Helena Pawlak, Faculty of Mathematics, Lódź University, Banacha 22, 90-238 Łódź, Poland. email: rpawlak@imul.uni.lodz.pl

PROPERTIES OF THE SPACE $\mathcal{D} \mathcal{B}_{1}^{* *}$ WITH THE METRIC OF UNIFORM CONVERGENCE.

Abstract

In this paper we shall show that the set \mathcal{C} of all bounded continuous functions is superporous in the space $\mathcal{D} \mathcal{B}_{1}^{* *}$. Moreover, for an arbitrary function f defined on \mathcal{C} there exists a quasi-continuous extension f_{1} of this function on $\mathcal{D} \mathcal{B}_{1}^{* *}$, such that \mathcal{C} is the set of all discontinuity points of f_{1}.

1 Introduction

This article contains some properties of the space of Darboux functions belonging to the class $\mathcal{B}_{1}^{* *}$. The class $\mathcal{B}_{1}^{* *}$ has been introduced by R. J. Pawlak in 2000 ([5]).

We will use mostly standard notations. In particular by the letter \mathbb{R} we denote the set of all real numbers (as well as the space with the natural topology). By the letter \mathcal{C} we shall denote the set of all bounded continuous functions. Let $f: X \rightarrow Y$, where X and Y are topological spaces. We say that f is Darboux functions if the image $f(C)$ is a connected set, for each connected set $C \subset X$.

The set of all discontinuity points of f we denote by D_{f}. If A is a subset of the domain of f, then the restriction of f to A we denote by $f \upharpoonright A$. A function f belongs to the class $B_{1}^{* *}$ if either $D_{f}=\emptyset$ or $f \upharpoonright D_{f}$ is the continuous function

By the symbol $\mathcal{D B}_{1}^{* *}$ we shall denote the set of all bounded Darboux functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ belonging to the class $\mathcal{B}_{1}^{* *}$, with the metric of the uniform convergence.

Let X and Y be topological spaces and let $f, g: X \rightarrow Y$ be continuous mappings. We say that f and g are homotopic if there exists a continuous

[^0]mapping $\xi: X \times[0,1] \rightarrow Y$ (the mapping ξ is called homotopy between f and g) such that $\xi(x, 0)=f(x)$ and $\xi(x, 1)=g(x)$ (for each $x \in X$). This relation we denote by $f \frac{\widetilde{\xi}}{} g$.

The symbol $B(x, \varepsilon)$ denotes the ball with the centre at x and the radius $\varepsilon>0$. The notions and symbols we use, connected with porosity, come from papers [9] and [10]. Let X be a metric space. Let $M \subset X, x \in X$ and $S>0$. Then we denote by $\gamma(x, S, M)$ the supremum of the set of all $r>0$ for which there exists $z \in X$ such that $B(z, r) \subset B(x, S) \backslash M$. If $p(M, x)=$ $2 \cdot$ limsup $_{S \rightarrow 0+} \frac{\gamma(x, S, M)}{S}>0$, then we say that M is porous at x. If M is porous at each point $x \in X$ then we shall write $M \subset_{p} X$.

We say that the set C is superporous at x_{0}, if the set $C \cup A$ is porous at x_{0}, for each set A porous at x_{0}. We say that a set $C \subset X$ is a superporous set in X if C is superporous set at each point of X. This fact we denote by $C \subset_{s p} X$.

By a (topological) road in the topological space X we mean a set $f([0,1])$, where $f:[0,1] \longrightarrow X$ is a bounded continuous function. The point $f(0)$ is the initial point and $f(1)$ is the end-point of this road.

