D. K. Ganguly and Ranu Mukherjee, Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Calcutta -700019, India. email: gangulydk@yahoo.co.in and ranumukherjee05@yahoo.co.in

ON CONVERGENCE OF THE GAP-INTEGRAL

Abstract

The concept of the GAP-integral was introduced by the authors [5]. In this paper some convergence theorems for the GAP-integral are presented.

1 Introduction.

The Approximately Continuous Perron integral was introduced by Burkill [1] and its Riemann-type definition was given by Bullen [2]. Schwabik [6] presented a generalized version of the Perron integral leading to the new approach to a generalized ordinary differential equation. The authors introduced the concept of the Generalized Approximately Continuous Perron integral together with some important properties of the integral in [5]. In the present paper we obtain some convergence theorems of the GAP-integral. First we obtain the uniform convergence theorem. Then we prove the monotone convergence theorem and the basic convergence theorem for the GAP-integral. As an application of the GAP-integral.

2 Preliminaries.

Definition 2.1. A collection Δ of closed subintervals of [a, b] is called an approximate full cover (AFC) if for every $x \in [a, b]$ there exists a measurable set $D_x \subset [a, b]$ such that $x \in D_x$ and D_x has density 1 at x, with $[u, v] \in \Delta$ whenever $u, v \in D_x$ and $u \leq x \leq v$.

Key Words: Approximate full cover, density point, Δ -division, δ -fine division, Locally Small Riemann Sum, AP-integral, GAP-integral, Henstock integral, Saks-Henstock lemma Mathematical Reviews subject classification: 26A39

Received by the editors June 13, 2005

Communicated by: Stefan Schwabik

³⁷³

For all approximate full covers that occur in this paper the sets $D_x \subset [a, b]$ are the same. Then the relations $\Delta_1 \subseteq \Delta_2$ or $\Delta_1 \cap \Delta_2$ for approximate full covers Δ_1, Δ_2 are clear.

A division of [a, b] obtained by $a = x_0 < x_1 < \cdots < x_n = b$ and $\{\xi_1, \xi_2, \ldots, \xi_n\}$ is called a Δ -division if Δ is an approximate full cover with $[x_{i-1}, x_i]$ coming from Δ or more precisely, if we have $x_{i-1} \leq \xi_i \leq x_i$ and $x_{i-1}, x_i \in D_{\xi_i}$ for all *i*. We call ξ_i the associated point of $[x_{i-1}, x_i]$ and x_i $(i = 0, 1, \ldots, n)$ the division points.

A division of [a, b] given by $a \leq y_1 \leq \zeta_1 \leq z_1 \leq y_2 \leq \zeta_2 \leq z_2 \leq \cdots \leq y_m \leq \zeta_m \leq z_m \leq b$ is called a Δ -partial division if Δ is an approximate full cover with $([y_i, z_i], \zeta_i) \in \Delta$, for $i = 1, 2, \ldots, m$.

In [5], the GAP-integral is defined as follows :

Definition 2.2. A function $U : [a, b] \times [a, b] \to R$ is said to be generalized AP (GAP)-integrable to a real number A if for every $\epsilon > 0$ there is an AFC Δ of [a, b] such that for every Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have

$$|(D)\sum\{U(\tau,\beta) - U(\tau,\alpha)\} - A| < \epsilon$$

and we write $A = (GAP) \int_{a}^{b} U$.

The set of all functions U which are Generalized Approximate Perron integrable on [a, b] is denoted by GAP[a, b]. We use the notation

$$S(U,D) = (D) \sum \{U(\tau,\beta) - U(\tau,\alpha)\}$$

for the Riemann-type sum corresponding to the function U and the Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b]. Note that the integral is uniquely determined.

Remark 2.3. If the AFC Δ in Definition 2.2 is replaced by an *ordinary full* cover, that is, the family of all $([\alpha, \beta], \tau)$ which are δ -fine for some $\delta(\tau) > 0$, i.e., $\tau \in [\alpha, \beta], [\alpha, \beta] \subset [\tau - \delta(\tau), \tau + \delta(\tau)]$, then we have a general definition of Henstock integral [4].

