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PRODUCTS OF BOUNDED DARBOUX
AND ALMOST CONTINUOUS FUNCTIONS

Abstract

We characterize both the family of the sums of nonnegative Dar-
boux/almost continuous functions (in the sense of Stallings) and the
family of the products of bounded Darboux/almost continuous func-
tions.

1 Preliminaries

The letters R, Z, and N denote the real line, the set of integers, and the set
of positive integers, respectively. The word interval means a nondegenerate
interval. The word function denotes a mapping from a subset of R into R. For
brevity, no distinction is made between a function and its graph. If F ⊂ R2,
then dom F and rng F denote the x-projection and the y-projection of F ,
respectively.

For each A ⊂ R we use the symbols int A, cl A, χA, and |||A||| to denote
the interior, the closure, the characteristic function, and the cardinality of A,
respectively. We write c = |||R|||, and consider c as the ordinal not in one-to-one
correspondence with the smaller ordinals.

Let f : R → R. For every y ∈ R, let [[[f < y]]] =
{
x ∈ R : f(x) < y

}
; the sets

[[[f ≤ y]]], [[[f > y]]], etc., we define analogously. If A ⊂ R and |||A||| = c, then let

c-inf(f,A) = inf
{
y ∈ R : |||A ∩ [[[f < y]]]||| = c

}
,

c-sup(f,A) = − c-inf(−f,A).
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For each x ∈ R, let

c-lim(f, x−) = lim
δ→0+

c-inf
(
f, (x− δ, x)

)
,

c-lim(f, x−) = − c-lim(−f, x−).

The symbols c-lim(f, x+) and c-lim(f, x+) we define analogously. For each
x ∈ R and δ > 0 we let

R[(f, ])xδ = [(x− δ, x + δ)× (f(x)− δ, f(x) + δ)].

Finally let

Bf =
{
x ∈ R : c-lim(|f − f(x)|, x−) > 0 or c-lim(|f − f(x)|, x+) > 0

}
.

Let I and J be intervals (possibly unbounded), and g : I → J . We say
that g is Darboux, if it has the intermediate value property. We say that g is
almost continuous in the sense of Stallings [19], if for every set V ⊃ g open
in I × J , there is a continuous function h : I → J with h ⊂ V . The properties
of almost continuous functions were studied by many authors. I recommend
the survey papers [18], [6], and [7].

Observe that if g is not almost continuous, then there exists a set F closed
in I × J such that F ∩ g = ∅ and F ∩ h 6= ∅ for each continuous function
h : I → J . Every such set is called a blocking set for g. If no proper subset
of F is a blocking set for g, then F is called a minimal blocking set for g.

If F ⊂ R2 is a (minimal) blocking set for some function g : R → R, then
F is called a (minimal) blocking set in R2. Evidently, a function g : R → R
is almost continuous if and only if it intersects every blocking set in R2 [10].
Recall that the domain of every minimal blocking set is an interval [9].

It is well-known that each function (from R into R) can be written as the
sum of two Darboux functions [11], while not every function is the product
of Darboux functions [16]. The problem of characterizing of the family of the
products of Darboux functions was solved in 1982 by J. G. Ceder [2]. He
showed that a function f is the product of Darboux functions if and only if

for all x < t, if f(x)f(t) < 0, then [[[f = 0]]] ∩ (x, t) 6= ∅. (1)

Since almost continuity implies the Darboux property [19] and each function
is the sum of two almost continuous functions [9], we can ask whether con-
dition (1) above yields that f is the product of almost continuous functions.
In 1991 T. Natkaniec showed that if the additivity of the σ-ideal of meager
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sets equals c, then the answer is affirmative [17, Theorem 2]. I showed in 1997
that the extra set-theoretical assumption is redundant [14].

In 1995 I proved that each bounded function can be written as the sum of
two bounded Darboux functions [12]. This result was generalized in 1998 by
K. Ciesielski and A. Maliszewski [5]. We showed that each bounded function
can be written as the sum of two bounded almost continuous functions [12]. So,
it is natural to ask whether each bounded function which fulfills condition (1)
is the product of bounded Darboux (or almost continuous) functions. Alas, the
answer is no. It is easy to show that the function χR\{0} is not the product
of bounded Darboux functions, though it is nonnegative [3, p. 79]. In my
dissertation [13] (sold out), I characterized the products of at most k bounded,
Darboux functions for each k > 1. The main goal of this paper is to show
that for each k > 1, the family of the products of at most k bounded, almost
continuous functions and the family of the products of at most k bounded,
Darboux functions coincide.

2 Criteria of Almost Continuity

For brevity, we introduce a new notation. Let g : R → R, let P ⊂ R be perfect,
and T1 6= T2. We will write that g is of type 〈T1, T2〉 with respect to P , if

for each open interval I with P ∩ I 6= ∅ and any y1, y2 ∈ R such that
T1 < y1 < y2 < T2 or T1 > y1 > y2 > T2, there are x1, x2 ∈ I with
x1 < x2 such that g(x1) = y1, g(x2) = y2, and P ∩ [x1, x2] = ∅.