2 Main Results

The next theorem is a stronger version of the results from [4].
Theorem 1. $\mathcal{C} \subset_{s p} \mathcal{D} \mathcal{B}_{1}^{* *}$.
Proof. Let $f \in \mathcal{D} \mathcal{B}_{1}^{* *}$ and let $A \subset \mathcal{D} \mathcal{B}_{1}^{* *}$ be an arbitrary set porous at f. Put $Z=\mathcal{C} \cup A$. We shall show, that Z is a porous set at f. Let now $R>0$ be a fixed real number. Let us put $\sigma_{0}=\frac{\gamma(f, R, A)}{2 R}>0$. Then there exists a real number $\sigma>\sigma_{0}$ and a function $g \in \mathcal{D B}_{1}^{* *}$ such that

$$
\begin{equation*}
B(g, \sigma \cdot R) \subset B(f, R) \backslash A \tag{1}
\end{equation*}
$$

To prove our theorem it is sufficient to show that there exists a function $h \in \mathcal{D B}_{1}^{* *}$ such that

$$
B\left(h, \frac{\sigma \cdot R}{8}\right) \subset B(f, R) \backslash Z
$$

Let $x_{0} \notin \overline{D_{g}}$ (observe, [5], that such a point exists). Let $\delta>0$ be a number such that
$\left[x_{0}-\delta, x_{0}+\delta\right] \cap \overline{D_{g}}=\emptyset$ and $g\left(\left[x_{0}-\delta, x_{0}+\delta\right]\right) \subset\left(g\left(x_{0}\right)-\frac{\sigma \cdot R}{4}, g\left(x_{0}\right)+\frac{\sigma \cdot R}{4}\right)$.
Let us define required function $h: \mathbb{R} \rightarrow \mathbb{R}$ in the following way:

$$
h(x)=\left\{\begin{array}{lll}
g(x) & \text { if } & x \in\left(-\infty, x_{0}-\delta\right] \cup\left\{x_{0}\right\} \cup\left[x_{0}+\delta,+\infty\right) \\
t(x) & \text { if } & x \in\left(x_{0}-\delta, x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right)
\end{array}\right.
$$

where t is a continuous function mapping $\left[x_{0}-\delta, x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right]$ into \mathbb{R} such that $t\left(x_{0}-\delta\right)=g\left(x_{0}-\delta\right), t\left(x_{0}+\delta\right)=g\left(x_{0}+\delta\right)$ and $t\left(\left(x, x_{0}\right)\right)=t\left(\left(x_{0}, y\right)\right)=$ $\left[g\left(x_{0}\right)-\frac{\sigma \cdot R}{4}, g\left(x_{0}\right)+\frac{\sigma \cdot R}{4}\right]$, for each $x \in\left(x_{0}-\delta, x_{0}\right)$ and $y \in\left(x_{0}, x_{0}+\delta\right)$.

We shall show that $h \in \mathcal{D} \mathcal{B}_{1}^{* *}$. Remark that $h \upharpoonright\left(-\infty, x_{0}-\delta\right]$, $h \upharpoonright\left[x_{0}+\right.$ $\delta,+\infty), h \upharpoonright\left[x_{0}-\delta, x_{0}+\delta\right]$ are Darboux functions. Then (according to the proof of Lemma 1 from [8], see also Lemma 1.4 from [7]) h is a Darboux function. On the other hand

$$
D_{h}=\left(D_{g} \cap\left(-\infty, x_{0}-\delta\right) \cup\left(x_{0}+\delta,+\infty\right)\right) \cup\left\{x_{0}\right\}
$$

x_{0} is an isolated point in the set D_{h} and h, g are agree on the set $D_{h} \backslash\left\{x_{0}\right\}$. So $h \in \mathcal{B}_{1}^{* *}$, because $g \in \mathcal{B}_{1}^{* *}$.