Setting $U(\tau,t) = f(\tau)t$ and $U(\tau,t) = f(\tau)g(t)$ where $f,g : [a,b] \to \mathbb{R}$ and $\tau, t \in [a,b]$, we obtain Riemann-type and Riemann-Stieltjes type integrals respectively for the functions f, g and a given Δ -division D of [a,b].

Considering $U(\tau, t) = f(\tau)t$ in Definition 2.2, we obtain the classical approximately continuous Perron integral.

This definition is given in a more general form because of the general form of the function U.

For a given function $U : [a, b] \times [a, b] \to \mathbb{R}$ and a tagged interval (τ, J) with $\tau \in J = [\alpha, \beta] \subset [a, b]$ we will use the notation

$$U(\tau, J) = U(\tau, \beta) - U(\tau, \alpha)$$
(2.1)

ON CONVERGENCE FOR THE GAP-INTEGRAL

for the point-interval function which corresponds to U.

Setting $U(\tau, t) = f(\tau)t$, $t \in [a, b]$, (2.1) becomes $U(\tau, J) = f(\tau)(\beta - \alpha) = f(\tau)|J|$ (|J| denotes the length of the interval $J = [\alpha, \beta]$).

Let $U : [a, b] \times [a, b] \to \mathbb{R}$ and let δ be a positive function on [a, b]. Let D be an ordinary full cover of an interval $I \subset [a, b]$, that is, a δ -fine division $D = (J, \tau)$ of the interval $I \subset [a, b]$. We define the following interval functions, if they exist.

$$V(I) = \sup(D) \sum U(\tau, J)$$

and

$$W(I) = \inf (D) \sum U(\tau, J),$$

where the supremum and the infimum are over all δ -fine divisions $D = (J, \tau)$ of $I \subset [a, b]$.

The functions V and W serve as major and minor functions for U in a particular form.

We remark that if f has the Locally Small Riemann Sum (LSRS) property, then in view of Theorem 17.3 from [4], there exists a positive function δ such that both V and W exist for $I \subset [a, b]$.

Let

$$\underline{D}V(t) = \sup_{t \in I \subset [a,b]} \inf_{\delta > 0} \frac{V(I)}{|I|}$$

and

$$\overline{D}W(t) = \inf_{\delta > 0} \sup_{t \in I \subset [a,b]} \frac{W(I)}{|I|},$$

where \underline{D} and \overline{D} denote respectively the lower and the upper derivative of V and W at $t \in [a, b]$, respectively.

With the notion of a partial division we have proved in [5] the following theorem.

Theorem 2.4. (Saks-Henstock Lemma) Let $U : [a,b] \times [a,b] \to \mathbb{R}$ be GAPintegrable over [a,b]. Then, given $\epsilon > 0$, there is an approximate full cover Δ of [a,b] such that for every Δ -division $D = \{([\alpha_{j-1}, \alpha_j], \tau_j); j = 1, 2, ..., q\}$ of [a,b], we have

$$\left|\sum_{j=1}^{q} \{U(\tau_j, \alpha_j) - U(\tau_j, \alpha_{j-1})\} - (GAP) \int_a^b U\right| < \epsilon.$$

Then, if $\{([\beta_j, \gamma_j], \zeta_j); j = 1, 2, ..., m\}$ represents a Δ -partial division of [a, b], we have

$$\left|\sum_{j=1}^{m} \left[\left\{ U(\zeta_j, \gamma_j) - U(\zeta_j, \beta_j) \right\} - (GAP) \int_{\beta_j}^{\gamma_j} U \right] \right| < \epsilon$$

The above theorem has an important use in the theory of generalized Perron integral.

3 Some Convergence Results.

We now give some convergence theorems for the GAP-integral.

