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SAC PROPERTY AND APPROXIMATE
SEMICONTINUITY

Abstract

In this article we investigate approximate semicontinuity of a func-
tion related to Grande’s SAC problem.

The notion of the property SAC has been introduced by Z. Grande in [2] in
connection with his investigation of equiderivatives and approximate equicon-
tinuity. A function f : R → R is said to have property SAC if for every η > 0
there is an approximately continuous positive function r : R → R such that
for every x and every h with 0 < |h| < r(x) we have∣∣∣∣∣ 1h

∫ x+h

x

f(t) dt − f(x)

∣∣∣∣∣ < η .

Grande has proven that every function with property SAC must be approxi-
mately continuous. He also asked whether the converse holds, that is, whether
every approximately continuous function has property SAC.

In an incomplete discussion of the above problem contained in [6] a function
p(x) appeared in a natural way. Below we redefine it in a slightly altered
manner in order to avoid infinite values. Given an ε > 0, let

pε(x) = sup
{
γ ∈ (0, 1] : ∀h 6= 0 |h| < γ ⇒

∣∣∣∣∣ 1h
∫ x+h

x

f(t) dt− f(x)

∣∣∣∣∣ < ε
}

.

Our first lemma is devoted to an elementary inequality that will be of
frequent use from us in the course of the proof of the main result of this
paper.
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Lemma 1 (see Lemma in [5]). Let
∑

i ai and
∑

i bi be convergent series,
the first with nonnegative terms, the second one with positive terms. Then for
any k = 2, 3, . . . ,∞ the following inequalities hold

inf
1≤i≤k

ai

bi
≤

∑k
i=1 ai∑k
i=1 bi

≤ sup
1≤i≤k

ai

bi
.

We will need one more auxiliary inequality that is less obvious, and we will
divide its elementary but lengthy proof into two steps.

Lemma 2. Let a set A ⊂ R be union of finitely many pairwise disjoint open
intervals and let κ be any number from the interval (0, 1). Then for a set B
defined by

B =
{

y ∈ R : ∃h 6= 0
µ([y, y + h] ∩A)

|h|
> κ

}
the following inequality holds

µB ≤
(

2
κ
− 1
)

µA .

Proof. It is obvious that A ⊂ B. Further, since µ([y, y + h] ∩ A)/|h| is a
continuous function in h 6= 0, the set B is open. Let us write down the set A
as a union of disjoint open intervals

A =
n⋃

i=1

(αi, βi) with βi < αi+1 for i = 1, . . . , n− 1.

similarly we have

B =
m⋃

j=1

(γj , δj) with δj < γj+1 for j = 1, . . . ,m− 1.

It is not difficult to see that if y ∈ B \ A, then either there is an i1 such that
[y, αi1 ] ⊂ B or there is an i2 such that [βi2 , y] ⊂ B.

Next observe that it suffices to prove the inequality in the case B is a single
open interval. Indeed, the general case follows by setting

Aj = A ∩ (γj , δj)

and then using the single interval inequality

µ(γj , δj) ≤
(

2
κ
− 1
)

µAj
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and adding these inequalities for j = 1, . . . ,m.
Assume that B is a single open interval. We start with a definition of a

function that will measure all holes in a set being a union of finitely many
pairwise disjoint intervals. given such a set C =

⋃n
i=1(αi, βi), we put h(C) =

sup C − inf C − µ(C). We set further for any positive integer k ≤ n

Ak =
k⋃

i=1

(αi, βi) and Ãk =
n⋃

i=k

(αi, βi)

and define

γ = α1 − max
1≤k≤n

{ (
1
κ
− 1
)

µAk − h(Ak)
}

δ = βn + max
1≤k≤n

{ (
1
κ
− 1
)

µÃk − h(Ãk)
}

.

Clearly γ ≤ α1 and δ ≥ βn . We will show that B = (γ, δ) in three steps.
First we will show that x ≤ γ implies x /∈ B. Take any x ≤ γ. Clearly

[x, x + h] ∩ A = ∅ for h < 0. If [x, x + h] ∩ A 6= ∅, then exactly one of the
following cases holds

(i) x + h ∈ (αi, βi) for some i ∈ {1, . . . , n} ;

(ii) x + h ∈ [βi, αi+1] for some i ∈ {1, . . . , n− 1} ;

(iii) x + h ≥ βn .

