Marek Małolepszy, Institute of Mathematics, Łódź Technical University, al. Politechniki 11, 90-924 Łódź, Poland. e-mail: marekmal@ck-sg.p.lodz.pl

ON NATURAL FUNCTIONS AND LIPSCHITZ FUNCTIONS

Abstract

We give certain characterizations of the so-called natural functions introduced by Chistyakov. We show that the set of natural functions from [a, b] into a normed space X is small in the porosity sense in the set of uniform Lipschitz 1 functions with the norm inherited from the space of BV functions. The sizes of other classes of Lipschitz functions in BV are also established.

1 Some Characterizations of Natural Functions

We use the following notation: $E \subset \mathbb{R}$ is a non-empty bounded set; for $t \in E$ we put $E_t^- = \{s \in E \mid s \leq t\}$ and $E_t^+ = \{s \in E \mid t \leq s\}$; for $a, b \in E$ $(a \leq b)$ let $E_a^b = \{s \in E \mid a \leq s \leq b\}$; X is a metric space with metric d, and X^E is the set of all functions from E into X. If $f \in X^E$, we denote by $\omega(f, E) = \sup\{d(f(t), f(s)) \mid t, s \in E\}$ the diameter of the image f(E), called the *oscillation* of f on E. Let $\mathbb{N} = \{1, 2, ...\}$ and let \mathbb{Q} stand for the set of all rationals.

Let $\mathcal{T}(E) = \{T = \{t_i\}_{i=0}^m \subset E \mid m \in \mathbb{N}, t_{i-1} \leq t_i, i = 1, \dots, m\}$ be the set of all partitions of E by finite ordered collections of points in E. For a function $f: E \to X$ and a partition $T = \{t_i\}_{i=0}^m \in \mathcal{T}(E)$, we set

$$V(f,T) = \sum_{i=1}^{m} d(f(t_i), f(t_{i-1}))$$

and we extend this definition to the entire set E by the formula

$$V(f, E) = \sup \{ V(f, T) \mid T \in \mathcal{T}(E) \}.$$

We call the quantity $V(f, E) \in [0, \infty]$ the total variation (in the sense of Jordan) of the function f on E. If V(f, E) is finite, then we call f a function

Key Words: bounded variation, Lipschitz functions, natural functions.

Mathematical Reviews subject classification: 26A45, 26A16

Received by the editors June 14, 2002

²⁴⁹

of bounded variation on E. We denote the set of all functions of bounded variation on E by BV(E). Functions of the class BV(E) were considered by V. V. Chistyakov in [1], [2] and [3]. He called a function $g: E \to X$ natural if $V(g, E_a^b) = b - a$ for all $a, b \in E$, $a \leq b$. Obviously a natural function is a Lipschitz function and $\mathcal{L}ip(g)$, the smallest Lipschitz constant for g, equals 1. Chistyakov proved the following.

Theorem 1. [1, Thm 3.1] A function $f: E \to X$ has bounded variation if and only if there exists a non-decreasing bounded function $\varphi: E \to \mathbb{R}$ and a natural function $g: \varphi(E) \to X$ such that $f = g \circ \varphi$ on E.

Let us recall some properties of variation.

Proposition 1. [1, Prop 2.1] For an arbitrary function $f: E \to X$ we have:

- (V1) if $t, s \in E$, then $d(f(t), f(s)) \le \omega(f, E) \le V(f, E)$;
- (V2) if $t \in E$, then $V(f, E) = V(f, E_t^-) + V(f, E_t^+)$;
- (V3) $V(f, E) = \sup\{V(f, E_a^b) \mid a, b \in E, a \le b\};$
- (V4) if $A \subset B \subset E$, then $\mathcal{T}(A) \subset \mathcal{T}(B)$ and $V(f, A) \leq V(f, B)$.

Let us start with the following simple characterization.

Proposition 2. Let $f: E \to X$. The following conditions are equivalent:

- (a) f is a natural function;
- (b) $V(f, E_x^-) = x + c, x \in E, where c = -\inf(E);$
- (c) f is a Lipschitz function such that $\mathcal{L}ip(f) \leq 1$ and $V(f, E) = \sup(E) \inf(E)$.

