I ⊂ [a, b].

Let

DV (t) = sup
t∈I⊂[a,b]

inf
δ>0

V (I)
|I|

and

DW (t) = inf
δ>0

sup
t∈I⊂[a,b]

W (I)
|I|

,

where D and D denote respectively the lower and the upper derivative of V
and W at t ∈ [a, b], respectively.

With the notion of a partial division we have proved in [5] the following
theorem.

Theorem 2.4. (Saks-Henstock Lemma) Let U : [a, b]×[a, b] → R be GAP-
integrable over [a, b]. Then, given ε > 0, there is an approximate full cover ∆
of [a, b] such that for every ∆-division D = {([αj−1, αj ], τj); j = 1, 2, . . . , q} of
[a, b], we have

∣∣∣ q∑
j=1

{U(τj , αj)− U(τj , αj−1)} − (GAP )
∫ b

a

U
∣∣∣ < ε.
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Then, if {([βj , γj ], ζj); j = 1, 2, . . . ,m} represents a ∆-partial division of [a, b],
we have ∣∣∣ m∑

j=1

[{U(ζj , γj)− U(ζj , βj)} − (GAP )
∫ γj

βj

U ]
∣∣∣ < ε.

The above theorem has an important use in the theory of generalized Per-
ron integral.

3 Some Convergence Results.

We now give some convergence theorems for the GAP-integral.

Theorem 3.1. (Uniform Integrability Theorem) Let

(i) U,Un : [a, b] × [a, b] → R, n = 1, 2, . . . be such that Un ∈ GAP [a, b] for
all n = 1, 2, . . . ,

(ii) there be an approximate full cover ∆0 of [a, b] such that

lim
n−→∞

[Un(τ, t2)− Un(τ, t1)] = U(τ, t2)− U(τ, t1)

for each τ ∈ [a, b], and for every interval-point pair ([t1, t2], τ) ∈ ∆0,

(iii) for every η > 0 there be an approximate full cover ∆ of [a, b] such that

|S(Un, D)− (GAP )
∫ b

a

Un| < η

for every ∆-division D of [a, b] and every n = 1, 2, . . . .

Then (GAP )
∫ b

a
U exists, and

lim
n−→∞

(GAP )
∫ b

a

Un = (GAP )
∫ b

a

U.

Proof. Let ε > 0 be given and An = (GAP )
∫ b

a
Un. By (iii), there is an

approximate full cover ∆ ⊆ ∆0 of [a, b] such that for every ∆-division D =
([α, β], τ) of [a, b] we have∣∣S(Un, D)−An

∣∣ < ε/2 for n = 1, 2, . . . .
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By (ii), for every fixed ∆-division D of [a, b] there exists a positive integer m1

such that for n > m1, we get |S(Un, D)− S(U,D)| =∣∣∣ ∑
{Un(τ, β)− Un(τ, α)} −

∑
{U(τ, β)− U(τ, α)}

∣∣∣ < ε/2

That is, limn→∞ S(Un, D) = S(U,D). Therefore, for any ∆-division D of [a, b]
there is a positive integer m1 such that for n > m1 we have

|S(U,D)−An|
≤|S(U,D)− S(Un, D)|+ |S(Un, D)−An| < ε/2 + ε/2 = ε

(3.1)

First, we get from (3.1) that for all positive integers n, p > m1

|An −Ap| ≤ |An − S(U,D)|+ |S(U,D)−Ap| < ε + ε = 2ε.

Thus, {An} is a Cauchy sequence in R and let A = limn→∞An. Then, given
ε > 0, there exists a positive integer m2 such that

|An −A| < ε for all n > m2. (3.2)

Let m = max(m1,m2). Then we get from (3.1) and (3.2) for n > m, that

|S(U,D)−A| ≤ |S(U,D)−An|+ |An −A| < ε + ε = 2ε.

Hence, U ∈ GAP [a, b] with (GAP )
∫ b

a
U , and

lim
n→∞

(GAP )
∫ b

a

Un = (GAP )
∫ b

a

U.

Lemma 3.2. Let U, V : [a, b]× [a, b] → R be such that U, V ∈ GAP [a, b] and
if there be an approximate full cover ∆0 of [a, b] such that

U(τ, t)− U(τ, τ) ≤ V (τ, t)− V (τ, τ)

for every interval-point pair ([τ, t], τ) ∈ ∆0 where τ < t and

U(τ, τ)− U(τ, t) ≤ V (τ, τ)− V (τ, t)

for every interval-point pair ([t, τ ], τ) ∈ ∆0 where t < τ , then

(GAP )
∫ b

a

U ≤ (GAP )
∫ b

a

V.
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Proof. Let ε > 0 be arbitrary. Since U, V ∈ GAP [a, b] given ε > 0, there
exists an approximate full cover ∆ of [a, b] with ∆ ⊆ ∆0 such that for every
∆-division D = ([α, β], τ) of [a, b] we have∣∣∣ ∑

{U(τ, β)− U(τ, α)} − (GAP )
∫ b

a

U
∣∣∣ < ε/2,

∣∣∣ ∑
{V (τ, β)− V (τ, α)} − (GAP )

∫ b

a

V
∣∣∣ < ε/2.