Obviously

$$
\varrho(h, g)<\frac{\sigma \cdot R}{2} .
$$

It is easy to see that

$$
\begin{equation*}
B\left(h, \frac{\sigma \cdot R}{8}\right) \subset B(g, \sigma \cdot R) . \tag{2}
\end{equation*}
$$

Now, we shall show that

$$
\begin{equation*}
B\left(h, \frac{\sigma \cdot R}{8}\right) \cap \mathcal{C}=\emptyset . \tag{3}
\end{equation*}
$$

Indeed. Let $l \in B\left(h, \frac{\sigma \cdot R}{8}\right)$ and let $\left\{x_{n}\right\} \subset\left(x_{0}-\delta, x_{0}\right)$ be an increasing sequence converging to x_{0} such that $h\left(x_{n}\right)=g\left(x_{0}\right)+\frac{\sigma \cdot R}{4}$. Clearly $l\left(x_{n}\right)>$ $g\left(x_{0}\right)+\frac{\sigma \cdot R}{8}$ and $l\left(x_{0}\right)<g\left(x_{0}\right)+\frac{\sigma \cdot R}{8}$ and so x_{0} is a discontinuity point of l. From (1), (2) and (3) it follows that

$$
B\left(h, \frac{\sigma \cdot R}{8}\right) \cap(A \cup \mathcal{C})=\emptyset
$$

and so

$$
B\left(h, \frac{\sigma \cdot R}{8}\right) \subset B(f, R) \backslash Z
$$

Consequently, $p(Z, f)>0$, which finishes this proof.
Definition 1. [3]. We say that a function $f: X \rightarrow Y$ is 2 -continuous (briefly $f \in \mathcal{C}_{2}$) if there exist two sets A and B such that $X=A \cup B$ and the restrictions $f \upharpoonright A$ and $f \upharpoonright B$ are continuous functions.

Lemma 1. [3]. $\mathcal{D B}_{1}^{* *}=\mathcal{D C}_{2}$.
Lemma 2. If $f \in \mathcal{D B}_{1}^{* *}$ and $g \in \mathcal{C}$, then $f+g \in \mathcal{D B}_{1}^{* *}$.
Proof. Let $f \in \mathcal{D B}_{1}^{* *}$ and $g \in \mathcal{C}$. From Lemma 1 we obtain that $f \in \mathcal{C}_{2}$. Let A, B be two sets such that $A \cup B=\mathbb{R}$ and the restrictions $f \upharpoonright A$ and $f \upharpoonright B$ are continuous functions. Obviously $g \upharpoonright A$ and $g \upharpoonright B$ are continuous functions, too. So, $f+g \upharpoonright A$ and $f+g \upharpoonright B$ are continuous functions. On the other hand $f+g \in \mathcal{D B}_{1}$ ([1], Theorem II.3.2, see also [6],[2]). Consequently, $f+g \in \mathcal{D C}_{2}$ and, according to Lemma 1 we have $f+g \in \mathcal{D} \mathcal{B}_{1}^{* *}$.
Lemma 3. For each $\alpha \in \mathbb{R}$ and for an arbitrary $f \in \mathcal{D B}_{1}^{* *}$ we have $\alpha \cdot f \in$ $\mathcal{D B}_{1}^{* *}$.

Proof. ${ }^{1}$ Let $\alpha \in \mathbb{R}$ and $f \in \mathcal{D} \mathcal{B}_{1}^{* *}$. From Lemma 1 we obtain that $f \in \mathcal{C}_{2}$. Thus $\mathbb{R}=A \cup B$, where A, B are the subsets of \mathbb{R} such that $f \upharpoonright A$ and $f \upharpoonright B$ are continuous functions. Obviously, $(\alpha \cdot f) \upharpoonright A$ and $(\alpha \cdot f) \upharpoonright B$ are continuous functions, too. So, $\alpha \cdot f \in \mathcal{C}_{2}$. Moreover, if $f \in \mathcal{D}$ then $\alpha \cdot f \in \mathcal{D}$, so $\alpha \cdot f \in \mathcal{D C}_{2}=\mathcal{D} \mathcal{B}_{1}^{* *}$.
Theorem 2. Let $j: \mathcal{C} \rightarrow \mathcal{D B}_{1}^{* *}$ be the identity mapping $(j(f)=f$, for each $f \in \mathcal{C})$. Then there exists a continuous mapping $t: \mathcal{C} \rightarrow \mathcal{D B}_{1}^{* *}$ and a homotopy $h: \mathcal{C} \times[0,1] \rightarrow \mathcal{D B}_{1}^{* *}$ such that $j \frac{\sim}{h} t$ and $h(\mathcal{C} \times(0,1]) \cap \mathcal{C}=\emptyset$.
Proof. Let us define a function $\xi: \mathbb{R} \rightarrow[0,1]$ by letting