Theorem 3.1. (Uniform Integrability Theorem) Let

- (i) $U, U_n : [a, b] \times [a, b] \rightarrow \mathbb{R}, n = 1, 2, \dots$ be such that $U_n \in GAP[a, b]$ for all $n = 1, 2, \dots$,
- (ii) there be an approximate full cover Δ_0 of [a, b] such that

$$\lim_{n \to \infty} [U_n(\tau, t_2) - U_n(\tau, t_1)] = U(\tau, t_2) - U(\tau, t_1)$$

for each $\tau \in [a, b]$, and for every interval-point pair $([t_1, t_2], \tau) \in \Delta_0$,

(iii) for every $\eta > 0$ there be an approximate full cover Δ of [a, b] such that

$$|S(U_n, D) - (GAP) \int_a^b U_n| < \eta$$

for every Δ -division D of [a, b] and every $n = 1, 2, \ldots$

Then $(GAP) \int_{a}^{b} U$ exists, and

$$\lim_{n \to \infty} (GAP) \int_{a}^{b} U_{n} = (GAP) \int_{a}^{b} U.$$

PROOF. Let $\epsilon > 0$ be given and $A_n = (GAP) \int_a^b U_n$. By (*iii*), there is an approximate full cover $\Delta \subseteq \Delta_0$ of [a, b] such that for every Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have

$$|S(U_n, D) - A_n| < \epsilon/2 \text{ for } n = 1, 2, \dots$$

376

ON CONVERGENCE FOR THE GAP-INTEGRAL

By (*ii*), for every fixed Δ -division D of [a, b] there exists a positive integer m_1 such that for $n > m_1$, we get $|S(U_n, D) - S(U, D)| =$

$$\left|\sum\{U_n(\tau,\beta) - U_n(\tau,\alpha)\} - \sum\{U(\tau,\beta) - U(\tau,\alpha)\}\right| < \epsilon/2$$

That is, $\lim_{n\to\infty} S(U_n, D) = S(U, D)$. Therefore, for any Δ -division D of [a, b] there is a positive integer m_1 such that for $n > m_1$ we have

$$|S(U,D) - A_n| \le |S(U,D) - S(U_n,D)| + |S(U_n,D) - A_n| < \epsilon/2 + \epsilon/2 = \epsilon$$
(3.1)

First, we get from (3.1) that for all positive integers $n, p > m_1$

$$|A_n - A_p| \le |A_n - S(U, D)| + |S(U, D) - A_p| < \epsilon + \epsilon = 2\epsilon.$$

Thus, $\{A_n\}$ is a Cauchy sequence in \mathbb{R} and let $A = \lim_{n \to \infty} A_n$. Then, given $\epsilon > 0$, there exists a positive integer m_2 such that

$$|A_n - A| < \epsilon \text{ for all } n > m_2. \tag{3.2}$$

Let $m = \max(m_1, m_2)$. Then we get from (3.1) and (3.2) for n > m, that

$$S(U,D) - A| \le |S(U,D) - A_n| + |A_n - A| < \epsilon + \epsilon = 2\epsilon.$$

Hence, $U \in GAP[a, b]$ with $(GAP) \int_a^b U$, and

$$\lim_{n \to \infty} (GAP) \int_{a}^{b} U_{n} = (GAP) \int_{a}^{b} U. \qquad \Box$$

Lemma 3.2. Let $U, V : [a, b] \times [a, b] \rightarrow \mathbb{R}$ be such that $U, V \in GAP[a, b]$ and if there be an approximate full cover Δ_0 of [a, b] such that

$$U(\tau, t) - U(\tau, \tau) \le V(\tau, t) - V(\tau, \tau)$$

for every interval-point pair $([\tau, t], \tau) \in \Delta_0$ where $\tau < t$ and

$$U(\tau,\tau) - U(\tau,t) \le V(\tau,\tau) - V(\tau,t)$$

for every interval-point pair $([t, \tau], \tau) \in \Delta_0$ where $t < \tau$, then

$$(GAP)\int_{a}^{b}U \leq (GAP)\int_{a}^{b}V.$$

PROOF. Let $\epsilon > 0$ be arbitrary. Since $U, V \in GAP[a, b]$ given $\epsilon > 0$, there exists an approximate full cover Δ of [a, b] with $\Delta \subseteq \Delta_0$ such that for every Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have

$$\begin{split} \left| \sum \{ U(\tau,\beta) - U(\tau,\alpha) \} - (GAP) \int_{a}^{b} U \right| &< \epsilon/2, \\ \left| \sum \{ V(\tau,\beta) - V(\tau,\alpha) \} - (GAP) \int_{a}^{b} V \right| &< \epsilon/2. \end{split}$$