These give

(GAP )
∫ b

a

U − ε/2 <
∑

{U(τ, β)− U(τ, α)}

=
∑

[{U(τ, β)− U(τ, τ)}+ {U(τ, τ)− U(τ, α)}]

≤
∑

[{V (τ, β)− V (τ, τ)}+ {V (τ, τ)− V (τ, α)}]

=
∑

{V (τ, β)− V (τ, α)} < (GAP )
∫ b

a

V + ε/2.

Since ε > 0 is arbitrary, we obtain

(GAP )
∫ b

a

U ≤ (GAP )
∫ b

a

V.

Theorem 3.3. (Monotone Convergence Theorem) Let

(i) U,Un : [a, b] × [a, b] → R, n = 1, 2, . . . be such that Un ∈ GAP [a, b] for
all n = 1, 2, . . . with sup (GAP )

∫ b

a
Un < ∞ ,

(ii) there be an approximate full cover ∆0 of [a, b] such that

Un(τ, t)− Un(τ, τ) ≤ Un+1(τ, t)− Un+1(τ, τ)

for every interval-point pair ([τ, t], τ) ∈ ∆0 where τ < t and

Un(τ, τ)− Un(τ, t) ≤ Un+1(τ, τ)− Un+1(τ, t)

for every interval-point pair ([t, τ ], τ) ∈ ∆0 where t < τ , (n = 1, 2, . . . ),

(iii) there be an approximate full cover ∆′ of [a, b] such that

lim
n→∞

[Un(τ, t2)− Un(τ, t1)] = U(τ, t2)− U(τ, t1)

for each τ ∈ [a, b] and every interval-point pair ([t1, t2], τ) ∈ ∆′.
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Then, U ∈ GAP [a, b] and

lim
n→∞

(GAP )
∫ b

a

Un = (GAP )
∫ b

a

U.

Proof. Let ε > 0 be given. Since each Un ∈ GAP [a, b] for each positive
integer n, there is an approximate full cover ∆n of [a, b] such that for any
∆n-division D = ([α, β], τ) of [a, b] we have

∑
|{Un(τ, β)− Un(τ, α)} − (GAP )

∫ β

α

Un| < ε/2n.

By (iii), given ε > 0, for every fixed ∆′-division D = ([α, β], τ) of [a, b], there
exists an integer M(τ) such that whenever m(τ) is an integer with m(τ) ≥
M(τ) we have

|{Um(τ)(τ, β)− Um(τ)(τ, α)} − {U(τ, β)− U(τ, α)}| < ε/2m(τ)

for every τ ∈ [a, b]. Since {(GAP )
∫ b

a
Un} is non-decreasing by Lemma 3.2 and

bounded above, limn→∞(GAP )
∫ b

a
Un exists. Let limn→∞(GAP )

∫ b

a
Un = A.

For each τ ∈ [a, b], we choose any integer m(τ) ≥ M(τ) and we take ∆ =
∆′ ∩∆0 ∩∆m(τ). Then, for any ∆-division D = ([α, β], τ) of [a, b], we have∣∣∣ ∑

{U(τ, β)− U(τ, α)} −A
∣∣∣

≤
∣∣∣ ∑

[{U(τ, β)− U(τ, α)} − {Um(τ)(τ, β)− Um(τ)(τ, α)}]
∣∣∣

+
∑ ∣∣∣{Um(τ)(τ, β)− Um(τ)(τ, α)} − (GAP )

∫ β

α

Um(τ)

∣∣∣
+

∣∣∣ ∑
(GAP )

∫ β

α

Um(τ) −A
∣∣∣

<
∑

ε/2m(τ) +
∑

ε/2m(τ) +
∣∣∣ ∑

(GAP )
∫ β

α

Um(τ) −A
∣∣∣,

(3.3)

where all the sums involved run over all elements of the division D (
∑

=
(D)

∑
). Therefore, if we can show that the last term |(D)

∑
(GAP )

∫ β

α
Um(τ)−

A| < ε, then the proof will be complete.
The number of associated points τ in the division D is finite and so is the

number of those different m(τ) in the above sum over D. Let p denote the
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minimum of those m(τ) and q be the maximum. Then we have

(GAP )
∫ b

a

Up = (D)
∑

(GAP )
∫ β

α

Up ≤ (D)
∑

(GAP )
∫ β

α

Um(τ)

≤ (D)
∑

(GAP )
∫ β

α

Uq = (GAP )
∫ b

a

Uq ≤ A.