In the first case we get

µ([x, x + h] ∩A)
h

<
µ([x, βi] ∩A)]

βi − x
=

µAi

µAi + h(Ai) + α1 − x

≤ µAi

µAi + h(Ai) + α1 − γ

≤ µAi

µAi + h(Ai) +
(

1
γ − 1

)
µAi − h(Ai)

= κ .

In the case (ii) we get in an analogous manner

µ([x, x + h] ∩A)
h

≤ µ([x, βi] ∩A)
βi − x

≤ κ .
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Similarly in the case (iii) we get

µ([x, x + h] ∩A)
h

=
µ([x, βn] ∩A)

h
≤ µ([x, βn] ∩A)

βn − x
≤ κ .

Thus, x /∈ B.
The second step is devoted to proving that x ≥ δ implies x /∈ B, but we

will leave it out for it is essentially the same as the first step.
In the final step we are going to show that γ < x < β implies x ∈ B.
Since according to our earlier assumption B has only one component, α1 <

x < βn implies x ∈ B. Take x ∈ [βn, δ). If x = βn, it is obvious that x ∈ B.
If x > βn, then let k0 be such that(

1
κ
− 1
)

µ(Ãk0)− h(Ãk0) = max
1≤k≤n

{(
1
κ
− 1
)

µ(Ãk))− h(Ãk)
}

.

Putting h = −(x− αk0), we get h < 0, and µ([x, x + h] ∩A) = µ(Ãk0), and

|h| < δ − αk0 = βn +
(

1
κ
− 1
)

µ(Ãk0)− h(Ãk0)− αk0

= µ(Ãk0) + h(Ãk0) +
(

1
κ
− 1
)

µ(Ãk0)− h(Ãk0) =
1
κ

µ(Ãk0) .

Therefore x ∈ B and thus [βn, δ) ⊂ B. In a similar way we can show that
(γ, αn] ⊂ B.

We complete the proof of the Lemma 2 by showing that δ−γ ≤ ( 2
κ−1)µ(A).

To do this , we assume that k1 and k2 are such that(
1
κ
− 1
)

µ(Ak1)− h(Ak1) = max
1≤k≤n

{(
1
κ
− 1
)

µ(Ak))− h(Ak)
}

.

and (
1
κ
− 1
)

µ(Ãk2)− h(Ãk2) = max
1≤k≤n

{(
1
κ
− 1
)

µ(Ãk))− h(Ãk)
}

.

We have

δ − γ = βn − α1 +
(

1
κ
− 1
)

µ(Ak1)− h(Ak1) +
(

1
κ
− 1
)

µ(Ãk2)− h(Ãk2)

= µ(A) + h(A) +
(

1
κ
− 1
)

µ(Ak1)− h(Ak1) +
(

1
κ
− 1
)

µ(Ãk2)− h(Ãk2).

(1)
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If k2 ≤ k1, then h(Ak1) + h(Ãk2) ≥ h(A), so δ − γ ≤ ( 2
κ − 1)µ(A). Assume

now k1 < k2 and denote

ĥ(Ak2 \Ak1) =

{
h(Ak2 \Ak1) if k1 > 1
h(Ak2) if k1 = 1 .

Then(
1
κ
− 1
)

µ(Ak2)− h(Ak2) =

=
(

1
κ
− 1
)

(µ(Ak1) + µ(Ak2 \Ak1))− h(Ak1)− ĥ(Ak2 \Ak1) . (2)

Using the above equality and the fact that(
1
κ
− 1
)

µ(Ak1)− h(Ak1) ≥
(

1
κ
− 1
)

µ(Ak2)− h(Ak2) ,

we obtain

0 ≤
(

1
κ
− 1
)

µ(Ak2 \Ak1) . (3)

By (1) and (2) we get

δ − γ ≤ µ(A) + h(A) +
(

1
κ
− 1
)

µ(Ãk2)− h(Ãk2)

+
(

1
κ
− 1
)

µ(Ak2)− h(Ak2)−
(

1
κ
− 1
)

µ(Ak2 \Ak1) + h̃(Ak2 \Ak1)

=
1
κ

µ(A) +
(

1
κ
− 1
)

(βk2 − αk2)−
(

1
κ
− 1
)

µ(Ak2 \Ak1) + h̃(Ak2 \Ak1) .