These give

$$\begin{aligned} (GAP) \int_{a}^{b} U - \epsilon/2 &< \sum \{U(\tau, \beta) - U(\tau, \alpha)\} \\ &= \sum [\{U(\tau, \beta) - U(\tau, \tau)\} + \{U(\tau, \tau) - U(\tau, \alpha)\}] \\ &\leq \sum [\{V(\tau, \beta) - V(\tau, \tau)\} + \{V(\tau, \tau) - V(\tau, \alpha)\}] \\ &= \sum \{V(\tau, \beta) - V(\tau, \alpha)\} \\ &< (GAP) \int_{a}^{b} V + \epsilon/2. \end{aligned}$$

Since $\epsilon > 0$ is arbitrary, we obtain

$$(GAP)\int_{a}^{b}U \leq (GAP)\int_{a}^{b}V.$$

Theorem 3.3. (Monotone Convergence Theorem) Let

- (i) $U, U_n : [a, b] \times [a, b] \to \mathbb{R}, n = 1, 2, \dots$ be such that $U_n \in GAP[a, b]$ for all $n = 1, 2, \dots$ with sup $(GAP) \int_a^b U_n < \infty$,
- (ii) there be an approximate full cover Δ_0 of [a, b] such that

$$U_n(\tau, t) - U_n(\tau, \tau) \le U_{n+1}(\tau, t) - U_{n+1}(\tau, \tau)$$

for every interval-point pair $([\tau, t], \tau) \in \Delta_0$ where $\tau < t$ and

$$U_n(\tau, \tau) - U_n(\tau, t) \le U_{n+1}(\tau, \tau) - U_{n+1}(\tau, t)$$

for every interval-point pair $([t, \tau], \tau) \in \Delta_0$ where $t < \tau$, (n = 1, 2, ...),

(iii) there be an approximate full cover Δ' of [a, b] such that

$$\lim_{n \to \infty} [U_n(\tau, t_2) - U_n(\tau, t_1)] = U(\tau, t_2) - U(\tau, t_1)$$

for each $\tau \in [a, b]$ and every interval-point pair $([t_1, t_2], \tau) \in \Delta'$.

Then, $U \in GAP[a, b]$ and

$$\lim_{n \to \infty} (GAP) \int_{a}^{b} U_{n} = (GAP) \int_{a}^{b} U.$$

PROOF. Let $\epsilon > 0$ be given. Since each $U_n \in GAP[a, b]$ for each positive integer n, there is an approximate full cover Δ_n of [a, b] such that for any Δ_n -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have

$$\sum |\{U_n(\tau,\beta) - U_n(\tau,\alpha)\} - (GAP) \int_{\alpha}^{\beta} U_n| < \epsilon/2^n.$$

By (*iii*), given $\epsilon > 0$, for every fixed Δ' -division $D = ([\alpha, \beta], \tau)$ of [a, b], there exists an integer $M(\tau)$ such that whenever $m(\tau)$ is an integer with $m(\tau) \ge M(\tau)$ we have

$$|\{U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha)\} - \{U(\tau,\beta) - U(\tau,\alpha)\}| < \epsilon/2^{m(\tau)}$$

for every $\tau \in [a, b]$. Since $\{(GAP) \int_a^b U_n\}$ is non-decreasing by Lemma 3.2 and bounded above, $\lim_{n\to\infty} (GAP) \int_a^b U_n$ exists. Let $\lim_{n\to\infty} (GAP) \int_a^b U_n = A$. For each $\tau \in [a, b]$, we choose any integer $m(\tau) \geq M(\tau)$ and we take $\Delta = \Delta' \cap \Delta_0 \cap \Delta_{m(\tau)}$. Then, for any Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b], we have