PROOF. (a) \Rightarrow (b) By property (V3) in Proposition 1 and (a) we obtain

$$V(f, E) = \sup\{V(f, E_a^b) \mid a, b \in E, a \le b\}$$

= sup{(b - a) | a, b \in E, a \le b} = sup(E) - inf(E).

So we have $V(f, E_x^-) = x - \inf(E) = x + c$, where $c = -\inf(E)$.

(b) \Rightarrow (c) By (b) we get $V(f, E) = \sup(E) - \inf(E)$. We will show that f is a Lipschitz function such that $\mathcal{L}ip(f) \leq 1$. Let $x, y \in E, x \leq y$. By (V1), (V2) in Proposition 1 and (b), we have

$$d(f(x), f(y)) \le V(f, E_x^y) = V(f, E_y^-) - V(f, E_x^-) = y + c - x - c = y - x.$$

Consequently, f is a Lipschitz function and $\mathcal{L}ip(f) \leq 1$.

(c) \Rightarrow (a) Suppose that f is not a natural function. Then there exist $x, y \in E$, x < y, such that $V(f, E_x^y) < y - x$. Thus by condition (V2) we have

$$sup(E) - inf(E) = V(f, E) = V(f, E_x^-) + V(f, E_x^y) + V(f, E_y^+)
\leq x - inf(E) + V(f, E_x^y) + sup(E) - y
< x - inf(E) + y - x + sup(E) - y
= sup(E) - inf(E).$$

This contradiction completes the proof.

We put $V_a^b f = V(f, [a, b])$. The set of all real-valued absolutely continuous functions on [a, b] will be written as AC.

Corollary 1. Let $f: [a,b] \to \mathbb{R}$. Then f is a natural function if and only if $f \in AC$ and |f'(x)| = 1 a.e. on [a,b].

PROOF. We assume that f is a natural function. Then $f \in AC$ and by [4, Thm 8.14] we have $(V_a^x f)' = |f'(x)|$ a.e. on [a, b]. From this and Proposition 2 it follows that $|f'(x)| = (V_a^x f)' = (x - a)' = 1$ a.e. on [a, b]. Now, we assume that $f \in AC$ and |f'(x)| = 1 a.e. on [a, b]. By [4, Thm 8.14] we get $V_a^x f = \int_a^x |f'| = x - a$. Applying Proposition 2 completes the proof. \Box

From now on, we assume that $X \neq \{0\}$ is a normed space over \mathbb{R} , with the norm $|\cdot|$.

Theorem 2. Let $f: [a,b] \to X$ be a function with $0 < V_a^b f < \infty$. The following conditions are equivalent:

- (a) f/α is a natural function, where $\alpha = V_a^b f/(b-a)$;
- (b) f is continuous at points a and b, and there exists a set D dense in [a, b] such that

$$(\forall t, s, p, q \in D) \ (t < s, \ p < q, \ s - t \le q - p) \Rightarrow V_t^s f \le V_p^q f;$$

(c) $(\forall t, s, p, q \in [a, b])$ $(t < s, p < q, s - t = q - p) \Rightarrow V_t^s f = V_p^q f.$

PROOF. (a) \Rightarrow (b) This results from the definition of a natural function and (V4) in Proposition 1.

(b) \Rightarrow (c) First, we will show that f is continuous on [a, b]. Assume to the contrary that $x_0 \in (a, b)$ is a discontinuity point of f. (By assumption (b) we

know that f is continuous at points a and b.) Let $x'_n, x''_n \in D$ be such that $x'_n < x_0 < x''_n$ for all $n \in \mathbb{N}$ and $x'_n \to x_0, x''_n \to x_0$. Since f is discontinuous at x_0 , we have $\sup_n \omega(f, [x'_n, x''_n]) = \varepsilon > 0$. Thus from Proposition 1 (V1) it follows that $V_{x'_n}^{x''_n} f \ge \varepsilon$ for all n. On the other hand, since $f \in BV([a, b])$ and D is dense in [a, b], there exist points $x_1, x_2 \in D$ such that $x_1 < x_2$ and $V_{x_1}^{x_2} f < \varepsilon$. Choosing n such that $x''_n - x'_n \le x_2 - x_1$, we obtain a contradiction to (b). From now on f is assumed continuous on [a, b].