We can also find a positive integer m0 such that

0 ≤ A− (GAP )
∫ b

a

Um < ε for all m ≥ m0,

while defining m(τ) we always take m(τ) ≥ m0 and so p ≥ m0. Hence∣∣∣ ∑
(GAP )

∫ β

α

Um(τ) −A
∣∣∣ = A−

∑
(GAP )

∫ β

α

Um(τ)

≤ A−
∑

(GAP )
∫ β

α

Up = A− (GAP )
∫ b

a

Up < ε.

Therefore U ∈ GAP [a, b] by (3.3) and

lim
n→∞

(GAP )
∫ b

a

Un = A = (GAP )
∫ b

a

U.

In [5] the indefinite GAP-integral is defined as follows.

Definition 3.4. Let U ∈ GAP [a, b]. The function φ : [a, b] → R defined by

φ(s) = (GAP )
∫ s

a

U, a < s ≤ b, φ(a) = 0

is called the indefinite GAP-integral of U.
For [α, β] ⊂ [a, b] put φ(α, β) = φ(β)− φ(α) = (GAP )

∫ β

α
U .

Theorem 3.5. (Basic Convergence Theorem) Let

(i) Un : [a, b]× [a, b] → R be GAP-integrable on [a, b] with the primitives φn,
n = 1, 2, . . . ,

(ii) there be an approximate full cover ∆′ of [a, b] such that

lim
n→∞

[Un(τ, t2)− Un(τ, t1)] = U(τ, t2)− U(τ, t1)

for each τ ∈ [a, b] and every interval-point pair ([t1, t2], τ) ∈ ∆′,
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(iii) φn converge point-wise to a limit function φ.

Then U ∈ GAP [a, b] with primitive φ if and only if for every ε > 0 there is
a function M(τ) defined on [a, b] taking integer values such that for infinitely
many m(τ) ≥ M(τ) there is an approximate full cover ∆ such that for any
∆-division D = ([α, β], τ) of [a, b] we have∣∣∣ ∑

{φm(τ)(α, β)− φ(α, β)}
∣∣∣ < ε.

Proof. Suppose U ∈ GAP [a, b] with the primitive φ. Then there is an ap-
proximate full cover ∆0 of [a, b] such that for any ∆0-division D = ([α, β], τ)
of [a, b] we have ∣∣∣ ∑

[{U(τ, β)− U(τ, α)} − φ(α, β)]
∣∣∣ < ε.

Again, since Un ∈ GAP [a, b] with primitive φn, n = 1, 2, . . . , there is an
approximate full cover ∆n of [a, b] such that for any ∆n-division D = ([α, β], τ)
of [a, b] we have∣∣∣ ∑

[{Un(τ, β)− Un(τ, α)} − φn(α, β)]
∣∣∣ < ε/2n.

Given ε > 0, for every fixed ∆′-division D = ([α, β], τ) of [a, b], there exists an
integer M(τ) such that whenever m(τ) ≥ M(τ) we have

|{Um(τ)(τ, β)− Um(τ)(τ, α)} − {U(τ, β)− U(τ, α)}| < ε/2m(τ)

for every τ ∈ [a, b]. Without any loss of generality, we may assume that ∆′ =
∆1∩∆2∩· · ·∩∆m(τ). For each τ ∈ [a, b], we choose any integer m(τ) ≥ M(τ)
and we take ∆ = ∆′ ∩∆0. Then for any ∆-division D = ([α, β], τ) of [a, b], we
have ∣∣∣ ∑

{φm(τ)(α, β)− φ(α, β)}
∣∣∣

≤
∣∣∣ ∑

[φm(τ)(α, β)− {Um(τ)(τ, β)− Um(τ)(τ, α)}]
∣∣∣

+
∣∣∣ ∑

[{Um(τ)(τ, β)− Um(τ)(τ, α)} − {U(τ, β)− U(τ, α)}]
∣∣∣

+
∣∣∣ ∑

[{U(τ, β)− U(τ, α)} − φ(α, β)]
∣∣∣

<ε +
∑

ε/2m(τ) + ε < ε + ε + ε = 3ε.



382 D. K. Ganguly and Ranu Mukherjee

Conversely, suppose that the condition is satisfied. Then for every ε > 0
there is a function M(τ) defined on [a, b] taking integer values such that for
infinitely many m(τ) ≥ M(τ) there is an approximate full cover ∆ such that
for any ∆-division D = ([α, β], τ) of [a, b] we have∣∣∣ ∑

{φm(τ)(α, β)− φ(α, β)}
∣∣∣ < ε.