$$\begin{split} & \left| \sum \{ U(\tau,\beta) - U(\tau,\alpha) \} - A \right| \\ \leq & \left| \sum [\{ U(\tau,\beta) - U(\tau,\alpha) \} - \{ U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha) \}] \right| \\ & + \sum \left| \{ U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha) \} - (GAP) \int_{\alpha}^{\beta} U_{m(\tau)} \right| \\ & + \left| \sum (GAP) \int_{\alpha}^{\beta} U_{m(\tau)} - A \right| \\ < \sum \epsilon / 2^{m(\tau)} + \sum \epsilon / 2^{m(\tau)} + \left| \sum (GAP) \int_{\alpha}^{\beta} U_{m(\tau)} - A \right|, \end{split}$$
(3.3)

where all the sums involved run over all elements of the division D ($\sum = (D) \sum$). Therefore, if we can show that the last term $|(D) \sum (GAP) \int_{\alpha}^{\beta} U_{m(\tau)} - A| < \epsilon$, then the proof will be complete.

The number of associated points τ in the division D is finite and so is the number of those different $m(\tau)$ in the above sum over D. Let p denote the

minimum of those $m(\tau)$ and q be the maximum. Then we have

$$(GAP)\int_{a}^{b} U_{p} = (D)\sum(GAP)\int_{\alpha}^{\beta} U_{p} \leq (D)\sum(GAP)\int_{\alpha}^{\beta} U_{m(\tau)}$$
$$\leq (D)\sum(GAP)\int_{\alpha}^{\beta} U_{q} = (GAP)\int_{a}^{b} U_{q} \leq A.$$

We can also find a positive integer m_0 such that

$$0 \le A - (GAP) \int_{a}^{b} U_m < \epsilon \text{ for all } m \ge m_0,$$

while defining $m(\tau)$ we always take $m(\tau) \ge m_0$ and so $p \ge m_0$. Hence

$$\left|\sum (GAP) \int_{\alpha}^{\beta} U_{m(\tau)} - A\right| = A - \sum (GAP) \int_{\alpha}^{\beta} U_{m(\tau)}$$
$$\leq A - \sum (GAP) \int_{\alpha}^{\beta} U_{p} = A - (GAP) \int_{a}^{b} U_{p} < \epsilon.$$

Therefore $U \in GAP[a, b]$ by (3.3) and

$$\lim_{n \to \infty} (GAP) \int_a^b U_n = A = (GAP) \int_a^b U.$$

In [5] the indefinite GAP-integral is defined as follows.

Definition 3.4. Let $U \in GAP[a, b]$. The function $\phi : [a, b] \to \mathbb{R}$ defined by

$$\phi(s) = (GAP) \int_a^s U, \ a < s \le b, \ \phi(a) = 0$$

is called the indefinite GAP-integral of U. For $[\alpha, \beta] \subset [a, b]$ put $\phi(\alpha, \beta) = \phi(\beta) - \phi(\alpha) = (GAP) \int_{\alpha}^{\beta} U$.

Theorem 3.5. (Basic Convergence Theorem) Let

- (i) $U_n: [a,b] \times [a,b] \to \mathbb{R}$ be GAP-integrable on [a,b] with the primitives ϕ_n , $n = 1, 2, \ldots$,
- (ii) there be an approximate full cover Δ' of [a, b] such that

$$\lim_{n \to \infty} [U_n(\tau, t_2) - U_n(\tau, t_1)] = U(\tau, t_2) - U(\tau, t_1)$$

for each $\tau \in [a, b]$ and every interval-point pair $([t_1, t_2], \tau) \in \Delta'$,

380

(iii) ϕ_n converge point-wise to a limit function ϕ .

