Harvey Rosen, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487. email: hrosen@gp.as.ua.edu

SIERPINSKI-ZYGMUND UNIFORM LIMITS OF EXTENDABLE CONNECTIVITY FUNCTIONS

Abstract

We show that the class SZ of Sierpinski-Zygmund functions has a nonempty intersection with the class \overline{Ext} of all uniform limits of sequences of extendable connectivity functions $f_n : \mathbb{R} \to \mathbb{R}$. We reconsider the idea of f-negligible sets this time with respect to $f \in \overline{Ext}$. We also show that under MA, $SZ \cap \overline{Ext}$ cannot be characterized by preimages of sets.

1 Introduction

The class SZ of Sierpinski-Zygmund functions consists of all functions $g: \mathbb{R} \to \mathbb{R}$ which are discontinuous on each subset of \mathbb{R} of cardinality of the continuum. A member $f: \mathbb{R} \to \mathbb{R}$ of the class Ext is called an *extendable connectivity* (or *extendable*) function, which means that there exists $F: \mathbb{R} \times [0,1] \to \mathbb{R}$ such that F(x,0) = f(x) for all $x \in \mathbb{R}$ and $F \upharpoonright_J$ is connected for all connected subsets J of $\mathbb{R} \times [0,1]$. As was pointed out in [5] and [1], $SZ \cap Ext = \emptyset$ because by [11], $f \in Ext \Rightarrow \exists$ a Cantor set C such that $F \upharpoonright_C$ is continuous. However, we show that $SZ \cap \overline{Ext} \neq \emptyset$

For $\mathcal{A}, \mathcal{B} \subset \mathcal{P}(\mathbb{R})$, which is the power set of \mathbb{R} , define

$$\mathcal{C}_{\mathcal{A},\mathcal{B}} = \{ f \in \mathbb{R}^{\mathbb{R}} : \forall A \in \mathcal{A}, \ f(A) \in \mathcal{B} \} \text{ and} \\ \mathcal{C}_{\mathcal{A},\mathcal{B}}^{-1} = \{ f \in \mathbb{R}^{\mathbb{R}} : \forall B \in \mathcal{B}, \ f^{-1}(B) \in \mathcal{A} \}$$

A family \mathcal{F} of real functions can be *characterized by images (preimages)* of sets if $\mathcal{F} = \mathcal{C}_{\mathcal{A},\mathcal{B}}$ ($\mathcal{F} = \mathcal{C}_{\mathcal{A},\mathcal{B}}^{-1}$) for some $\mathcal{A}, \mathcal{B} \subset \mathcal{P}(\mathbb{R})$. In [5], Ciesielski and Natkaniec show that SZ can be characterized by neither images nor preimages

Key Words: Sierpinski-Zygmund function, uniform limit of extendable connectivity functions, negligible set, characterization by preimages

Mathematical Reviews subject classification: 26A15, 54C30

Received by the editors February 15, 2002

¹⁰⁵

of sets. We show that under Martin's Axiom, the same is still true for $SZ \cap \overline{Ext}$ with regard to preimages. With D being the class of Darboux functions, they ask in [5] whether $SZ \cap D$, under the assumption it is nonempty, can be characterized by images or preimages. The following example illustrates the definition about images and preimages.

Example 1. According to [3], the class \overline{D} of all uniform limits of sequences of real Darboux functions is the same as the class \mathcal{U} of functions $f : \mathbb{R} \to \mathbb{R}$ with the property that for every interval J = [a, b] and every set F of cardinality $< \mathfrak{c}$, $f(J \setminus F)$ is dense in the (possibly degenerate) closed interval with endpoints f(a) and f(b). It easily follows that \overline{D} is characterized by images of sets with

$$\mathcal{A} = \{ A \subset \mathbb{R} : \forall a, b \in A \ \exists a < b, \operatorname{card}([a, b] \setminus A) < \mathfrak{c} \}$$

and

$$\mathcal{B} = \{ B \subset \mathbb{R} : \forall a, b \in B \ i a < b, B \text{ is dense in } [a, b] \}.$$

The proof given for case 1 of Theorem 2.2 in [5] shows that \overline{D} is not characterized by preimages.

