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PROPERTIES OF THE SPACE DB∗∗1 WITH
THE METRIC OF UNIFORM

CONVERGENCE.

Abstract

In this paper we shall show that the set C of all bounded continuous
functions is superporous in the space DB∗∗

1 . Moreover, for an arbitrary
function f defined on C there exists a quasi-continuous extension f1 of
this function on DB∗∗

1 , such that C is the set of all discontinuity points
of f1.

1 Introduction

This article contains some properties of the space of Darboux functions be-
longing to the class B∗∗1 . The class B∗∗1 has been introduced by R. J. Pawlak
in 2000 ([5]).

We will use mostly standard notations. In particular by the letter R we
denote the set of all real numbers (as well as the space with the natural
topology). By the letter C we shall denote the set of all bounded continuous
functions. Let f : X → Y , where X and Y are topological spaces. We say
that f is Darboux functions if the image f(C) is a connected set, for each
connected set C ⊂ X.

The set of all discontinuity points of f we denote by Df . If A is a subset of
the domain of f , then the restriction of f to A we denote by f � A. A function
f belongs to the class B∗∗

1 if either Df = ∅ or f � Df is the continuous function
By the symbol DB∗∗1 we shall denote the set of all bounded Darboux func-

tions f : R −→ R belonging to the class B∗∗1 , with the metric of the uniform
convergence.

Let X and Y be topological spaces and let f, g : X → Y be continuous
mappings. We say that f and g are homotopic if there exists a continuous
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mapping ξ : X × [0, 1] → Y (the mapping ξ is called homotopy between f and
g) such that ξ(x, 0) = f(x) and ξ(x, 1) = g(x) (for each x ∈ X). This relation
we denote by f ∼

ξ g.
The symbol B(x, ε) denotes the ball with the centre at x and the radius

ε > 0. The notions and symbols we use, connected with porosity, come from
papers [9] and [10]. Let X be a metric space. Let M ⊂ X, x ∈ X and
S > 0. Then we denote by γ(x, S, M) the supremum of the set of all r > 0
for which there exists z ∈ X such that B(z, r) ⊂ B(x, S) \ M . If p(M,x) =
2 · limsupS→0+

γ(x,S,M)
S > 0, then we say that M is porous at x. If M is porous

at each point x ∈ X then we shall write M ⊂p X.
We say that the set C is superporous at x0, if the set C ∪ A is porous at

x0, for each set A porous at x0. We say that a set C ⊂ X is a superporous
set in X if C is superporous set at each point of X. This fact we denote by
C ⊂sp X.

By a (topological) road in the topological space X we mean a set f([0, 1]),
where f : [0, 1] −→ X is a bounded continuous function. The point f(0) is the
initial point and f(1) is the end-point of this road.

2 Main Results

The next theorem is a stronger version of the results from [4].

Theorem 1. C ⊂sp DB∗∗1 .

Proof. Let f ∈ DB∗∗1 and let A ⊂ DB∗∗1 be an arbitrary set porous at f .
Put Z = C ∪A. We shall show, that Z is a porous set at f . Let now R > 0 be
a fixed real number. Let us put σ0 = γ(f,R,A)

2R > 0. Then there exists a real
number σ > σ0 and a function g ∈ DB∗∗1 such that

B(g, σ ·R) ⊂ B(f,R) \A. (1)

To prove our theorem it is sufficient to show that there exists a function
h ∈ DB∗∗1 such that

B(h,
σ ·R

8
) ⊂ B(f,R) \ Z.

Let x0 /∈ Dg (observe, [5], that such a point exists). Let δ > 0 be a number
such that

[x0−δ, x0 +δ]∩Dg = ∅ and g([x0−δ, x0 +δ]) ⊂ (g(x0)− σ ·R
4

, g(x0)+
σ ·R

4
).