$$
\xi(x)= \begin{cases}0 & \text { if } x \in(-\infty, 0] \cup\left\{\frac{1}{2 n-1}: n=1,2, \ldots\right\} \cup(1,+\infty) \\ 1 & \text { if } x \in\left\{\frac{1}{2 n}: n=1,2, \ldots\right\} \\ l_{1}(x) & \text { if } x \in\left[\frac{1}{2 n}, \frac{1}{2 n-1}\right](n=1,2, \ldots), \\ l_{2}(x) & \text { if } x \in\left[\frac{1}{2 n+1}, \frac{1}{2 n}\right](n=1,2, \ldots)\end{cases}
$$

where $l_{1}:\left[\frac{1}{2 n}, \frac{1}{2 n-1}\right] \rightarrow[0,1]$ is a linear function such that $l_{1}\left(\frac{1}{2 n}\right)=1$ and $l_{1}\left(\frac{1}{2 n-1}\right)=0$, for $n=1,2, \ldots$ and $l_{2}:\left[\frac{1}{2 n+1}, \frac{1}{2 n}\right] \rightarrow[0,1]$ is a linear function such that $l_{2}\left(\frac{1}{2 n+1}\right)=0$ and $l_{2}\left(\frac{1}{2 n}\right)=1$, for $n=1,2, \ldots$. Of course $|\xi(x)| \leq$ 1 , for $x \in \mathbb{R}$.

It is easy to see that $\xi \in \mathcal{D} \mathcal{B}_{1}^{* *}$. Let us define $t: \mathcal{C} \rightarrow \mathcal{D} \mathcal{B}_{1}^{* *}$ by the formula

$$
t(\mu)=\mu+\xi, \text { for each } \mu \in \mathcal{C}
$$

Clearly, $\mu+\xi \in \mathcal{D} \mathcal{B}_{1}^{* *}$ (see Lemma 2). Moreover t is a continuous mapping. Let us define the homotopy $h: \mathcal{C} \times[0,1] \rightarrow \mathcal{D} \mathcal{B}_{1}^{* *}$ by letting

$$
h(f, r)=f+r \cdot \xi
$$

[^1]It is easy to see that h is a continuous function. By virtue of Lemma 3, $r \cdot \xi \in \mathcal{D B}_{1}^{* *}$ and so according to Lemma $2, f+r \cdot \xi \in \mathcal{D} \mathcal{B}_{1}^{* *}$.

Now, we shall show that $j \frac{\sim}{h} t$ and $h(\mathcal{C} \times(0,1]) \cap \mathcal{C}=\emptyset$. First observe that

$$
h(f, 0)=f=j(f) \text { and } h(f, 1)=f+\xi=t(f) .
$$

Let $f \in \mathcal{C}$ be an arbitrary function and let $r \in(0,1]$. It is not difficult to see that $h(f, r) \notin \mathcal{C}$.