2 Sierpinski-Zygmund Functions

We modify the transfinite construction Sierpinski and Zygmund give in [12] and use their result that if $E \subset \mathbb{R}$ and $f : E \to \mathbb{R}$ is continuous, then there exist a G_{δ} set Γ containing E and a continuous function $g : \Gamma \to \mathbb{R}$ such that f(x) = g(x) for all $x \in E$.

Theorem 1. $SZ \cap \overline{Ext} \neq \emptyset$.

PROOF. Let $h : \mathbb{R} \to \mathbb{R}$ be an extendable function whose graph is dense in \mathbb{R}^2 [6], [10]. By [9], there exists a dense G_{δ} subset A_0 of \mathbb{R} that is *h*-negligible with respect to Ext. This means that every real-valued function on \mathbb{R} that agrees with *h* off of A_0 must also be extendable. Then $\mathbb{R} \setminus A_0 = A_1 \cup A_2 \cup \ldots$, where the sets $A_n, n \ge 1$, are pairwise disjoint and nowhere dense in \mathbb{R} . Let $\{x_{\alpha} : \alpha < \mathfrak{c}\}$ be a one-to-one enumeration of \mathbb{R} and $\{g_{\alpha} : \alpha < \mathfrak{c}\}$ be an enumeration of all continuous functions defined on G_{δ} subsets of \mathbb{R} . Define a function $f : \mathbb{R} \to \mathbb{R}$ by induction on $\alpha < \mathfrak{c}$ this way: $f(x_{\alpha}) \in \mathbb{R} \setminus \{g_{\xi}(x_{\alpha}) : \xi \le \alpha\}$, and whenever $x_{\alpha} \in A_n$ for some $n \ge 0$, we can require $|f(x_{\alpha}) - h(x_{\alpha})| < \frac{1}{n+1}$. Then

$$h_0 = \begin{cases} J & \text{on } A_0 \\ h & \text{on } \mathbb{R} \setminus A_0 \end{cases} \text{ belongs to } Ext \text{ because } A_0 \text{ is } h\text{-negligible. For } n \ge 1, \end{cases}$$

 $h_n = \begin{cases} f & \text{on } A_n \\ h_{n-1} & \text{on } \mathbb{R} \setminus A_n \end{cases} \text{ belongs to } Ext \text{ because the nowhere dense set } A_n \text{ is }$

 h_{n-1} -negligible. Therefore $f \in \overline{Ext}$ since f is the uniform limit of h_n . Also $f \in SZ$ since for each $\xi < \mathfrak{c}$, $\{x : f(x) = g_{\xi}(x)\} \subset \{x_{\alpha} : \alpha < \xi\}$, which has cardinality $< \mathfrak{c}$.

3 Negligible Sets

Negligibility of sets has been studied for the classes of connectivity functions [2], almost continuous functions [7], and extendable functions [9]. Now we consider it for the class \overline{Ext} . Given a class \mathcal{F} of real-valued functions on \mathbb{R} and given $f \in \mathcal{F}$, we say a subset A of \mathbb{R} is *f*-negligible with respect to \mathcal{F} if whenever $g : \mathbb{R} \to \mathbb{R}$ and f = g on $\mathbb{R} \setminus A$, then $g \in \mathcal{F}$, too [2].

Theorem 2. If $f : \mathbb{R} \to \mathbb{R}$ has a graph dense in \mathbb{R}^2 and $f \in \overline{Ext}$, then there exists a dense G_{δ} subset A of \mathbb{R} that is f-negligible with respect to \overline{Ext} . Moreover, every nowhere dense subset M of \mathbb{R} is f-negligible with respect to \overline{Ext} .