Let us define required function h : R → R in the following way:
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h(x) =
{

g(x) if x ∈ (−∞, x0 − δ] ∪ {x0} ∪ [x0 + δ, +∞),
t(x) if x ∈ (x0 − δ, x0) ∪ (x0, x0 + δ),

where t is a continuous function mapping [x0− δ, x0)∪ (x0, x0 + δ] into R such
that t(x0 − δ) = g(x0 − δ), t(x0 + δ) = g(x0 + δ) and t((x, x0)) = t((x0, y)) =
[g(x0)− σ·R

4 , g(x0) + σ·R
4 ], for each x ∈ (x0 − δ, x0) and y ∈ (x0, x0 + δ).

We shall show that h ∈ DB∗∗1 . Remark that h � (−∞, x0 − δ], h � [x0 +
δ, +∞), h � [x0−δ, x0+δ] are Darboux functions. Then (according to the proof
of Lemma 1 from [8], see also Lemma 1.4 from [7]) h is a Darboux function.
On the other hand

Dh = (Dg ∩ (−∞, x0 − δ) ∪ (x0 + δ, +∞)) ∪ {x0},
x0 is an isolated point in the set Dh and h, g are agree on the set Dh \ {x0}.
So h ∈ B∗∗1 , because g ∈ B∗∗1 .

Obviously

%(h, g) <
σ ·R

2
.

It is easy to see that

B(h,
σ ·R

8
) ⊂ B(g, σ ·R). (2)

Now, we shall show that

B(h,
σ ·R

8
) ∩ C = ∅. (3)

Indeed. Let l ∈ B(h, σ·R
8 ) and let {xn} ⊂ (x0 − δ, x0) be an increasing

sequence converging to x0 such that h(xn) = g(x0) + σ·R
4 . Clearly l(xn) >

g(x0) + σ·R
8 and l(x0) < g(x0) + σ·R

8 and so x0 is a discontinuity point of l.
From (1),(2) and (3) it follows that

B(h,
σ ·R

8
) ∩ (A ∪ C) = ∅

and so
B(h,

σ ·R
8

) ⊂ B(f,R) \ Z.

Consequently, p(Z, f) > 0, which finishes this proof.

Definition 1. [3]. We say that a function f : X → Y is 2-continuous (briefly
f ∈ C2) if there exist two sets A and B such that X = A∪B and the restrictions
f � A and f � B are continuous functions.
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Lemma 1. [3]. DB∗∗1 = DC2.

Lemma 2. If f ∈ DB∗∗1 and g ∈ C, then f + g ∈ DB∗∗1 .

Proof. Let f ∈ DB∗∗1 and g ∈ C. From Lemma 1 we obtain that f ∈ C2. Let
A, B be two sets such that A ∪ B = R and the restrictions f � A and f � B
are continuous functions. Obviously g � A and g � B are continuous functions,
too. So, f + g � A and f + g � B are continuous functions. On the other hand
f + g ∈ DB1 ([1], Theorem II.3.2, see also [6],[2]). Consequently, f + g ∈ DC2

and, according to Lemma 1 we have f + g ∈ DB∗∗1 .

Lemma 3. For each α ∈ R and for an arbitrary f ∈ DB∗∗1 we have α · f ∈
DB∗∗1 .

Proof.1 Let α ∈ R and f ∈ DB∗∗1 . From Lemma 1 we obtain that f ∈ C2.
Thus R = A ∪ B, where A, B are the subsets of R such that f � A and
f � B are continuous functions. Obviously, (α · f) � A and (α · f) � B are
continuous functions, too. So, α · f ∈ C2. Moreover, if f ∈ D then α · f ∈ D,
so α · f ∈ DC2 = DB∗∗1 .

Theorem 2. Let j : C → DB∗∗1 be the identity mapping (j(f) = f , for each
f ∈ C). Then there exists a continuous mapping t : C → DB∗∗1 and a homotopy
h : C × [0, 1] → DB∗∗1 such that j∼h t and h(C × (0, 1]) ∩ C = ∅.