(2)

Proposition 2.1. Let P ⊂ R be perfect, T > 0, and g : R → [−T, T ]. Suppose
moreover that g� cl I is almost continuous for each component I of R \P , and
that g is both of type 〈−T, T 〉 and of type 〈T,−T 〉 with respect to P . Then g is
almost continuous.

Proof. Let V ⊂ R2 be an open set containing g. Fix an a ∈ R. Denote
by S the set of all b ≥ a with the property that there exists a continuous
function h : [a, b] → [−T, T ] such that h ⊂ V and h(x) = g(x) for x ∈ {a, b}.
Observe that a ∈ S, and let S′ be a connected component of S containing a.
Set s = sup S′.

The rest of the proof of the proposition consists of several auxiliary claims.
The end of the proof of each claim will be marked with C.

Claim 1. If s < ∞, then s ∈ S.

The assertion is obvious if s = a. So, let s > a. We consider two cases. If
there is a b ∈ (a, s) such that P ∩ (b, s) = ∅, then let h1 correspond to b ∈ S.
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By assumption, g�[b, s] is almost continuous. So by [18, Lemma 6.2], there is
a continuous function h2 : [b, s] → [−T, T ] such that h2 ⊂ V and h2(x) = g(x)
for x ∈ {b, s}. Now the function h = h1 ∪ h2 proves s ∈ S.

In the other case let ε ∈ (0, s−a) be such that R[(g, ])sε ⊂ V . (Recall that
V is open and V ⊃ g.) Pick a y1 ∈ (g(s)− ε, g(s) + ε)∩ (−T, T ). Since g is of
type 〈−T, T 〉 with respect to P , there is an x1 ∈ (s−ε, s) such that g(x1) = y1.
Let h1 correspond to x1 ∈ S, and let h2 be the line segment connecting points
〈x1, y1〉 and 〈s, g(s)〉. Then the function h = h1 ∪ h2 proves s ∈ S. C

Claim 2. We have s = ∞.

By way of contradiction, suppose that this is not the case. Let h1 corre-
spond to s ∈ S. (Cf. Claim 1.) Let ε > 0 be such that R[(g, ])sε ⊂ V . We
will show that s + ε/2 ∈ S′, which contradicts the definition of s.

Fix a b ∈ (s, s + ε/2]. Define

c = min
{
x ∈ [s, b] : P ∩ (x, b) = ∅

}
. (3)

If c = b, then put h2 = ∅, otherwise use the fact that g�[c, b] is almost con-
tinuous, and construct a continuous function h2 : [c, b] → [−T, T ] such that
h2 ⊂ V and h2(x) = g(x) for x ∈ {c, b}.

If c = s, then the function h = h1∪h2 proves b ∈ S. In the opposite case let
δ ∈ (0, c−s) be such that R[(g, ])cδ ⊂ V . Let y1 ∈ (g(s)−ε, g(s)+ε)∩(−T, T )
and y2 ∈ (g(c)− δ, g(c) + δ) ∩ (−T, T ) \ {y1}. Since g is both of type 〈−T, T 〉
and of type 〈T,−T 〉 with respect to P , there are x1, x2 ∈ (c−δ, c) with x1 < x2

such that g(x1) = y1, g(x2) = y2, and P ∩ [x1, x2] = ∅. By the virtue of almost
continuity of g�[x1, x2], there is a continuous function h3 : [x1, x2] → [−T, T ]
such that h3 ⊂ V and h3(x) = g(x) for x ∈ {x1, x2}. Let h4 (respectively h5)
be the line segment connecting points 〈s, g(s)〉 and 〈x1, y1〉 (points 〈x2, y2〉
and 〈c, g(c)〉, respectively). Now the function h = h1∪· · ·∪h5 proves b ∈ S. C

Since a ∈ R was arbitrary, it is easy to construct a continuous function
h : R → R with h ⊂ V . This completes the proof.

Proposition 2.2. Let P ⊂ R be perfect, T > 0, and g : R → [−T, T ]. Suppose
moreover that g� cl I is almost continuous for each component I of R \P , that
g is simultaneously of type 〈−T, 0〉, of type 〈0,−T 〉, of type 〈T, 0〉, and of
type 〈0, T 〉 with respect to P , and that the set P ∩ [[[g = 0]]] is dense in P . Then
g is almost continuous.

Proof. Let V ⊂ R2 be an open set containing g. Fix an a ∈ R. Denote
by S the set of all b ≥ a with the property that there exists a continuous
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function h : [a, b] → [−T, T ] such that h ⊂ V and h(x) = g(x) for x ∈ {a, b}.
Observe that a ∈ S, and let S′ be a connected component of S containing a.
Set s = sup S′. The proof of the first claim is a repetition of the argument
used in Claim 1 in Proposition 2.1.