Let $t, s, p, q \in (a, b)$ and t < s, p < q, s - t = q - p. Pick numbers $t'_n, t''_n, s'_n, s''_n, p''_n, q''_n, q''_n$ in D so that

$$\begin{split} t'_n &\leq t \leq t''_n \leq s'_n \leq s \leq s''_n, \quad p'_n \leq p \leq p''_n \leq q'_n \leq q \leq q''_n, \\ t'_n &\rightarrow t, \ t''_n \rightarrow t, \ s'_n \rightarrow s, \ s''_n \rightarrow s, \ p'_n \rightarrow p, \ p''_n \rightarrow p, \ q'_n \rightarrow q, \ q''_n \rightarrow q. \end{split}$$

We may additionally assume that all sequences $\{t_n'\}, \ldots, \{q_n''\}$ are monotonic and that we have $s_n'' - t'_n \ge q'_n - p''_n \ge 0$ and $q''_n - p'_n \ge s'_n - t''_n \ge 0$ for all n. By (b), it follows that $V_{p''_n}^{q'_n} f \le V_{t'_n}^{s''_n} f$ and $V_{t''_n}^{s'_n} f \le V_{p'_n}^{q''_n} f$. Since f is continuous, we have $V_p^q f \le V_t^s f \le V_p^q f$. Consequently, $V_t^s f = V_p^q f$.

Let $t, s, p, q \in [a, b]$ and t < s, p < q, s - t = q - p. Choose $\varepsilon \in (0, s - t)$. By the first part of the proof we have $V_{t+\frac{\varepsilon}{2}}^{s-\frac{\varepsilon}{2}}f = V_{p+\frac{\varepsilon}{2}}^{q-\frac{\varepsilon}{2}}f$. Since f is continuous, taking $\varepsilon \to 0$ we obtain $V_t^s f = V_p^q f$.

(c) \Rightarrow (a) Put $\alpha = V_a^b f/(b-a)$. Let *n* be a positive integer and let $x_k = a + k(b-a)/n$ for k = 0, ..., n. Since $\sum_{k=1}^n V_{x_{k-1}}^{x_k} f = V_a^b f$ and $V_{x_{k-1}}^{x_k} f = V_{x_{j-1}}^{x_j} f$ for any $k, j \in \{1, ..., n\}$, we have $V_{x_{k-1}}^{x_k} f = \alpha(b-a)/n = \alpha(x_k - x_{k-1})$ for every *k*. Observe that the function $\Phi(x) = V_a^x f$ is continuous on [a, b]. Let $x \in [a, b), \varepsilon > 0$. Choose a positive integer *n* such that $\alpha(b-a)/n \le \varepsilon$. Pick x_{k-1}, x_k such that $x \in [x_{k-1}, x_k)$. For each $t \in [x, x_k)$ we have

$$|\Phi(t) - \Phi(x)| = V_a^t f - V_a^x f = V_x^t f \le V_{x_{k-1}}^x f = \alpha(b-a)/n \le \varepsilon.$$

Hence f is continuous from the right at x. Analogously, f is continuous from the left at each point $x \in (a, b]$. The set $D = \{a + k(b - a)/n \mid n \in \mathbb{N}, k \in \{0, \ldots, n\}\}$ is dense in [a, b]. Let $x \in [a, b]$ and pick a sequence $x_k \in D$, $k \in \mathbb{N}, x_k \to x$. We have $\Phi(x) = \lim_{k \to \infty} \alpha(x_k - a) = \alpha(x - a)$. Hence $V_a^x(f/\alpha) = (V_a^x f)/\alpha = x - a$. By Proposition 2 we deduce that f/α is a natural function.

Remarks. 1. The assumption E = [a, b] is essential in Theorem 2. Indeed,

let $E = \{0, 1, 3\}$, and let a function $f: E \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } x = 1\\ 4 & \text{if } x = 3 \end{cases}$$

Then f satisfies the assumptions (b) and (c) in Theorem 2, but f/α is not a natural function for any $\alpha > 0$.