Proof. Let us define a function ξ : R → [0, 1] by letting

ξ(x) =


0 if x ∈ (−∞, 0] ∪ { 1

2n−1 : n = 1, 2, ...} ∪ (1, +∞),
1 if x ∈ { 1

2n : n = 1, 2, ...},
l1(x) if x ∈ [ 1

2n , 1
2n−1 ] (n = 1, 2, ...),

l2(x) if x ∈ [ 1
2n+1 , 1

2n ] (n = 1, 2, ...),

where l1 : [ 1
2n , 1

2n−1 ] → [0, 1] is a linear function such that l1( 1
2n ) = 1 and

l1( 1
2n−1 ) = 0, for n = 1, 2, ... and l2 : [ 1

2n+1 , 1
2n ] → [0, 1] is a linear function

such that l2( 1
2n+1 ) = 0 and l2( 1

2n ) = 1, for n = 1, 2, .... Of course | ξ(x) |≤
1, for x ∈ R.

It is easy to see that ξ ∈ DB∗∗1 . Let us define t : C → DB∗∗1 by the formula

t(µ) = µ + ξ, for each µ ∈ C.

Clearly, µ + ξ ∈ DB∗∗1 (see Lemma 2). Moreover t is a continuous mapping.
Let us define the homotopy h : C × [0, 1] → DB∗∗1 by letting

h(f, r) = f + r · ξ.
1The Reviewer has remarked that this lemma can be proved in a straightforward manner

independent of the result given in Lemma 1.
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It is easy to see that h is a continuous function. By virtue of Lemma 3,
r · ξ ∈ DB∗∗1 and so according to Lemma 2, f + r · ξ ∈ DB∗∗1 .

Now, we shall show that j∼h t and h(C × (0, 1]) ∩ C = ∅. First observe that

h(f, 0) = f = j(f) and h(f, 1) = f + ξ = t(f).

Let f ∈ C be an arbitrary function and let r ∈ (0, 1]. It is not difficult to see
that h(f, r) /∈ C.

Corollary 1. For every continuous function k, there exists a (topological)
road R with the initial point at k such that ∅ 6= R \ {k} ⊂ DB∗∗1 \ C.

Proof. Let k be an arbitrary continuous function. Using the terminology of
the proof of Theorem 2 one can say that there exists a homotopy h : C×[0, 1] →
DB∗∗1 such that h(k, 0) = k, h(k, 1) = t(k), where t(k) is some function from
DB∗∗1 . Moreover,

hk = h � {k} × [0, 1] is a continuous function.

To the simplify notation we can assume that hk is a function of a one variable
hk : [0, 1] → DB∗∗1 and so for each r ∈ (0, 1], hk(r) ∈ DB∗∗1 \ C. To finish,
observe that hk(0) = k and hk(1) = t(k).

Theorem 3. For each function F : C → R there exists an extension F1 :
DB∗∗1 → R of a function F , such that F1 is a quasi-continuous function and
DF1 = C. Moreover, if F is a Darboux function then F1 is a Darboux function,
too.

Proof. Let F : C → R be an arbitrary function. Define F1 : DB∗∗1 → R by
the formula

F1(k) =

{
F (k) if k ∈ C,
sin 1

%(k,C)

%(k,C) if k ∈ DB∗∗1 \ C.

We shall show that F1 is a quasi-continuous function. First we can observe
that F1 is a continuous function on the set DB∗∗1 \ C. So, it suffices to prove
that for every k ∈ C, F1 is quasi-continuous at k.

Fix k ∈ C. According to Corollary 1 there exists a road Rk with the initial
point at k such that ∅ 6= Rk \ {k} ⊂ DB∗∗1 \ C. Let δ > 0, ε > 0. First, we
shall show that there exists a road R′

k ⊂ Rk with the initial point at k such
that R′

k ⊂ B(k, δ) and ∅ 6= R′
k \ {k}. Let hk : [0, 1] → DB∗∗1 be a continuous

function such that hk([0, 1]) = Rk (hk(0) = k). By the continuity of hk there
exists a positive number α such that hk([0, α]) ⊂ B(k, δ).

Consider the following cases:
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1) hk([0, α]) 6= {k}. In this case we put α0 = α.

2) hk([0, α]) = {k}.