Claim 1. If s < ∞, then s ∈ S. C

Claim 2. We have s = ∞.

By way of contradiction, suppose that this is not the case. Let h1 corre-
spond to s ∈ S. Let ε > 0 be such that R[(g, ])sε ⊂ V . We will show that
s + ε/2 ∈ S′, which contradicts the definition of s.

Fix a b ∈ (s, s + ε/2]. Define c by (3). If c = b, then put h2 = ∅, otherwise
use the fact that g�[c, b] is almost continuous, and construct a continuous
function h2 : [c, b] → [−T, T ] such that h2 ⊂ V and h2(x) = g(x) for x ∈ {c, b}.

If c = s, then the function h = h1∪h2 proves b ∈ S. In the opposite case let
δ ∈ (0, c− s) be such that R[(g, ])cδ ⊂ V . Choose a d ∈ P ∩ [[[g = 0]]]∩ (c− δ, c).
Let η ∈ (0, min{d− c + δ, c− d}) be such that [(d− η, d + η)× (−η, η)] ⊂ V ,
and let e ∈ P ∩ (d− η, d + η) be a bilateral limit point of P . Take an arbitrary

y1 ∈ (g(s)− ε, g(s) + ε) ∩ (−T, T ) \ {0}.

Pick a y2 with |y2| ≤ min{|y1|, η} such that y1y2 > 0. Since P ∩ (d− η, e) 6= ∅
and g is both of type 〈−T, 0〉 and of type 〈T, 0〉 with respect to P , we can
choose x1, x2 ∈ (d− η, e) with x1 < x2 such that g(x1) = y1, g(x2) = y2, and
P ∩ [x1, x2] = ∅. By the virtue of almost continuity of g�[x1, x2], there is a
continuous function h3 : [x1, x2] → [−T, T ] such that h3 ⊂ V and h3(x) = g(x)
for x ∈ {x1, x2}.

Similarly, take an arbitrary

y4 ∈ (g(c)− δ, g(c) + δ) ∩ (−T, T ) \ {0}.

Pick a y3 with |y3| ≤ min{|y4|, η} such that y3y4 > 0. Choose x3, x4 ∈ (e, d+η)
with x3 < x4 such that g(x3) = y3, g(x4) = y4, and P ∩ [x3, x4] = ∅. As
above, there is a continuous function h4 : [x3, x4] → [−T, T ] such that h4 ⊂ V
and h4(x) = g(x) for x ∈ {x3, x4}.

Let h5 (respectively h6 and h7) be the line segment connecting points
〈s, g(s)〉 and 〈x1, y1〉 (points 〈x2, y2〉 and 〈x3, y3〉, points 〈x4, y4〉 and 〈c, g(c)〉,
respectively). Now the function h = h1 ∪ · · · ∪ h7 proves b ∈ S. C

Since a ∈ R was arbitrary, it is easy to construct a continuous function
h : R → R with h ⊂ V . This completes the proof.
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Proposition 2.3. Let P ⊂ R be perfect, T > 0, and g : R → [−T, T ]. Suppose
moreover that g� cl I is almost continuous for each component I of R \P , and
that g∩F 6= ∅ for each closed set F ⊂

[
R× [−T, T ]

]
with P ∩ int(dom F ) 6= ∅.

Then g is almost continuous.

Proof. Let F ⊂
[
R × [−T, T ]

]
be a minimal blocking set. Then I0 =

int(dom F ) is an open interval. If P ∩ I0 6= ∅, then by assumption, we have
g ∩F 6= ∅. Otherwise dom F is contained in the closure of a single component
of R \ P , say I1. But g� cl I1 is almost continuous, so g ∩ F 6= ∅. Thus g is
almost continuous.

3 Main Results

It is easy to see that the problem of characterizing the products of bounded,
positive Darboux (almost continuous) functions can be reduced to the problem
of characterizing of the sums of nonnegative Darboux (almost continuous)
functions. Therefore we first solve the latter problem.

Theorem 3.1. Let k > 1. For each f : R → R the following are equivalent :

i) f is the sum of k nonnegative Darboux functions;

ii) f is nonnegative and it fulfills the following condition:

min
{
c-lim(f, x−), c-lim(f, x+)

}
≥ f(x)/k for each x ∈ R; (4)

iii) f is the sum of k nonnegative almost continuous functions.

Proof. i)⇒ ii). Let f = g1 + · · · + gk, where g1, . . . , gk are nonnegative
Darboux functions. Fix an x ∈ R. Then gi(x) ≥ f(x)/k for some i ≤ k. Since
f ≥ gi on R and gi is Darboux, we obtain

c-lim(f, x−) ≥ c-lim(gi, x
−) ≥ gi(x) ≥ f(x)/k.