PROOF. Since $f \in \overline{Ext}$ and it has a dense graph in \mathbb{R}^2 , f is the uniform limit of a sequence of extendable functions $f_n : \mathbb{R} \to \mathbb{R}$ with dense graphs in \mathbb{R}^2 . According to [9], for each n, there is a dense G_δ subset A_n of \mathbb{R} that is f_n -negligible with respect to Ext; moreover, every nowhere dense subset Mof \mathbb{R} is f_n -negligible with respect to Ext. By the Baire Category Theorem, $A = \bigcap_{n=1}^{\infty} A_n$ is a dense G_δ subset of \mathbb{R} . Let $B \in \{A, M\}$, and suppose $g : \mathbb{R} \to \mathbb{R}$ and g = f on $\mathbb{R} \setminus B$. For each n, define $g_n = \begin{cases} g & \text{on } B \\ f_n & \text{on } \mathbb{R} \setminus B \end{cases}$. Then g is the uniform limit of g_n , and each $g_n \in Ext$ because B is f_n -negligible with respect to Ext. Therefore $g \in \overline{Ext}$, and so B is f-negligible with respect to \overline{Ext} .

4 Preimages

Our next result assumes that if $A \subset \mathbb{R}$ and card $A < \mathfrak{c}$, then A is first category. Martin's Axiom implies this assumption according to Theorem 8.2.6 in [4]. We show how to extend the argument Ciesielski and Natkaniec use in [5, Thm 3.1] when they prove SZ is not characterized by preimages of sets.

Theorem 3. Under MA, $SZ \cap \overline{Ext}$ cannot be characterized by preimages of sets.

PROOF. Assume $SZ \cap \overline{Ext} = C_{\mathcal{A},\mathcal{B}}^{-1}$ for some $\mathcal{A}, \mathcal{B} \subset \mathcal{P}(\mathbb{R})$. As in the proof of Theorem 1, let $h : \mathbb{R} \to \mathbb{R}$ be an extendable function with dense graph in \mathbb{R}^2 , and let G_0 be a dense G_{δ} , h-negligible subset of \mathbb{R} . Then $\mathbb{R} \setminus G_0$ is meager in \mathbb{R} . Also let $\{x_{\alpha} : \alpha < \mathfrak{c}\}$ be a one-to-one enumeration of \mathbb{R} and $\{g_{\alpha} : \alpha < \mathfrak{c}\}$ be an enumeration of all continuous functions on G_{δ} subsets of \mathbb{R} . As shown in [5], $\mathcal{B} \not\subset \{\emptyset, \mathbb{R}\}$. Let $B \in \mathcal{B} \setminus \{\emptyset\}$ and pick $x \in B$. In showing $B \in \mathcal{A}$, we consider four cases for B.

Case 1: Suppose card $B < \mathfrak{c}$.

We claim in this case that \mathcal{A} contains each subset A of cardinality $< \mathfrak{c}$. Suppose A has cardinality $< \mathfrak{c}$, and so, under MA, A is first category. It follows from Lemma 3 of [8] that there exists a homeomorphism $h_0: \mathbb{R} \to \mathbb{R}$ such that $(\mathbb{R} \setminus G_0) \cap h_0(A) = \emptyset$; i.e., $A \subset h_0^{-1}(G_0)$. According to Corollary 1 and Lemma 2 (which hold for \mathbb{R} in place of intervals I and J there) in [8], $h \circ h_0$ is extendable and $h_0^{-1}(G_0)$ is $h \circ h_0$ -negligible. So A is $h \circ h_0$ -negligible, too. Therefore $f_0 = \begin{cases} x & \text{on } A \\ h \circ h_0 & \text{on } \mathbb{R} \setminus A \end{cases}$ is in Ext. Let A_0 be a dense G_{δ} , f_0 -negligible set and $\mathbb{R} \setminus A_0 = A_1 \cup A_2 \cup \ldots$, where the A_n , $n \geq 1$, are pairwise disjoint, nowhere dense subsets of \mathbb{R} . Define the values $f(x_{\alpha})$ by induction on $\alpha < \mathfrak{c}$ by letting $f(A) = \{x\}$ and if $x_{\alpha} \in \mathbb{R} \setminus A$ by choosing $f(x_{\alpha}) \in \mathbb{R} \setminus (B \cup \{g_{\xi}(x_{\alpha}) : \xi \leq \alpha\})$, extendable and whenever $x_{\alpha} \in A_n$ for some $n \geq 0$, we can require $|f(x_{\alpha}) - f_0(x_{\alpha})| < \frac{1}{n+1}$. For