Corollary 1. For every continuous function k, there exists a (topological) road \mathcal{R} with the initial point at k such that $\emptyset \neq \mathcal{R} \backslash\{k\} \subset \mathcal{D B}_{1}^{* *} \backslash \mathcal{C}$.
Proof. Let k be an arbitrary continuous function. Using the terminology of the proof of Theorem 2 one can say that there exists a homotopy $h: \mathcal{C} \times[0,1] \rightarrow$ $\mathcal{D B}_{1}^{* *}$ such that $h(k, 0)=k, h(k, 1)=t(k)$, where $t(k)$ is some function from $\mathcal{D B}_{1}^{* *}$. Moreover,

$$
h_{k}=h \upharpoonright\{k\} \times[0,1] \text { is a continuous function. }
$$

To the simplify notation we can assume that h_{k} is a function of a one variable $h_{k}:[0,1] \rightarrow \mathcal{D B}_{1}^{* *}$ and so for each $r \in(0,1], h_{k}(r) \in \mathcal{D B}_{1}^{* *} \backslash \mathcal{C}$. To finish, observe that $h_{k}(0)=k$ and $h_{k}(1)=t(k)$.
Theorem 3. For each function $F: \mathcal{C} \rightarrow \mathbb{R}$ there exists an extension F_{1} : $\mathcal{D B}_{1}^{* *} \rightarrow \mathbb{R}$ of a function F, such that F_{1} is a quasi-continuous function and $D_{F_{1}}=\mathcal{C}$. Moreover, if F is a Darboux function then F_{1} is a Darboux function, too.

Proof. Let $F: \mathcal{C} \rightarrow \mathbb{R}$ be an arbitrary function. Define $F_{1}: \mathcal{D B}_{1}^{* *} \rightarrow \mathbb{R}$ by the formula

$$
F_{1}(k)=\left\{\begin{array}{lll}
F(k) & \text { if } & k \in \mathcal{C} \\
\frac{\sin \frac{\partial(k, \mathcal{C})}{}}{\varrho(k, \mathcal{C})} & \text { if } & k \in \mathcal{D} \mathcal{B}_{1}^{* *} \backslash \mathcal{C} .
\end{array}\right.
$$

We shall show that F_{1} is a quasi-continuous function. First we can observe that F_{1} is a continuous function on the set $\mathcal{D B}_{1}^{* *} \backslash \mathcal{C}$. So, it suffices to prove that for every $k \in \mathcal{C}, F_{1}$ is quasi-continuous at k.

Fix $k \in \mathcal{C}$. According to Corollary 1 there exists a road \mathcal{R}_{k} with the initial point at k such that $\emptyset \neq \mathcal{R}_{k} \backslash\{k\} \subset \mathcal{D B}_{1}^{* *} \backslash \mathcal{C}$. Let $\delta>0, \varepsilon>0$. First, we shall show that there exists a road $\mathcal{R}_{k}^{\prime} \subset \mathcal{R}_{k}$ with the initial point at k such that $\mathcal{R}_{k}^{\prime} \subset B(k, \delta)$ and $\emptyset \neq \mathcal{R}_{k}^{\prime} \backslash\{k\}$. Let $h_{k}:[0,1] \rightarrow \mathcal{D B}_{1}^{* *}$ be a continuous function such that $h_{k}([0,1])=\mathcal{R}_{k}\left(h_{k}(0)=k\right)$. By the continuity of h_{k} there exists a positive number α such that $h_{k}([0, \alpha]) \subset B(k, \delta)$.

Consider the following cases:

1) $h_{k}([0, \alpha]) \neq\{k\}$. In this case we put $\alpha_{0}=\alpha$.
2) $h_{k}([0, \alpha])=\{k\}$.

Let $\alpha_{1}=\sup \left\{\alpha^{\prime}: h_{k}\left(\left[0, \alpha^{\prime}\right]\right)=\{k\}\right\}$. By the continuity of $h_{k}, h_{k}\left(\alpha_{1}\right)=k$ and there exists $\alpha_{0} \in\left[\alpha_{1}, 1\right]$ such that $h_{k}\left(\left[0, \alpha_{0}\right]\right)=h_{k}\left(\left[\alpha_{1}, \alpha_{0}\right]\right) \subset B(k, \delta)$. Observe that

$$
\begin{equation*}
h_{k}\left(\left[0, \alpha_{0}\right]\right) \neq\{k\} . \tag{4}
\end{equation*}
$$