Similarly c-lim(f, x+) ≥ f(x)/k. The nonnegativity of f is obvious.

ii)⇒ iii). Set

U =
⋃

x∈R
[
{x} × [0, f(x)]

]
=

{
〈x, y〉 ∈ R2 : 0 ≤ y ≤ f(x)

}
.

Denote by K the family of all closed sets K ⊂ R2 such that |||dom(K ∩U)||| = c.
Arrange the elements of K in a transfinite sequence, {Kξ : ξ < c}, so that
|||{ξ < c : Kξ = K}||| = k for each K ∈ K. Proceeding by transfinite induction
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choose for each ξ < c a point 〈xξ, yξ〉 ∈ Kξ∩U such that xξ /∈ {xζ : ζ < ξ}∪Bf .
(Recall that by [4, Lemma 4], we have |||Bf ||| < c.)

Let x ∈ R. If x = xξ for some ξ < c, then put i = |||{ζ < ξ : Kζ = Kξ}|||+ 1,
and define gi(x) = yξ and gj(x) = (f(x)− yξ)/(k− 1) for j 6= i. Otherwise for
each i define gi(x) = f(x)/k,

We defined functions g1, . . . , gk : R → [0,∞) such that f = g1 + · · · + gk

on R. Fix an i ≤ k. We will prove that gi is almost continuous. Let V ⊂ R2

be an open set containing gi. Notice that R2 \ V /∈ K. So, if

E = dom(U \ V ) =
{
x ∈ R :

[
{x} × [0, f(x)]

]
6⊂ V

}
,

then |||E||| < c. Define

F = dom
(
[R× {0}] \ V

)
=

{
x ∈ R : 〈x, 0〉 /∈ V

}
.

Clearly F ⊂ E, whence |||F ||| < c. But F is closed in R, so it is at most
countable.

Let J be the family of all intervals [a, b] for which there exists a continuous
function h : [a, b] → [0,∞) such that h ⊂ V and h(a) = h(b) = 0. Moreover
let G be the set of all x ∈ R for which there exists a δx > 0 such that [a, b] ∈ J

whenever a, b ∈ (x− δx, x + δx) \ E and a < b. The first claim is obvious.

Claim 1. If [a0, a1] ∈ J and [a1, a2] ∈ J, then [a0, a2] ∈ J. C

Claim 2. If a, b /∈ E, a < b, and J = [a, b] ⊂ G, then J ∈ J.

Indeed, the compactness of J and the relation J ⊂
⋃

x∈J(x − δx, x + δx)
imply that there exist x1, . . . , xp ∈ J such that J ⊂

⋃p
i=1(xi − δxi

, xi + δxi
).

Consequently, we can find nonoverlapping compact intervals J1, . . . , Jl ∈ J

with J =
⋃l

j=1 Jj . By Claim 1, we obtain J ∈ J. C

Claim 3. We have G = R.

First notice that G is open and that R \ F ⊂ G. By way of contradiction
suppose that the set P = R \G ⊂ F is nonempty. Then P is scattered, so it
contains an isolated point, say s. Let δ > 0 be such that P ∩(s−δ, s+δ) = {s}.
We will show that s ∈ G, which is impossible.

Let a, b ∈ (s − δ, s + δ) \ E and a < b. By Claim 2, we may assume
that a < s < b. Choose an ε ∈ (0, s − a) such that R[(g,) i]sε ⊂ V . Set
y = max

{
gi(s)− ε/2, 0

}
. Observe that if s ∈ Bf , then by (4), we obtain

c-lim(f, s−) ≥ f(s)/k = gi(s),
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while s /∈ Bf yields
c-lim(f, s−) ≥ f(s) ≥ gi(s).

Hence we can choose a t ∈ [[[f ≥ y]]] ∩ (s − ε, s) \ E. Put L =
[
{t} × [0, f(t)]

]
.

Since t /∈ E, we have L ⊂ V . But L is compact, so there is an η ∈ (0, s − t)
such that

[
(t − η, t + η) × [0, f(t)]

]
⊂ V . Let h1 correspond to [a, t] ∈ J.

(We use Claim 2.) Let h2 (respectively h3) be the line segment connecting
points 〈t, 0〉 and 〈t+η, y〉 (points 〈t+η, y〉 and 〈s, gi(s)〉, respectively). Define
h̃ = h1 ∪ h2 ∪ h3.

Analogously, we can construct a continuous function h̄ : [s, b] → R such
that h̄ ⊂ V , h̄(s) = gi(s), and h̄(b) = 0. Define h = h̃ ∪ h̄. Clearly this
function proves [a, b] ∈ J. Hence s ∈ G, an impossibility. C

Using Claims 3 and 2 it is easy to show that there exists a continuous
function h : R → R with h ⊂ V .

iii)⇒ i). This implication is evident.