 $n \ge 1, f_n = \begin{cases} f & \text{on } A_{n-1} \\ f_{n-1} & \text{on } \mathbb{R} \setminus A_{n-1} \end{cases}$ is extendable. Then $f \in SZ \cap \overline{Ext}$ and

 $A = f^{-1}(B) \in \mathcal{A}$. Now if every nonempty $B \in \mathcal{B}$ has card $< \mathfrak{c}$, then the identity *i* obeys $i^{-1}(B) = B \in \mathcal{A}$. Therefore $i \in \mathcal{C}_{\mathcal{A},\mathcal{B}}^{-1}$, a contradiction. So there exists a member of \mathcal{B} of cardinality \mathfrak{c} .

Case 2: Suppose $B = \{b_{\alpha} : \alpha < \mathfrak{c}\}$ is nowhere \mathfrak{c} -dense in \mathbb{R} .

This means that if \overline{B} contains an interval, then some subinterval meets B in less than \mathfrak{c} -many points. Then B is first category and $\mathbb{R} \setminus B$ is \mathfrak{c} -dense in \mathbb{R} . As shown above, if $h_1 : \mathbb{R} \to \mathbb{R}$ is a homeomorphism such that $(\mathbb{R} \setminus G_0) \cap h_1(B) = \emptyset$, then B is $h \circ h_1$ -negligible. Define a dense extendable function $f_0 : \mathbb{R} \to \mathbb{R}$ by $f_0 = h \circ h_1$ on $\mathbb{R} \setminus B$ and $f_0(b_\alpha) \in B \setminus \{g_{\xi}(b_\alpha) : \xi \leq \alpha\}$ on B. Let A_0 be a dense G_{δ} , f_0 -negligible set and $\mathbb{R} \setminus A_0 = A_1 \cup A_2 \cup \ldots$, where the A_n , $n \geq 1$, are pairwise disjoint and nowhere dense in \mathbb{R} . Define $f(x_\alpha) = f_0(x_\alpha)$ if $x_\alpha \in B$, and define $f(x_\alpha) \in \mathbb{R} \setminus \{g_{\xi}(x_\alpha) : \xi \leq \alpha\}$ if $x_\alpha \in \mathbb{R} \setminus B$, but whenever $x_\alpha \in A_n \setminus B$ for some $n \geq 0$, we can require $f(x_\alpha) \in \mathbb{R} \setminus B$ and $|f(x_\alpha) - f_0(x_\alpha)| < \frac{1}{n+1}$ because $\mathbb{R} \setminus B$ is \mathfrak{c} -dense in \mathbb{R} . It follows that $f \in \overline{Ext}$, and $f \in SZ$ because $\{x : f(x) = g_{\xi}(x)\} \subset \{x_{\alpha} : \alpha < \xi\} \cup \{b_{\alpha} : \alpha < \xi\}$ for each $\xi < \mathfrak{c}$. Therefore $B = f^{-1}(B) \in \mathcal{A}$. Similarly, one can show $\emptyset = g^{-1}(B) \in \mathcal{A}$, where $g \in SZ \cap \overline{Ext}$ is such that $g(\mathbb{R}) \subset \mathbb{R} \setminus B$.

Case 3: Suppose each of *B* and $\mathbb{R} \setminus B$ is somewhere \mathfrak{c} -dense in \mathbb{R} .

Then \overline{B} contains an interval (a, b) such that $B \cap (a, b)$ is **c**-dense in (a, b), and $\mathbb{R} \setminus \overline{B}$ contains an interval (c, d) such that $(\mathbb{R} \setminus B) \cap (c, d)$ is **c**-dense in (c, d). It can be shown there exists $\phi \in SZ \cap \overline{Ext}$ such that $\phi(\mathbb{R}) \subset B \cap (a, b) \subset B$. Therefore $\mathbb{R} = \phi^{-1}(B) \in \mathcal{A}$. Also it can be shown there exists $\psi \in SZ \cap \overline{Ext}$ such that $\psi(\mathbb{R}) \subset (\mathbb{R} \setminus B) \cap (c, d) \subset \mathbb{R} \setminus B$. Therefore $\emptyset = \psi^{-1}(B) \in \mathcal{A}$. But $\emptyset, \mathbb{R} \in \mathcal{A}$ implies the constant functions belong to $SZ \cap \overline{Ext} = \mathcal{C}_{\mathcal{A},\mathcal{B}}^{-1}$, a contradiction. Therefore this case cannot occur.