Therefore by (3)

δ − γ ≤ 1
κ

µ(A) +
(

1
κ
− 1
)

(βk2 − αk2) ≤
(

2
κ
− 1
)

µ(A)

and the proof of lemma 2 is complete.

Lemma 3. Assume κ ∈ (0, 1]. If a set A is a union of finitely many pairwise
disjoint open intervals and if a set B is defined by

B =
{

y ∈ R : ∃h 6= 0
µ([y, y + h] ∩A)

|h|
≥ κ

}
,
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then

µB ≤
(

2
κ
− 1
)

µA .

Proof. If κ = 1, then B = Ā and µB = µA = ( 2
κ − 1)µA.

Suppose κ < 1. Take an x ∈ B such that

x /∈ C =
{

y : ∃h 6= 0
µ([y, y + h] ∩A)

|h|
> κ

}
.

Then in particular x /∈ Ā and there is an h 6= 0 such that

µ([y, y + h] ∩A)
|h|

= κ .

We will consider only the case h > 0, since the other case is quite similar.
Take any δ ∈ (0, h) such that (x, x + δ) ∩A = ∅. Then

µ([x + δ, xh] ∩A)
h− δ

=
µ([x, xh] ∩A)

h− δ
>

µ([x, xh] ∩A)
h

= κ .

Thus x + δ ∈ C for sufficiently small δ > 0 and hence x ∈ C̄ implying B ⊂ C̄.
Thus by the previous lemma

µB ≤ µC̄ = µC ≤
(

2
κ
− 1
)

µA .

The proof is complete.

Lemma 4. Let a set A ⊂ R be measurable and let κ ∈ (0, 1]. Then for a set
B defined by

B =
{

y ∈ R : ∃h 6= 0
µ([y, y + h] ∩A)

|h|
≥ κ

}
the following estimate holds

µB ≤
(

2
κ
− 1
)

µA .

Proof. First consider the case of A being an open set. Then A can be written
as a countable union of pairwise disjoint open intervals A =

⋃∞
n=1 Pn. Then

denoting

Bk =

y ∈ R : ∃h 6= 0
µ
(

[y, y + h] ∩
⋃k

n=1 Pn

)
|h|

≥ κ

 ,
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we get B =
⋃

Bk and Bk ⊂ Bk+1 . Therefore by Lemma 3

µB = lim
k

µBk ≤ lim
k

(
2
κ
− 1
)

µ

(
k⋃

n=1

Pn

)
=
(

2
κ
− 1
)

µA .

Now consider the case of A being a Gδ-set. If µA = +∞ , there is nothing
to prove. If A is of finite measure, it can be written as a countable intersection
of open sets of finite measure

A =
∞⋂

n=1

Dn where Dn+1 ⊂ Dn .

Setting

Bk =
{

y ∈ R : ∃h 6= 0
µ ([y, y + h] ∩Dk)

|h|
≥ κ

}
,

we get B ⊂
⋂

k Bk and by the previous step of this proof

µB ≤ lim
k

µBk ≤ lim
k

(
2
κ
− 1
)

µDk =
(

2
κ
− 1
)

µA .

Finally, if A is an arbitrary measurable set, there is a Gδ- superset Ã of
equal measure. Then the set B is the same for A and for Ã. Hence by the
previous step of the proof

µB ≤
(

2
κ
− 1
)

µÃ =
(

2
κ
− 1
)

µA

which completes the proof of Lemma 4.
In [5] an example has been given of an unbounded approximately continu-

ous function such that for a suitable ε > 0 the related function pε is not lower
semicontinuous. Actually, this may happen even for bounded approximately
continuous functions as the following example shows.