Then $U \in GAP[a, b]$ with primitive ϕ if and only if for every $\epsilon > 0$ there is a function $M(\tau)$ defined on [a, b] taking integer values such that for infinitely many $m(\tau) \geq M(\tau)$ there is an approximate full cover Δ such that for any Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have

$$\left|\sum\{\phi_{m(\tau)}(\alpha,\beta)-\phi(\alpha,\beta)\}\right|<\epsilon$$

PROOF. Suppose $U \in GAP[a, b]$ with the primitive ϕ . Then there is an approximate full cover Δ_0 of [a, b] such that for any Δ_0 -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have

$$\left|\sum \left[\left\{U(\tau,\beta) - U(\tau,\alpha)\right\} - \phi(\alpha,\beta)\right]\right| < \epsilon.$$

Again, since $U_n \in GAP[a, b]$ with primitive ϕ_n , $n = 1, 2, \ldots$, there is an approximate full cover Δ_n of [a, b] such that for any Δ_n -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have

$$\left|\sum \left[\left\{U_n(\tau,\beta) - U_n(\tau,\alpha)\right\} - \phi_n(\alpha,\beta)\right]\right| < \epsilon/2^n$$

Given $\epsilon > 0$, for every fixed Δ' -division $D = ([\alpha, \beta], \tau)$ of [a, b], there exists an integer $M(\tau)$ such that whenever $m(\tau) \ge M(\tau)$ we have

$$|\{U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha)\} - \{U(\tau,\beta) - U(\tau,\alpha)\}| < \epsilon/2^{m(\tau)}$$

for every $\tau \in [a, b]$. Without any loss of generality, we may assume that $\Delta' = \Delta_1 \cap \Delta_2 \cap \cdots \cap \Delta_{m(\tau)}$. For each $\tau \in [a, b]$, we choose any integer $m(\tau) \geq M(\tau)$ and we take $\Delta = \Delta' \cap \Delta_0$. Then for any Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b], we have

$$\begin{split} & \left| \sum \{ \phi_{m(\tau)}(\alpha,\beta) - \phi(\alpha,\beta) \} \right| \\ \leq & \left| \sum [\phi_{m(\tau)}(\alpha,\beta) - \{ U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha) \}] \right| \\ & + \left| \sum [\{ U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha) \} - \{ U(\tau,\beta) - U(\tau,\alpha) \}] \right| \\ & + \left| \sum [\{ U(\tau,\beta) - U(\tau,\alpha) \} - \phi(\alpha,\beta)] \right| \\ < \epsilon + \sum \epsilon / 2^{m(\tau)} + \epsilon < \epsilon + \epsilon + \epsilon = 3\epsilon. \end{split}$$

Conversely, suppose that the condition is satisfied. Then for every $\epsilon > 0$ there is a function $M(\tau)$ defined on [a, b] taking integer values such that for infinitely many $m(\tau) \ge M(\tau)$ there is an approximate full cover Δ such that for any Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b] we have

$$\left|\sum \{\phi_{m(\tau)}(\alpha,\beta) - \phi(\alpha,\beta)\}\right| < \epsilon.$$

Also, for every fixed Δ' -division $D = ([\alpha, \beta], \tau)$ of [a, b] we can find $m(\tau) \ge M(\tau)$ such that

$$|\{U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha)\} - \{U(\tau,\beta) - U(\tau,\alpha)\}| < \epsilon/2^{m(\tau)}$$

for every $\tau \in [a, b]$. Using the same notation as in the first part, we choose $\Delta = \Delta' \cap \Delta_0, \tau \in [a, b]$. Then for any Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b], we have

$$\begin{split} & \left| \sum \left[\{ U(\tau,\beta) - U(\tau,\alpha) \} - \phi(\alpha,\beta) \right] \right| \\ \leq & \left| \sum \left[\{ U(\tau,\beta) - U(\tau,\alpha) \} - \{ U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha) \} \right] \right| \\ & + \left| \sum \left[\{ U_{m(\tau)}(\tau,\beta) - U_{m(\tau)}(\tau,\alpha) \} - \phi_{m(\tau)}(\alpha,\beta) \right] \right| \\ & + \left| \sum \{ \phi_{m(\tau)}(\alpha,\beta) - \phi(\alpha,\beta) \} \right| < \epsilon + \epsilon + \epsilon = 3\epsilon. \end{split}$$

Hence U is GAP-integrable on [a, b].