Case 4: Suppose *B* is somewhere c-dense and $\mathbb{R} \setminus B$ is nowhere c-dense in \mathbb{R} . Then based on Case 2, there exists a function $f \in SZ \cap \overline{Ext}$ such that $f^{-1}(\mathbb{R} \setminus B) = \mathbb{R} \setminus B$. But then $B = f^{-1}(B) \in \mathcal{A}$.

According to the above cases, $\mathcal{B} \setminus \{\emptyset\} \subset \mathcal{A}$, and so the identity *i* obeys $i^{-1}(B) = B \in \mathcal{A}$ for every nonempty set $B \in \mathcal{B}$. Assume $\emptyset \in \mathcal{B}$. Then for any $f \in SZ \cap \overline{Ext}$, $\emptyset = f^{-1}(\emptyset) \in \mathcal{A}$, and so *i* obeys $i^{-1}(\emptyset) = \emptyset \in \mathcal{A}$, too. Therefore $i \in \mathcal{C}_{\mathcal{A},\mathcal{B}}^{-1}$, a contradiction. Finally, assume $\emptyset \notin \mathcal{B}$. Then this same contradiction that $i \in \mathcal{C}_{\mathcal{A},\mathcal{B}}^{-1}$ is reached because according to the definition of $\mathcal{C}_{\mathcal{A},\mathcal{B}}^{-1}$, when $\emptyset \notin \mathcal{B}$, $i^{-1}(\emptyset) = \emptyset$ is not required to belong to \mathcal{A} in order for *i* to belong to $\mathcal{C}_{\mathcal{A},\mathcal{B}}^{-1}$.

Problem 1. Can $SZ \cap \overline{Ext}$ be characterized by images of sets?

References

- K. Banaszewski and T. Natkaniec, Sierpinski-Zygmund functions that have the Cantor intermediate value property, Real Anal. Exchange 24 (1998-99), 827–836.
- J. B. Brown, Negligible sets for real connectivity functions, Proc. Amer. Math. Soc. 24 (1970), 263–269.
- [3] A. M. Bruckner, J. G. Ceder, M. Weiss, Uniform limits of Darboux functions, Colloq. Math. 15 (1966), 65–77.
- [4] K. Ciesielski, Set Theory for the Working Mathematician, Cambridge University Press, 1997.
- [5] K. Ciesielski and T. Natkaniec, Darboux like functions that are characterizable by images, preimages and associated sets, Real Anal. Exchange 23 (1997-98), 441–457.

- [6] K. Ciesielski and I. Reclaw, Cardinal invariants concerning extendable and peripherally continuous functions, Real Anal. Exchange 21 (1995-96), 459–472.
- [7] K. R. Kellum, Almost continuity and connectivity sometimes it's as easy to prove a stronger result, Real Anal. Exchange 8 (1982-83), 244–252.
- [8] T. Natkaniec, Extendability and almost continuity, Real Anal. Exchange 21 (1995-96), 349–355.
- H. Rosen, Limits and sums of extendable connectivity functions, Real Anal. Exchange 20 (1994-95), 183–191.
- [10] H. Rosen, Every real function is the sum of two extendable connectivity functions, Real Anal. Exchange 21 (1995-96), 299–303.
- [11] H. Rosen, R. G. Gibson, F. Roush, Extendable functions and almost continuous functions with a perfect road, Real Anal. Exchange 17 (1991-92), 248–257.
- [12] W. Sierpinski and A. Zygmund, Sur une fonction qui est discontinue sur tout ensemble de puissance du continu, Fund. Math. 4 (1923), 316–318.