In the both cases there exists a road

$$
\mathcal{R}_{k}^{\prime}=h_{k}\left(\left[0, \alpha_{0}\right]\right) \subset B(k, \delta) \cap \mathcal{R}_{k}, \text { such that } \mathcal{R}_{k}^{\prime} \backslash\{k\} \neq \emptyset .
$$

Now, we shall show that

$$
\begin{equation*}
F_{1}\left(\mathcal{R}_{k}^{\prime}\right)=\mathbb{R} \tag{5}
\end{equation*}
$$

Indeed. Let $z \in \mathbb{R}$ and let $\xi_{1} \in \mathcal{R}_{k}^{\prime} \backslash\{k\} \subset \mathcal{D} \mathcal{B}_{1}^{* *} \backslash \mathcal{C}$. Let us assume that $s_{1}=\varrho\left(\xi_{1}, \mathcal{C}\right)$. Then there exists a real number $s_{0} \in\left(0, s_{1}\right)$ such that $\sin \left(\frac{1}{s_{0}}\right)=z \cdot s_{0}$. Let us denote by $\varrho^{*}(\varphi)=\varrho(\varphi, \mathcal{C})$, for any $\varphi \in \mathcal{D} \mathcal{B}_{1}^{* *}$. So the set $\varrho^{*}\left(\mathcal{R}_{k}^{\prime}\right)$ is connected (as a continuous image of the connected set $\left.\mathcal{R}_{k}^{\prime}\right)$, $0 \in \varrho^{*}\left(\mathcal{R}_{k}^{\prime}\right)$ (because $\left.k \in \mathcal{R}_{k}^{\prime}\right)$ and $s_{1} \in \varrho^{*}\left(\mathcal{R}_{k}^{\prime}\right)$. Consequently, $s_{0} \in \varrho^{*}\left(\mathcal{R}_{k}^{\prime}\right)$. Thus there exists $\xi_{0} \in \mathcal{R}_{k}^{\prime}$ such that $s_{0}=\varrho^{*}\left(\xi_{0}\right)=\varrho\left(\xi_{0}, \mathcal{C}\right)$ (of course $\xi_{0} \notin \mathcal{C}$). Therefore $F_{1}\left(\xi_{0}\right)=\frac{1}{\varrho\left(\xi_{0}, \mathcal{C}\right)} \cdot \sin \frac{1}{\varrho\left(\xi_{0}, \mathcal{C}\right)}=\frac{1}{s_{0}} \sin \frac{1}{s_{0}}=z$, and the condition (5) is proved.

To finish the proof of the quasi-continuity of F_{1} at k let us consider a number $c \in\left(F_{1}(k)-\varepsilon, F_{1}(k)+\varepsilon\right)$. From the condition (5) one can deduce that there exists $c^{\prime} \in \mathcal{R}_{k}^{\prime}$ such that $F_{1}\left(c^{\prime}\right)=c$ and $c^{\prime} \in \mathcal{D} \mathcal{B}_{1}^{* *} \backslash \mathcal{C}$, so c^{\prime} is a continuity point of F_{1}.

Now, we assume that $F: \mathcal{C} \rightarrow \mathbb{R}$ is a Darboux function. We shall prove that F_{1} is a Darboux function, too. Let A be a connected set in the space $\mathcal{D} \mathcal{B}_{1}^{* *}$. If $A \subset \mathcal{C}$ then $F_{1}(A)=F(A)$ is a connected set. If $A \subset \mathcal{D} \mathcal{B}_{1}^{* *} \backslash \mathcal{C}$ then, from the continuity of F_{1} on the set $\mathcal{D} \mathcal{B}_{1}^{* *} \backslash \mathcal{C}$, it follows that A is a connected set.