Also, for every fixed ∆′-division D = ([α, β], τ) of [a, b] we can find m(τ) ≥
M(τ) such that

|{Um(τ)(τ, β)− Um(τ)(τ, α)} − {U(τ, β)− U(τ, α)}| < ε/2m(τ)

for every τ ∈ [a, b]. Using the same notation as in the first part, we choose
∆ = ∆′ ∩∆0, τ ∈ [a, b]. Then for any ∆-division D = ([α, β], τ) of [a, b], we
have ∣∣∣ ∑

[{U(τ, β)− U(τ, α)} − φ(α, β)]
∣∣∣

≤
∣∣∣ ∑

[{U(τ, β)− U(τ, α)} − {Um(τ)(τ, β)− Um(τ)(τ, α)}]
∣∣∣

+
∣∣∣ ∑

[{Um(τ)(τ, β)− Um(τ)(τ, α)} − φm(τ)(α, β)]
∣∣∣

+
∣∣∣ ∑

{φm(τ)(α, β)− φ(α, β)}
∣∣∣ < ε + ε + ε = 3ε.

Hence U is GAP-integrable on [a, b].

Theorem 3.6. (Mean Convergence Theorem) Let

(i) Un : [a, b]× [a, b] → R be GAP-integrable on [a, b] with the primitives φn,
n = 1, 2, . . . ,

(ii) there be an approximate full cover ∆′ of [a, b] such that

lim
n→∞

[Un(τ, t2)− Un(τ, t1)] = U(τ, t2)− U(τ, t1)

for each τ ∈ [a, b] and every interval-point pair ([t1, t2], τ) ∈ ∆′,

(iii) [a, b] be the union of a sequence of closed sets Xi, i = 1, 2, . . . ,and for
every i and ε > 0 there exist an integer N and an approximate full cover
∆ of [a, b] such that for any ∆-division D = ([α, β], τ) of [a, b] tagged in
Xi,for each i we have

∣∣ ∑
{φn(α, β)−φ(α, β)}

∣∣ < ε for some function φ,
whenever n ≥ N,

(iv) the primitives φn converge uniformly to φ on [a, b].
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Then U ∈ GAP [a, b] with the primitive φ and

lim
n→∞

(GAP )
∫ b

a

Un = (GAP )
∫ b

a

U.

Proof. Let ε > 0. By (iii) above, for every i and j there exists an integer
Nij and an approximate full cover ∆ij of [a, b] such that for any ∆ij-division
D = ([α, β], τ) of [a, b] with τ ∈ Xi we have∣∣∣ ∑

{φn(α, β)− φ(α, β)}
∣∣∣ < ε/2i+j for all n ≥ Nij .

Take n = n(i, j) so that the above inequality holds. We may assume that for
each i, {φn(i,j)} is a subsequence of {φn(i−1,j)}. Now consider φn(j) = φn(j,j)

in place of φn and write Y1 = X1 and

Yi = Xi − (X1 ∪X2 ∪ · · · ∪Xi−1) for i = 2, 3, . . . .

Put M(τ) = n(i) when τ ∈ Yi.
We note that there are infinitely many m(τ) ≥ M(τ), namely all n(i) ≥

n(j). If m(τ) takes values in {n(j) : j ≥ i} when m(τ) ≥ M(τ) = n(i), we
put ∆ = ∆m(τ). Then for any ∆-division D = ([α, β], τ) of [a, b] with τ ∈ Yi,
for some i, we have∣∣∣ ∑

{φm(τ)(α, β)− φ(α, β)}
∣∣∣ ≤ ∞∑

j=1

∞∑
i=1

ε/2i+j = ε.

This means that the condition of the basic convergence theorem is satisfied.
Hence U ∈ GAP [a, b] with the primitive φ and

lim
n→∞

(GAP )
∫ b

a

Un = (GAP )
∫ b

a

U.

Acknowledgment. The authors are grateful to the referee for his valuable
suggestions for improving the paper.

References

[1] J. C. Burkill, The Approximately Continuous Perron Integral, Math. Zeit.,
34 (1931), 270–278.



384 D. K. Ganguly and Ranu Mukherjee

[2] P. S. Bullen, The Burkill Approximately Continuous Integral, J. Australian,
Math. Soc. Ser. A., 35 (1983), 236–53.

[3] R. Henstock, Linear Analysis, Butterworths, London, (1983).

[4] P. Y. Lee, Lanzhou Lectures on Henstock Integration, World Scientific,
(1989).

[5] D. K. Ganguly, Ranu Mukherjee, The Generalized Approximate Perron
Integral, communicated.
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