Let α1 = sup{α′ : hk([0, α′]) = {k}}. By the continuity of hk, hk(α1) = k
and there exists α0 ∈ [α1, 1] such that hk([0, α0]) = hk([α1, α0]) ⊂ B(k, δ).
Observe that

hk([0, α0]) 6= {k}. (4)

In the both cases there exists a road

R′
k = hk([0, α0]) ⊂ B(k, δ) ∩Rk, such that R′

k \ {k} 6= ∅.

Now, we shall show that

F1(R′
k) = R. (5)

Indeed. Let z ∈ R and let ξ1 ∈ R′
k \ {k} ⊂ DB∗∗1 \ C. Let us assume

that s1 = %(ξ1, C). Then there exists a real number s0 ∈ (0, s1) such that
sin

(
1
s0

)
= z · s0. Let us denote by %∗(ϕ) = %(ϕ, C), for any ϕ ∈ DB∗∗1 . So

the set %∗(R′
k) is connected (as a continuous image of the connected set R′

k),
0 ∈ %∗(R′

k) (because k ∈ R′
k) and s1 ∈ %∗(R′

k). Consequently, s0 ∈ %∗(R′
k).

Thus there exists ξ0 ∈ R′
k such that s0 = %∗(ξ0) = %(ξ0, C) (of course ξ0 /∈ C).

Therefore F1(ξ0) = 1
%(ξ0,C) · sin

1
%(ξ0,C) = 1

s0
sin 1

s0
= z, and the condition (5) is

proved.
To finish the proof of the quasi-continuity of F1 at k let us consider a

number c ∈ (F1(k) − ε, F1(k) + ε). From the condition (5) one can deduce
that there exists c′ ∈ R′

k such that F1(c′) = c and c′ ∈ DB∗∗1 \ C, so c′ is a
continuity point of F1.

Now, we assume that F : C → R is a Darboux function. We shall prove
that F1 is a Darboux function, too. Let A be a connected set in the space
DB∗∗1 . If A ⊂ C then F1(A) = F (A) is a connected set. If A ⊂ DB∗∗1 \ C then,
from the continuity of F1 on the set DB∗∗1 \ C, it follows that A is a connected
set.

Finally, suppose that A∩C 6= ∅ 6= A \ C. Then there exists g0 ∈ A \ C. Let
β0 = %(g0, C) > 0. We shall show that

∀β∈(0,β0] ∃g∈A %(g, C) = β. (6)

Let β ∈ (0, β0) (for β = β0 we have g = g0).
It suffices to show that A ∩ Cβ 6= ∅, where Cβ = %∗−1(β) (%∗ is defined as

in the proof of the condition (5)).
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Conversely, suppose that A ∩ Cβ = ∅. Assume

A1 = %∗−1([0, β)) ∩A and A2 = %∗−1((β, +∞)) ∩A.

One can easily verify that A = A1 ∪ A2. Additionally, A1 6= ∅ because
A ∩ C 6= ∅ and A2 6= ∅ because g0 ∈ A. Moreover, A1 ⊂ %∗−1([0, β]) and A2 ⊂
%∗−1([β, +∞)). Since A1 and A2 are separated sets, then A is a disconnected
set. The obtained contradiction proves that A ∩ Cβ 6= ∅ and so the condition
(6) is true. Hence, F1(A) is a connected set. To conclude the proof it suffices
to observe that DF1 = C.

Acknowledgment. The author wish to thank the referee for valuable re-
marks and suggestions.

References

[1] A. M. Bruckner, Differentiation of real functions, Springer-Verlag (1978).

[2] A. M. Bruckner, J. G. Ceder, Darboux continuity, Jbr. Deutsch. Math.
Verein, 67 (1965), 93–117.

[3] M. Marciniak, Finitely continuous functions, Real Anal. Exch., 26(1)
(2000/01), 417–420.

[4] H. Pawlak, On the set B∗∗
1 in the space B1 of functions, Tatra Mt. Math.

Publ., 19 (2000), 263–271.

[5] R. Pawlak, On some class of functions intermediate between the class B∗1
and the family of continuous functions, Tatra Mt. Math. Publ., 19 (2000),
135–144.
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the space of Darboux and Świa̧tkowski functions, Real Anal. Exch., 19(2)
(1993-94), 465–470.
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