Remark 3.1. Let gi be the function constructed in the proof of Theorem 3.1
(i ≤ k). Observe that if J is a compact interval and y ∈ [0, c-sup(f, J)], then
by definition, we have [J × {y}] ∈ K, whence y ∈ gi[J ]. Thus, in particular,

• for each x ∈ R, the left cluster set of gi at x equals [0, c-lim(f, x−)],

• for each x ∈ R, the right cluster set of gi at x equals [0, c-lim(f, x+)],

• for each interval I and each y ∈ [0, c-sup(f, I)], there exist x1, x2, x3 ∈ I
with x1 < x2 < x3 such that g(x1) = g(x3) = 0 and g(x2) = y.

The next lemma will be useful in the proof of Theorem 3.3.

Lemma 3.2. Let P ⊂ R be nowhere dense and perfect, let I be the family of
all components of R \P , and let f : R → [0,∞) be such that c-inf(f, I \P ) = 0
for each open interval I with P ∩ I 6= ∅. Then there are pairwise disjoint
families I1, . . . , I4 ⊂ I such that c-inf

(
f, I ∩

⋃
Ij

)
= 0 for each open interval I

with P ∩ I 6= ∅ and each j ≤ 4.

Proof. First observe that by our assumption,

for each locally finite family I′ ⊂ I and each open interval J ,
if P ∩ J 6= ∅, then c-inf

(
f, J \ (P ∪

⋃
I′)

)
= 0.

(5)

Next we proceed by induction. Define I1,0 = · · · = I4,0 = ∅. Assume that
for some n ∈ N we have already defined pairwise disjoint locally finite families
I1,n−1, . . . , I4,n−1 ⊂ I. Let

Sn =
{
s ∈ Z : P ∩ ((s− 1)/n, (s + 1)/n) 6= ∅

}
.
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For each s ∈ Sn, by (5), we can choose distinct intervals

I1,n,s, . . . , I4,n,s ∈ I \
⋃4

j=1 Ij,n−1

such that Ij,n,s ⊂ ((s − 1)/n, (s + 1)/n) and c-inf(f, Ij,n,s) < n−1 for each j.
For each j ≤ 4 define Ij,n = Ij,n−1 ∪ {Ij,n,s : s ∈ Sn}.

For j ≤ 4 put Ij =
⋃

n∈N Ij,n. Clearly these families are pairwise disjoint.
To complete the proof fix an open interval I with P ∩ I 6= ∅ and a j ≤ 4. Fix
an ε > 0. Let n > ε−1 and s ∈ Sn fulfill ((s− 1)/n, (s + 1)/n) ⊂ I. Then

c-inf
(
f, I ∩

⋃
Ij

)
≤ c-inf(f, Ij,n,s) < n−1 < ε.

Consequently, c-inf
(
f, I ∩

⋃
Ij

)
= 0.

Theorem 3.3. Let k > 1. For each f : R → R the following are equivalent :

i) f is the product of k bounded Darboux functions;

ii) f is bounded, it fulfills condition (1), and there is a T ≥ k
√

sup|f |[R]
such that for each x ∈ R,

max
{
c-lim(|f |, x−), c-lim(|f |, x+)

}
≤ T k−1 · k

√
|f(x)|; (6)

iii) f is the product of k bounded almost continuous functions.

Proof. i)⇒ ii). Let f = g1 . . . gk, where g1, . . . , gk are bounded Darboux
functions. Define T = max

{
sup|gi|[R] : i ≤ k

}
and fix an x ∈ R. Then

|gi(x)| ≤ k
√
|f(x)| for some i ≤ k. Since gi is Darboux, we obtain

c-lim(|f |, x−) ≤ c-lim(T k−1 · |gi|, x−) ≤ T k−1 · |gi(x)| ≤ T k−1 · k
√
|f(x)|.

Similarly c-lim(|f |, x+) ≤ T k−1 · k
√
|f(x)|. The boundedness of f is obvious,

and condition (1) follows by [2].

ii)⇒ iii). We will introduce a few new notations. We will write that a
function g has property (?) on an open interval I if

for each y ∈
(
c-inf(|f |, I)/T k−1, T

]
, there exist x1, x2, x3 ∈ I

with x1 < x2 < x3 such that g(x1) = g(x3) = T and g(x2) = y.

Let J be the family of all intervals J = [a, b] for which there exist almost
continuous functions g1, . . . , gk : J → [−T, T ] such that f = g1 . . . gk on J , and
for each i: gi(x) = k

√
|f(x)| · (sgn f(x))1−sgn(i−1) for x ∈ {a, b}, and either gi

or −gi has property (?) on (a, b). Moreover let G be the set of all x ∈ R for
which there is a δx > 0 such that [a, b] ∈ J whenever a, b ∈ (x − δx, x + δx)
and a < b.