2. We may write "for every set D dense in [a, b]" instead of "there exists a set D dense in [a, b]" in Theorem 2(b).

3. The assumption that f is continuous at points a and b is essential in Theorem 2(b). Indeed, let $f: [1, \sqrt{2}] \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} x & \text{if } x \in [1,\sqrt{2}] \\ 1 & \text{if } x = \sqrt{2} \end{cases}$$

and put $D = \mathbb{Q} \cap [1, \sqrt{2}]$. Then f/α is not a natural function (f is not continuous) but the final condition in the statement (b) is satisfied.

4. We can replace the statement (b) in Theorem 2 by the following. There exists a set D dense in [a, b] with $a, b \in D$ and such that

$$(\forall t, s, p, q \in D) \ (t < s, p < q, s - t \leq q - p) \Rightarrow V_t^s f \leq V_p^q f.$$

2 Porosity Sizes of Some Classes of Lipschitz Functions

Recall the definition of a strongly porous set [5]. Let P be a metric space. The open ball with center $x \in P$ and radius r > 0 will be denoted by B(x, r). Let $M \subset P, x \in P$ and R > 0. Then we denote by $\gamma(x, R, M)$ the supremum of the set of all r > 0 for which there exists $z \in P$ such that $B(z, r) \subset B(x, R) \setminus M$. The number $p(M, x) = 2 \cdot \limsup_{R \to 0^+} \frac{\gamma(x, R, M)}{R}$ is called the *porosity* of M at x. The set M is called *porous* (strongly porous) at x if p(M, x) > 0 (p(M, x) = 1). The set M is (strongly) porous if it is (strongly) porous at each of its points. Obviously, a porous set is nowhere dense.

If one puts $||f|| = V_a^b f + |f(a)|$ for $f: [a, b] \to X$, $f \in BV([a, b])$, then $|| \cdot || : BV([a, b]) \to [0, \infty)$ is a norm on BV([a, b]). In fact BV([a, b]) is a Banach space provided X is a Banach space [3]. We will consider various subsets of the space BV([a, b]). We will study their sizes in the language of porosity or Baire category.

In the sequel, we denote the set consisting of all natural functions from [a, b] to X by \mathcal{N} . We write $\alpha \mathcal{N} = \{f : [a, b] \to X \mid (f/\alpha) \in \mathcal{N}\}$ for $\alpha > 0$. Functions

from $\alpha \mathcal{N}$ will be called α -natural on [a, b]. We denote the set consisting of all Lipschitz functions from [a, b] to X, with $\mathcal{L}ip(f) = \alpha$ by $\mathcal{L}ip(\alpha)$, and the set consisting of all Lipschitz functions by $\mathcal{L}ip$. We say that $f: [a, b] \to X$ satisfies the uniform Lipschitz condition with constant α if $\mathcal{L}ip(f|_{[c,d]}) = \alpha$ for all $c, d \in [a, b], c < d$. We denote by u- $\mathcal{L}ip(\alpha)$ the set of all functions which satisfy the uniform Lipschitz condition with constant α .

Lemma 1. If $\alpha > 0$, then $\alpha \mathcal{N} \subset u$ - $\mathcal{L}ip(\alpha)$.

PROOF. Let $f \in \alpha \mathcal{N}$ and $\alpha > 0$. By (V1) in Proposition 1 we have

$$|f(t) - f(s)| \le V_t^s f = \alpha(s - t)$$
 for all $t, s \in [a, b], t \le s$.

Hence $\mathcal{L}ip(f) \leq \alpha$.

Let $c, d \in [a, b]$ and $c \leq d$. For a partition $T = \{t_i\}_{i=0}^m$ of $[c, d], c \leq t_0 \leq \cdots \leq t_m \leq d$, we have

$$V(f,T) = \sum_{i=1}^{m} |f(t_i) - f(t_{i-1})| \le \sum_{i=1}^{m} \mathcal{L}ip(f|_{[c,d]})(t_i - t_{i-1})$$

$$\le \mathcal{L}ip(f|_{[c,d]})(d-c) \le \alpha(d-c).$$

Hence

$$\alpha(d-c) = V_c^d f \le \mathcal{L}ip(f|_{[c,d]})(d-c) \le \alpha(d-c).$$

Thus we obtain $\mathcal{L}ip(f|_{[c,d]}) = \alpha$ and $\alpha \mathcal{N} \subset u - \mathcal{L}ip(\alpha)$.

By a *Cantor set* in [a, b] we mean any perfect nowhere dense subset C of [a, b] with $a, b \in C$.