Finally, suppose that $A \cap \mathcal{C} \neq \emptyset \neq A \backslash \mathcal{C}$. Then there exists $g_{0} \in A \backslash \mathcal{C}$. Let $\beta_{0}=\varrho\left(g_{0}, \mathcal{C}\right)>0$. We shall show that

$$
\begin{equation*}
\forall_{\beta \in\left(0, \beta_{0}\right]} \exists_{g \in A} \varrho(g, \mathcal{C})=\beta \tag{6}
\end{equation*}
$$

Let $\beta \in\left(0, \beta_{0}\right)\left(\right.$ for $\beta=\beta_{0}$ we have $\left.g=g_{0}\right)$.
It suffices to show that $A \cap C_{\beta} \neq \emptyset$, where $C_{\beta}=\varrho^{*-1}(\beta)\left(\varrho^{*}\right.$ is defined as in the proof of the condition (5)).

Conversely, suppose that $A \cap C_{\beta}=\emptyset$. Assume

$$
A_{1}=\varrho^{*-1}([0, \beta)) \cap A \text { and } A_{2}=\varrho^{*-1}((\beta,+\infty)) \cap A .
$$

One can easily verify that $A=A_{1} \cup A_{2}$. Additionally, $A_{1} \neq \emptyset$ because $A \cap \mathcal{C} \neq \emptyset$ and $A_{2} \neq \emptyset$ because $g_{0} \in A$. Moreover, $\overline{A_{1}} \subset \varrho^{*-1}([0, \beta])$ and $\overline{A_{2}} \subset$ $\varrho^{*-1}([\beta,+\infty))$. Since A_{1} and A_{2} are separated sets, then A is a disconnected set. The obtained contradiction proves that $A \cap C_{\beta} \neq \emptyset$ and so the condition (6) is true. Hence, $F_{1}(A)$ is a connected set. To conclude the proof it suffices to observe that $D_{F_{1}}=\mathcal{C}$.
Acknowledgment. The author wish to thank the referee for valuable remarks and suggestions.

References

[1] A. M. Bruckner, Differentiation of real functions, Springer-Verlag (1978).
[2] A. M. Bruckner, J. G. Ceder, Darboux continuity, Jbr. Deutsch. Math. Verein, 67 (1965), 93-117.
[3] M. Marciniak, Finitely continuous functions, Real Anal. Exch., 26(1) (2000/01), 417-420.
[4] H. Pawlak, On the set $B_{1}^{* *}$ in the space B_{1} of functions, Tatra Mt. Math. Publ., 19 (2000), 263-271.
[5] R. Pawlak, On some class of functions intermediate between the class \mathcal{B}_{1}^{*} and the family of continuous functions, Tatra Mt. Math. Publ., 19 (2000), 135-144.
[6] T. Radaković, Über Darbouxsche und stetige functionen, Mont. Math. Phys., 38 (1931), 117-122.
[7] B. Świa̧tek, Przestrzenie funkcji $\mathcal{D} \mathcal{B}_{1} i \mathcal{A}^{*}$, doctoral thesis, Łódź (1997).
[8] A. Tomaszewska, On the set of functions possessing the property (top) in the space of Darboux and Światkowski functions, Real Anal. Exch., 19(2) (1993-94), 465-470.
[9] L. Zajíček, Sets of σ-porosity and sets of σ-porosity (q), Časopis Pěst. Mat., 101 (1976), 350-359.
[10] L. Zajíček, Porosity and σ-porosity, Real Anal. Exch., 13(2) (1987-88), 314-350.

[^0]: Key Words: Darboux function; quasi-continuity; class $\mathcal{D} \mathcal{B}_{1}^{* *}$; porosity; topological road; extension of function

 Mathematical Reviews subject classification: 26A15
 Received by the editors February 11, 2003
 Communicated by: B. S. Thomson

[^1]: ${ }^{1}$ The Reviewer has remarked that this lemma can be proved in a straightforward manner independent of the result given in Lemma 1.