80 Aleksander Maliszewski

Claim 1. Suppose that Q ⊂ R is perfect, c-inf(|f |, Q ∩ I) = 0 for each open
interval I with Q ∩ I 6= ∅, and the set Q ∩ [[[f = 0]]] is dense in Q. There exist
functions g1, . . . , gk : Q → [−T, T ] such that f = g1 . . . gk on Q, and for each i:
gi(x) = k

√
|f(x)| · (sgn f(x))1−sgn(i−1) for x ∈ Bχ

Q
, and gi ∩ F 6= ∅ for each

closed set F ⊂
[
R× [−T, T ]

]
with Q ∩ int(dom F ) 6= ∅.

Let B ⊂ Q∩ [[[f = 0]]] be countable and dense in Q. Denote by K the family
of all compact sets K ⊂

[
R× ([−T, T ] \ {0})

]
such that Q ∩ int(dom K) 6= ∅.

Arrange the elements of K in a transfinite sequence, {Kξ : ξ < c}, so that
|||{ξ < c : Kξ = K}||| = k for each K ∈ K. Next we proceed by transfinite
induction. Fix a ξ < c. Since Kξ is compact,

z = min
{
−max rng(Kξ ∩ [R× (−∞, 0)]), min rng(Kξ ∩ [R× (0,∞)])

}
> 0.

By assumption, |||[[[|f | < T k−1z]]] ∩ Q ∩ int(dom Kξ)||| = c. Choose a point
〈xξ, yξ〉 ∈ Kξ so that xξ ∈ Q\({xζ : ζ < ξ}∪B∪Bχ

Q
) and k−1

√
|f(xξ)|/z ≤ T .

Let x ∈ Q. If x = xξ for some ξ < c, then put i = |||{ζ < ξ : Kζ = Kξ}|||+1,
and define g1(x), . . . , gk(x) so that gi(x) = yξ, |gj(x)| = k−1

√
|f(x)/yξ| for j 6= i,

and f(x) = g1(x) . . . gk(x). If x /∈ {xξ : ξ < c}, then for each i define
gi(x) = k

√
|f(x)| · (sgn f(x))1−sgn(i−1).

We defined functions g1, . . . , gk : Q → [−T, T ] such that f = g1 . . . gk on Q.
Fix an i ≤ k and a closed set F ⊂

[
R× [−T, T ]

]
with Q ∩ int(dom F ) 6= ∅. If

F ∩ [B × {0}] 6= ∅, then clearly gi ∩ F 6= ∅. (Observe that [B × {0}] ⊂ gi.)
Otherwise recall that B is dense in Q, and choose an x ∈ B∩int(dom F ). There
is an ε > 0 such that J = [x − ε, x + ε] ⊂ dom F and F ∩ [J × (−ε, ε)] = ∅.
Then K = F ∩ [J × R] ∈ K, whence gi ∩ F ⊃ gi ∩K 6= ∅. C

Claim 2. If J ⊂ cl[[[f = 0]]] is a compact interval, then J ∈ J.

By (6), we can conclude that c-inf(|f |, I) = 0 for each interval I ⊂ J . Now
our assertion follows by Claim 1 and Proposition 2.3. C

Claim 3. If a < b and (a, b) ⊂ [[[f > 0]]] or (a, b) ⊂ [[[f < 0]]], then [a, b] ∈ J.

Without loss of generality we may assume that (a, b) ⊂ [[[f > 0]]]. Define
f̃(x) = k ln T − ln f(x) if x ∈ (a, b), and f̃(x) = 0 if x ∈ R \ (a, b). By (6), for
each x ∈ (a, b) we have

c-lim
(
f̃ , x−

)
= k ln T − c-lim(ln ◦f, x−) ≥ ln T − k−1 ln f(x) = f̃(x)/k,

and similarly c-lim
(
f̃ , x+

)
≥ f̃(x)/k. Since f̃ is nonnegative and f̃ vanishes

outside of (a, b), we can use Theorem 3.1. So, there are nonnegative almost
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continuous functions g̃1, . . . , g̃k : R → R such that f̃ = g̃1 + · · · + g̃k on R.
Moreover we can conclude that for each i the conditions listed in Remark 3.1
hold.

Let i ≤ k. Define gi(x) = T/exp(g̃i(x)) if x ∈ (a, b), and gi(x) = k
√

f(x)
if x ∈ {a, b}. (Notice that by (1), we have {a, b} ⊂ [[[f ≥ 0]]].) Then the left
cluster set of gi at b equals [c-lim(f, b−)/T k−1, T ], the right cluster set of gi

at a equals [c-lim(f, a+)/T k−1, T ], and gi has property (?) on (a, b). So by (6),
gi is almost continuous. (See [8] or [18, Theorem 2.4].) C

Claim 4. Put P = R \ G and let A be the boundary of cl[[[f = 0]]]. Then
P ⊂ A.