Lemma 2. Let $\beta > 0$ and $v: [a, b] \to X$, $v \in \bigcup_{0 \le \alpha \le \beta} \mathcal{L}ip(\alpha)$. Let C be a Cantor set in [a, b]. Let $g: [a, b] \to X$ be a function equal to v(x) for $x \in C$, and defined on a component (c, d) of $C^c = [a, b] \setminus C$ as follows. Fix $z \in X$ with |z| = 1. Put

$$w = \begin{cases} z & \text{if } v(c) = v(d) \\ \frac{v(d) - v(c)}{|v(d) - v(c)|} & \text{if } v(c) \neq v(d) \end{cases}$$

and

$$s = \frac{c+d}{2} + \frac{|v(d) - v(c)|}{2}$$

Define

$$g(x) = \begin{cases} \beta(x-c)w + v(c) & \text{if } x \in (c,s] \\ \beta(d-x)w + v(d) & \text{if } x \in (s,d). \end{cases}$$

Then $g \in u$ - $\mathcal{L}ip(\beta)$. Moreover, if v is constant on [a, b] and $\mu(C) > 0$, then $V_a^b g = \beta \mu(C^c)$.

PROOF. Let (c, d) be a component of C^c . The function $g|_{[c,d]}$ is β -natural on [c,d] which results from the definition of g. Let $x, y \in [a, b], x < y$. Then there exist $c, d \in [x, y], c < d$, such that $(c, d) \subset C^c$. Observe that $\mathcal{L}ip(g|_{[x,y]}) \geq \beta$. We will show that $|g(y) - g(x)| \leq \beta(y - x)$. If $x, y \in C$, then by the definition of g we obtain $|g(y) - g(x)| = |v(y) - v(x)| \leq \beta(y - x)$. Now, let $x \in C$ and $y \in C^c$. Pick the component (c_y, d_y) of C^c such that $y \in (c_y, d_y)$. We obtain $|g(y) - g(x)| \leq |g(y) - g(c_y)| + |g(c_y) - g(x)| \leq \beta(y - c_y) + \beta(c_y - x) = \beta(y - x)$. Now, let x and y belong to different components (c_x, d_x) and (c_y, d_y) of C^c . Pick $p \in C$ such that $d_x . By the previous part of the proof we have <math>|g(y) - g(x)| \leq |g(y) - g(p)| + |g(p) - g(x)| \leq \beta(y - p) + \beta(p - x) = \beta(y - x)$. Hence $\mathcal{L}ip(g|_{[x,y]}) = \beta$ and thus $g \in u$ - $\mathcal{L}ip(\beta)$.

Now, assume that v is constant on [a, b] and $\mu(C) > 0$. Let $(c_i, d_i), i \in \mathbb{N}$, be all components of C^c . Since g is constant on C and $(g/\beta)|_{[c_i, d_i]}$ is natural for all $i \in \mathbb{N}$, we have $V_a^b g = \beta \sum_{i=1}^{\infty} (d_i - c_i) = \beta \mu(C^c)$.

Remark 5. If $\mu(C) = 0$ and v is constant in the Lemma 2, then $g \in \beta \mathcal{N}$. This results from $\mu(C) = 0$ and the definition of g.

Theorem 3. Let $\emptyset \neq I \subset (0,\infty)$. Then $\bigcup_{\alpha \in I} \alpha \mathcal{N}$ is strongly porous in $\bigcup_{\alpha \in I} u - \mathcal{L}ip(\alpha)$.

PROOF. By Lemma 1 we get $\bigcup_{\alpha \in I} \alpha \mathcal{N} \subset \bigcup_{\alpha \in I} u - \mathcal{L}ip(\alpha)$. Let $f \in \bigcup_{\alpha \in I} \alpha \mathcal{N}$; i.e., there exists $\alpha_0 \in I$ such that $f \in \alpha_0 \mathcal{N}$. Let $0 < R < \alpha_0(b-a)$. Define a function $v \colon [a,b] \to X$ by $v(x) = f(b - \frac{R}{2\alpha_0})$ for all $x \in [a,b]$. Consider a Cantor set in $[b - \frac{R}{2\alpha_0}, b]$ with $\mu(C) = \frac{R}{2\alpha_0} - \frac{1}{n\alpha_0}$, where $n \in \mathbb{N}$ is chosen so that $\frac{R}{4} > \frac{1}{n}$. Let $g \colon [b - \frac{R}{2\alpha_0}, b] \to X$ be a function defined as in Lemma 2, with $\beta = \alpha_0$. Consider a function $h \colon [a,b] \to X$ given by

$$h(x) = \begin{cases} f(x) & \text{if } x \in [a, b - \frac{R}{2\alpha_0}) \\ g(x) & \text{if } x \in [b - \frac{R}{2\alpha_0}, b]. \end{cases}$$