Theorem 3.6. (Mean Convergence Theorem) Let

- (i) $U_n : [a,b] \times [a,b] \to \mathbb{R}$ be GAP-integrable on [a,b] with the primitives ϕ_n , $n = 1, 2, \dots$,
- (ii) there be an approximate full cover Δ' of [a, b] such that

$$\lim_{n \to \infty} [U_n(\tau, t_2) - U_n(\tau, t_1)] = U(\tau, t_2) - U(\tau, t_1)$$

for each $\tau \in [a, b]$ and every interval-point pair $([t_1, t_2], \tau) \in \Delta'$,

- (iii) [a,b] be the union of a sequence of closed sets X_i , i = 1, 2, ..., and for every i and $\epsilon > 0$ there exist an integer N and an approximate full cover Δ of [a,b] such that for any Δ -division $D = ([\alpha,\beta],\tau)$ of [a,b] tagged in X_i , for each i we have $\left|\sum \{\phi_n(\alpha,\beta) - \phi(\alpha,\beta)\}\right| < \epsilon$ for some function ϕ , whenever $n \ge N$,
- (iv) the primitives ϕ_n converge uniformly to ϕ on [a, b].

Then $U \in GAP[a, b]$ with the primitive ϕ and

$$\lim_{n \to \infty} (GAP) \int_a^b U_n = (GAP) \int_a^b U.$$

PROOF. Let $\epsilon > 0$. By (*iii*) above, for every *i* and *j* there exists an integer N_{ij} and an approximate full cover Δ_{ij} of [a, b] such that for any Δ_{ij} -division $D = ([\alpha, \beta], \tau)$ of [a, b] with $\tau \in X_i$ we have

$$\left|\sum \{\phi_n(\alpha,\beta) - \phi(\alpha,\beta)\}\right| < \epsilon/2^{i+j} \text{ for all } n \ge N_{ij}.$$

Take n = n(i, j) so that the above inequality holds. We may assume that for each i, $\{\phi_{n(i,j)}\}$ is a subsequence of $\{\phi_{n(i-1,j)}\}$. Now consider $\phi_{n(j)} = \phi_{n(j,j)}$ in place of ϕ_n and write $Y_1 = X_1$ and

$$Y_i = X_i - (X_1 \cup X_2 \cup \dots \cup X_{i-1})$$
 for $i = 2, 3, \dots$.

Put $M(\tau) = n(i)$ when $\tau \in Y_i$.

We note that there are infinitely many $m(\tau) \ge M(\tau)$, namely all $n(i) \ge n(j)$. If $m(\tau)$ takes values in $\{n(j) : j \ge i\}$ when $m(\tau) \ge M(\tau) = n(i)$, we put $\Delta = \Delta_{m(\tau)}$. Then for any Δ -division $D = ([\alpha, \beta], \tau)$ of [a, b] with $\tau \in Y_i$, for some i, we have

$$\left|\sum\{\phi_{m(\tau)}(\alpha,\beta)-\phi(\alpha,\beta)\}\right| \leq \sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\epsilon/2^{i+j} = \epsilon.$$

This means that the condition of the basic convergence theorem is satisfied. Hence $U \in GAP[a, b]$ with the primitive ϕ and

$$\lim_{n \to \infty} (GAP) \int_a^b U_n = (GAP) \int_a^b U.$$

Acknowledgment. The authors are grateful to the referee for his valuable suggestions for improving the paper.

References

 J. C. Burkill, The Approximately Continuous Perron Integral, Math. Zeit., 34 (1931), 270–278.

- [2] P. S. Bullen, The Burkill Approximately Continuous Integral, J. Australian, Math. Soc. Ser. A., 35 (1983), 236–53.
- [3] R. Henstock, *Linear Analysis*, Butterworths, London, (1983).
- [4] P. Y. Lee, Lanzhou Lectures on Henstock Integration, World Scientific, (1989).
- [5] D. K. Ganguly, Ranu Mukherjee, *The Generalized Approximate Perron Integral*, communicated.
- [6] Š. Schwabik, Generalized Ordinary Differential Equations, World Scientific, Singapore, (1992).