If x /∈ A, then there is a δ > 0 such that either (x− δ, x + δ) ⊂ cl[[[f = 0]]] or
(x − δ, x + δ) ⊂ [[[f 6= 0]]]. Let J ⊂ (x − δ, x + δ) be a compact interval. Then
by Claim 2 or by (1) and Claim 3, we obtain J ∈ J. Thus x ∈ G = R \P . C

Claims 5 and 6 are easy to prove. (Cf. also Claim 2 in Theorem 3.1.)

Claim 5. If [a0, a1] ∈ J and [a1, a2] ∈ J, then [a0, a2] ∈ J. C

Claim 6. If a < b and [a, b] ⊂ G, then [a, b] ∈ J. C

Claim 7. If a < b and (a, b) ⊂ G, then [a, b] ∈ J.

Let c ∈ (a, b). By Claim 5, it suffices to show that [a, c], [c, b] ∈ J. We will
verify only that [a, c] ∈ J, the proof of the other relation being analogous.

If [[[f = 0]]]∩ (a, d] = ∅ for some d ∈ (a, c), then by (1), either (a, d] ⊂ [[[f > 0]]]
and f(a) ≥ 0, or (a, d] ⊂ [[[f < 0]]] and f(a) ≤ 0. By Claims 3, 6, and 5, we get
[a, d] ∈ J, [d, c] ∈ J, and finally [a, c] ∈ J.

So assume that there exists a sequence (an) ⊂ [[[f = 0]]] ∩ (a, c) such that
an ↘ a. Put a0 = c. Fix m ∈ N and j ∈ {1, . . . , 4}. Let n = 4m − j + 1
and let g1,n, . . . , gk,n correspond to [an, an−1] ∈ J. (We use Claim 6.) Choose
t1,n, . . . , tk,n ∈ {−1, 1} such that t1,n . . . tk,n = 1 and

• if j = 1, then −t1,ng1,n has property (?) on [an, an−1];

• if j = 2, then t1,ng1,n has property (?) on [an, an−1];

• if j = 3, then −ti,ngi,n has property (?) on [an, an−1] for each i > 1;

• if j = 4, then ti,ngi,n has property (?) on [an, an−1] for each i > 1.
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Let i ≤ k. Define gi(x) = ti,ngi,n(x) if x ∈ [an, an−1] for some n ∈ N, and
let gi(a) = k

√
|f(a)| · (sgn f(a))1−sgn(i−1). Notice that for each n we have

{−T, T} ⊂ (ti,ngi,n)
[
[an, an−1]

]
∪ · · · ∪ (ti,n+3gi,n+3)

[
[an+3, an+2]

]
.

So, the right cluster set of gi at a equals [−T, T ]. Hence gi is almost continuous
and [a, c] ∈ J. C

Claim 8. The set P is perfect.

Clearly G is open. If P ∩ (s − δ, s + δ) = {s} for some s ∈ P and δ > 0,
then by Claims 7 and 5, we obtain s ∈ G, an impossibility. C

Claim 9. The set P ∩ [[[f = 0]]] is dense in P .

By way of contradiction suppose that this is not the case. Let s < t be
such that ∅ 6= P ∩ (s, t) ⊂ [[[f 6= 0]]]. We will show that (s, t) ⊂ G, which is
impossible.

Let J ⊂ (s, t) be a compact interval. By Claims 8, 7, and 5, we may
assume that P ∩ J is perfect, and min J, max J ∈ P . Let I be the family
of all components of J \ P . Since P ⊂ A ⊂ cl[[[f = 0]]], there are pairwise
disjoint families I1, . . . , I4 ⊂ I such that P ∩J ⊂ cl

⋃
Ij for j ≤ 4 and for each

I ∈ I1 ∪ · · · ∪ I4 there is an xI ∈ [[[f = 0]]] ∩ I. For I ∈ I \ (I1,∪ · · · ∪ I4) let
g1,I , . . . , gk,I correspond to cl I ∈ J. (See Claim 7.)

Let j ≤ 4 and I = (c, d) ∈ Ij . Let g0
1,I , . . . , g

0
k,I (respectively g1

1,I , . . . , g
1
k,I)

correspond to [c, xI ] ∈ J (respectively [xI , d] ∈ J). Choose tsi,I ∈ {−1, 1}
(i ≤ k, s ∈ {0, 1}) so that t01,I . . . t0k,I = t11,I . . . t1k,I = 1 and

• if j = 1, then −T ∈ (t01,Ig
0
1,I)

[
[c, xI ]

]
and T ∈ (t11,Ig

1
1,I)

[
[xI , d]

]
;

• if j = 2, then T ∈ (t01,Ig
0
1,I)

[
[c, xI ]

]
and −T ∈ (t11,Ig

1
1,I)

[
[xI , d]

]
;

• if j = 3, then −T ∈ (t0i,Ig
0
i,I)

[
[c, xI ]

]
and T ∈ (t1i,Ig

1
i,I)

[
[xI , d]

]
for

each i > 1;

• if j = 4, then T ∈ (t0i,Ig
0
i,I)

[
[c, xI ]

]
and −T ∈ (t1i,Ig

1
i,I)

[
[xI , d]

]
for

each i > 1.