From the definition of h it follows that $h \in \bigcup_{\alpha \in I} u \mathcal{L}ip(\alpha) \setminus \bigcup_{\alpha \in I} \alpha \mathcal{N}$. We will show that $h \in B(f, R)$. By Lemma 2 and the definition of $\alpha \mathcal{N}$ we have

$$\begin{split} \| h - f \| = V_{b - \frac{R}{2\alpha_0}}^b (h - f) + |(h - f)(a)| &\leq V_{b - \frac{R}{2\alpha_0}}^b h + V_{b - \frac{R}{2\alpha_0}}^b f \\ &= \frac{1}{n} + \alpha_0 \frac{R}{2\alpha_0} = \frac{1}{n} + \frac{R}{2} < R. \end{split}$$

Now, we will show that $B(h, \frac{R}{2} - \frac{1}{n}) \subset B(f, R)$. Let $z \in B(h, \frac{R}{2} - \frac{1}{n})$. We have

$$||z - f|| \le ||z - h|| + ||h - f|| < \frac{R}{2} - \frac{1}{n} + \frac{1}{n} + \frac{R}{2} = R.$$

The ball $B(h, \frac{R}{2} - \frac{1}{n})$ does not contain functions from $\bigcup_{\alpha \in I} \alpha \mathcal{N}$. Indeed, let $\beta > 0$ and $z \in \beta \mathcal{N}$. First, we assume that $\beta > \alpha_0$. We obtain

$$\begin{aligned} \| \ z - h \ \| = V_a^b(z - h) + |(z - h)(a)| &\ge V_{b - \frac{R}{2\alpha_0}}^b(z - h) \\ &\ge V_{b - \frac{R}{2\alpha_0}}^b z - V_{b - \frac{R}{2\alpha_0}}^b h = \beta \frac{R}{2\alpha_0} - \frac{1}{n} > \frac{R}{2} - \frac{1}{n}. \end{aligned}$$

If $0 < \beta \leq \alpha_0$, then

$$\begin{split} \| z - h \| = V_a^b(z - h) + |(z - h)(a)| &\geq V_a^b(z - h) \\ = V_a^{b - \frac{R}{2\alpha_0}}(z - h) + V_{b - \frac{R}{2\alpha_0}}^b(z - h) \\ &\geq (\alpha_0 - \beta)(b - \frac{R}{2\alpha_0} - a) + \beta \frac{R}{2\alpha_0} - \frac{1}{n} \\ = \beta(\frac{R}{2\alpha_0} - b + \frac{R}{2\alpha_0} + a) + \alpha_0(b - \frac{R}{2\alpha_0} - a) - \frac{1}{n} \\ = \beta(a - b + \frac{R}{\alpha_0}) + \alpha_0(b - \frac{R}{2\alpha_0} - a) - \frac{1}{n}. \end{split}$$

Since $(a-b+\frac{R}{\alpha_0}) < 0$, the sum $\beta(a-b+\frac{R}{\alpha_0}) + \alpha_0(b-\frac{R}{2\alpha_0}-a) - \frac{1}{n}$ is minimal for $\beta = \alpha_0$ and its minimal value equals $\frac{R}{2} - \frac{1}{n}$. Hence, we have

$$\gamma(f, R, \bigcup_{\alpha \in I} \alpha \mathcal{N}) \ge \sup\{\frac{R}{2} - \frac{1}{n} \mid n \in \mathbb{N}, \ n > \frac{4}{R}\} = \frac{R}{2}.$$

Consequently, $p(\bigcup_{\alpha \in I} \alpha \mathcal{N}, f) \ge 2 \frac{(R/2)}{R} = 1.$

Corollary 2. The set \mathcal{N} is strongly porous in u- $\mathcal{L}ip(1)$.

Finally, we will compare the porous sizes of sets u- $\mathcal{L}ip(\beta)$, $\mathcal{L}ip(\alpha)$ and $\mathcal{L}ip$. **Lemma 3.** Let $\beta > 0$ and $c, d \in [a, b]$, c < d. Then $B = \{f : [a, b] \rightarrow X \mid \mathcal{L}ip(f|_{[c,d]}) \leq \beta\}$ is closed.

PROOF. Let $f_n \in B$ for all $n \in \mathbb{N}$ and $f_n \to f$. Hence $V_a^b(f_n - f) \to 0$. Let $x, y \in [c, d]$ and $\varepsilon > 0$. Pick an $n \in \mathbb{N}$ such that $V_a^b(f_n - f) < \varepsilon$. By (V1) in Proposition 1 we have

$$|(f_n - f)(y) - (f_n - f)(y)| \le V_a^b(f_n - f) < \varepsilon.$$

Hence

$$|f(y) - f(x)| < \varepsilon + |f_n(y) - f_n(x)|.$$

Because $f_n \in B$, we conclude that $|f(y) - f(x)| < \varepsilon + \beta |y - x|$. Taking $\varepsilon \to 0$ we obtain $|f(y) - f(x)| \le \beta |y - x|$.

Theorem 4. Let $\beta > 0$. Then the set u- $\mathcal{L}ip(\beta)$ is a dense G_{δ} (thus nonporous and residual) set in the closed subspace $\bigcup_{0 \le \alpha \le \beta} \mathcal{L}ip(\alpha)$ of BV([a, b]).

PROOF. From Lemma 3 it follows that $\bigcup_{0 \leq \alpha \leq \beta} \mathcal{L}ip(\alpha)$ is a closed subspace of BV([a, b]). First, we will prove that $u - \mathcal{L}ip(\beta)$ is dense. Let $v \in \bigcup_{0 \leq \alpha \leq \beta} \mathcal{L}ip(\alpha)$ and $\varepsilon > 0$. Consider a Cantor set in [a, b] with $\mu(C) = b - a - \frac{1}{n}$, where $n \in \mathbb{N}$ is chosen such that $\frac{1}{n} < \frac{\varepsilon}{2\beta}$. Let $g \in u - \mathcal{L}ip(\beta)$ denote the function defined in Lemma 2. We have (v - g)(x) = 0 for all $x \in C$ and the both v, g are Lipschitz functions such that $\mathcal{L}ip(v) \leq \beta$, $\mathcal{L}ip(g) = \beta$. Hence $\mathcal{L}ip(v - g) \leq 2\beta$. Let $(c_i, d_i), i \in \mathbb{N}$, denote the components of $C^c = [a, b] \setminus C$. Then

$$|v - g|| = V_a^b(v - g) + |(v - g)(a)| = V_a^b(v - g)$$

$$\leq 2\beta \sum_{i=1}^{\infty} (d_i - c_i) = 2\beta \mu(C^c) = 2\beta \frac{1}{n} < \varepsilon.$$

Hence u- $\mathcal{L}ip(\beta)$ is dense in $\bigcup_{0 < \alpha < \beta} \mathcal{L}ip(\alpha)$.

Now, we will show that $u - \mathcal{L}ip(\beta)$ is G_{δ} . Let $\mathbb{Q}^* = ([a, b] \cap \mathbb{Q}) \cup \{a, b\}$. List all pairs $(c, d) \in \mathbb{Q}^* \times \mathbb{Q}^*$ with c < d as (c_i, d_i) for $i \in \mathbb{N}$. We let $A_i = \{f : [a, b] \to X \mid \mathcal{L}ip(f|_{[c_i, d_i]}) = \beta\}$ for all $i \in \mathbb{N}$. It is easy to prove that $u - \mathcal{L}ip(\beta) = \bigcap_{i=1}^{\infty} A_i$. Finally, we will show that A_i are of type G_{δ} for all $i \in \mathbb{N}$. Choose $n_0 \in \mathbb{N}$ such that $\beta - \frac{1}{n_0} > 0$. We let