Let i ≤ k. Define g̃i(x) = k
√
|f(x)| · (sgn f(x))1−sgn(i−1) if x ∈ J \

⋃
I∈I cl I,

and
gi = g̃i ∪

⋃
I∈I1∪···∪I4

(t0i,Ig
0
i,I ∪ t1i,Ig

1
i,I) ∪

⋃
I∈I\(I1∪···∪I4)

gi,I .

Observe that gi both of type 〈−T, T 〉 and of type 〈T,−T 〉 with respect to P∩J .
(See definition (2).) Hence by Proposition 2.1, gi is almost continuous. Thus
J ∈ J and P ∩G ⊃ P ∩ (s, t) 6= ∅, an impossibility. C
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Claim 10. If P ∩ (s, t) 6= ∅, then c-inf
(
|f |, P ∩ (s, t)

)
= 0.

By way of contradiction suppose that this is not the case. Let s < t be such
that P ∩ (s, t) 6= ∅ and c-inf

(
|f |, P ∩ (s, t)

)
> 0. We will show that (s, t) ⊂ G,

which is impossible.
Let J ⊂ (s, t) be a compact interval. We may assume that P ∩J is perfect,

and min J, max J ∈ P . Let I be the family of all components of J \ P . Then
Claim 9, condition (6), and our supposition imply that c-inf(|f |, I \P ) = 0 for
each open interval I with P ∩ J ∩ I 6= ∅. So by Lemma 3.2, there are pairwise
disjoint families I1, . . . , I4 ⊂ I such that c-inf

(
|f |, I ∩

⋃
Ij

)
= 0 for each open

interval I with P ∩ J ∩ I 6= ∅ and each j ≤ 4. Clearly we may assume that
I = I1 ∪ · · · ∪ I4.

Fix a j ≤ 4 and an I ∈ Ij . Let g1,I , . . . , gk,I correspond to cl I ∈ J. Choose
t1,I , . . . , tk,I ∈ {−1, 1} so that t1,I . . . tk,I = 1 and

• if j = 1, then −t1,Ig1,I has property (?) on I;

• if j = 2, then t1,Ig1,I has property (?) on I;

• if j = 3, then −ti,Igi,I has property (?) on I for each i > 1;

• if j = 4, then ti,Igi,I has property (?) on I for each i > 1.

Let i ≤ k. Set g̃i(x) = k
√
|f(x)|·(sgn f(x))1−sgn(i−1) if x ∈ J \

⋃
I∈I cl I, and

let gi = g̃i ∪
⋃

I∈I(ti,Igi,I). Observe that gi is simultaneously of type 〈−T, 0〉,
of type 〈0,−T 〉, of type 〈T, 0〉, and of type 〈0, T 〉 with respect to P ∩J . Hence
by Claim 9 and Proposition 2.2, gi is almost continuous. Thus J ∈ J and
P ∩G ⊃ P ∩ (s, t) 6= ∅, an impossibility. C

Claim 11. We have G = R.

By way of contradiction suppose that P 6= ∅. We will show that P ⊂ G,
which is impossible.

Let J be a compact interval. We may assume that P ∩ J is perfect, and
min J, max J ∈ P . Let I be the family of all components of J \ P . Apply
Claim 1 with Q = P ∩ J to construct functions g̃1, . . . , g̃k : P ∩ J → [−T, T ]
fulfilling properties listed there. (Cf. Claims 8–10.) For each I ∈ I let
g1,I , . . . , gk,I correspond to cl I ∈ J.

Let i ≤ k. Define gi = g̃i∪
⋃

I∈I gi,I . Then by Proposition 2.3, gi is almost
continuous. Thus J ∈ J and P ∩G = P 6= ∅, an impossibility. C

Using Claims 11 and 5 one can easily construct almost continuous functions
g1, . . . , gk : R → [−T, T ] such that f = g1 . . . gk on R.

iii)⇒ i). This implication is evident.
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For each k > 1 and α ≥ 1, if a Baire α function f : R → R fulfills condi-
tion ii) of Theorem 3.3, then f is the product of k bounded Darboux Baire α
functions. (See [13], [15].) So, I would like to ask the following question.
(Recall that in Baire class one Darboux property and almost continuity are
equivalent [1].)

Problem 3.1. Let k > 1 and α ≥ 2. If a Baire α function f : R → R fulfills
condition ii) of Theorem 3.3, is f the product of k bounded bounded almost
continuous Baire α functions?
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