$$B_{i} = \{f \colon [a, b] \to X \mid \mathcal{L}ip(f|_{[c_{i}, d_{i}]}) \leq \beta\},\$$

$$C_{i} = \{f \colon [a, b] \to X \mid \mathcal{L}ip(f|_{[c_{i}, d_{i}]}) < \beta\},\$$

$$C_{i}^{n} = \{f \colon [a, b] \to X \mid \mathcal{L}ip(f|_{[c_{i}, d_{i}]}) \leq \beta - \frac{1}{n}\}$$

for all $i \in \mathbb{N}$ and $n \ge n_0$, $n \in \mathbb{N}$. We have $C_i = \bigcup_{n=n_0}^{\infty} C_i^n$. Thus by Lemma 3, the set C_i is F_{σ} . Then we have

$$A_i = B_i \setminus C_i = \left(\bigcup_{0 \le \alpha \le \beta} \mathcal{L}ip(\alpha) \setminus C_i\right) \cap B_i,$$

which shows that A_i is G_{δ} . Consequently u- $\mathcal{L}ip(\beta)$ is G_{δ} .

Corollary 3. Let $A \subset (0, \infty)$ be an unbounded and countable set. Then $\bigcup_{\beta \in A} u \mathcal{L}ip(\beta)$ is a dense $G_{\delta\sigma}$ (thus nonporous) set in the F_{σ} subspace $\mathcal{L}ip$ of BV([a, b]).

On the other hand, we have the following assertion.

Theorem 5. Let $\beta > 0$. The set $\bigcup_{0 \le \alpha \le \beta} \mathcal{L}ip(\alpha)$ is strongly porous in $\mathcal{L}ip$.

PROOF. Let $f \in \bigcup_{0 \le \alpha \le \beta} \mathcal{L}ip(\alpha)$, $0 < R < \beta(b-a)$ and $n \in \mathbb{N}$, $n \ge 3$. Define $g \colon [a, b] \to X$ by

$$g(x) = \begin{cases} f(x) & \text{if } x \in [a, b - \frac{R}{\beta n}) \\ (\frac{\beta n(x-b) + R}{2|f(b - \frac{R}{\beta n})|} + 1)f(b - \frac{R}{\beta n}) = & \text{if } x \in [b - \frac{R}{\beta n}, b]. \end{cases}$$

It is easy to show that $g \in \mathcal{L}ip \setminus \bigcup_{0 \leq \alpha \leq \beta} \mathcal{L}ip(\alpha)$. As in the proof of Theorem 3 we obtain $g \in B(f, R)$ and $B(g, \frac{R}{2} - \frac{R}{n}) \subset B(f, R)$. The ball $B(g, \frac{R}{2} - \frac{R}{n})$ does not contain functions from $\bigcup_{0 \leq \alpha \leq \beta} \mathcal{L}ip(\alpha)$. Indeed, let $v \in \bigcup_{0 \leq \alpha \leq \beta} \mathcal{L}ip(\alpha)$. Then

$$\| g - v \| \ge V_{b - \frac{R}{\beta n}}^{b} (g - v) \ge V_{b - \frac{R}{\beta n}}^{b} g - V_{b - \frac{R}{\beta n}}^{b} v$$
$$\ge \frac{\beta n}{2} \frac{R}{\beta n} - \beta \frac{R}{\beta n} = \frac{R}{2} - \frac{R}{n}.$$

As in the proof of Theorem 3 we obtain $p(\bigcup_{0 \le \alpha \le \beta} \mathcal{L}ip(\alpha), f) \ge 1$.

References

- [1] V. V. Chistyakov, On the theory of set-valued maps of bounded variation of one real variable, Sbornik, Mathematics, **189:5** (1998), 797–819.
- [2] V. V. Chistyakov, On mappings of bounded variation, J. Dynam. Control Systems, 3 no. 2 (1997), 261–289.
- [3] V. V. Chistyakov, *Variation*, (Lecture Notes), (Russian), Univ. of Nizhny Novgorod, Nizhny Novgorod, 1992.
- [4] J. Foran, Fundamentals of Real Analysis, Marcel Dekker Inc., New York, 1991.
- [5] L. Zajiček, *Porosity and \sigma-porosity*, Real Anal. Exchange, **13** (1987-1988), 314–350.