Define f : R → R by formula

f(x) =


42k+1x + 1− 22k+1, if x ∈

(
1

22k+1 − 1
42k+1 , 1

22k+1

]
;

−42k+1x + 1 + 22k+1, if x ∈
(

1
22k+1 , 1

22k+1 + 1
42k+1

)
;

0 otherwise,

where k runs over all nonnegative integers. The bounded function f is con-
tinuous except at 0 and it is approximately continuous everywhere. One can
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elementary compute that for ε = 4
15 we get pε(0) = (19 +

√
106)/60 and that

pε(x) =
2

15 · 42k
for x ∈

[
1

22k+1
− 1

42k+1
,

1
22k+1

+
1

42k+1

]
.

Thus pε(0) > lim infx→0 pε(x) = 0 , so pε is not lower semicontinuous. How-
ever, according to the next proposition the function pε must be approximately
lower semicontinuous.

Proposition 1. Let f be a bounded measurable function. If f is approximately
continuous at a point x0 , then for any ε > 0 the function pε is approximately
lower semicontinuous at x0.

Proof. Let σ be an arbitrary positive number. Set E = {x : |f(x)−f(x0)| <
σ } . We will denote the complement of E by CE. Fix a number κ ∈ (0, 1]
arbitrarily. It follows from the approximate continuity of the function f at x0,
that there is a positive number h0 such that

µ(CE ∩ [x0, x])
|x− x0|

<
κ

4
for all x with |x− x0| ≤ h0 . (4)

Next let us define an = x0 + h0/2n−1 for all positive integers n. We are
going to show that the set{

x ∈ (x0, a2) : ∃ 0 < |h| < h0
µ(CE ∩ [x, x + h])

|h|
≥ κ

}
has right-hand density 0 at x0. In a similar fashion one can show that the set{

x ∈ (x0 −
h0

2
, x0) : ∃ 0 < |h| < h0

µ(CE ∩ [x, x + h])
|h|

≥ κ

}
has left-hand density 0 at x0. These facts would imply

Claim. x0 is a point of dispersion of the set{
x ∈ R : ∃ 0 < |h| < h0

2
µ(CE ∩ [x, x + h])

|h|
≥ κ

}
.

The set

A =
{

x ∈ (x0, x0 +
h0

2
) : ∃ 0 < |h| < h0

2
µ(CE ∩ [x, x + h])

|h|
≥ κ

}



SAC Property and Approximate Semicontinuity 387

is contained in the union of the following three sets

A1 =
⋃
n≥2

{
x ∈ [an+1, an] : ∃h 6= 0 such that x + h ∈ [an+1, an]

and
µ(CE ∩ [x, x + h])

|h|
≥ κ

}
,

A2 =
⋃
n≥2

{
x ∈ [an+1, an] \A1 : ∃h > 0 such that x + h ∈ [an, an−1]

and
µ(CE ∩ [x, x + h])

|h|
≥ κ

}
,

A3 =
⋃
n≥2

{
x ∈ [an+1, an] \A1 : ∃h < 0 such that x + h ∈ [an+2, an+1]

and
µ(CE ∩ [x, x + h])

|h|
≥ κ

}
.

The inclusion A ⊂ A1 ∪ A2 ∪ A3 is not obvious, since it seems possible that
the inequality

µ(CE ∩ [x, y])
|x− y|

≥ κ

may occur for some x ∈ [an+1, an] and y ∈ [ak+1, ak] with n ≥ k + 2 or
for some x ∈ [an+1, an] , y < x0 with |y − x| < h0/2 .

We will show that none of the two cases holds.
Given any x ∈ [an+1, an], y ∈ [ak+1, ak] with n ≥ k + 2 we have

µ(CE ∩ [x, y])
|x− y|

≤

≤

µ(CE ∩ [an+1, an]) +
n−1∑

i=k+1

µ(CE ∩ [ai+1, ai]) + µ(CE ∩ [ak+1, ak])

n−1∑
i=k+1

(ai − ai+1)

.
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Thus by Lemma 1 we get

µ(CE ∩ [x, y])
|x− y|

≤

≤ µ(CE ∩ [an+1, an])
ak+1 − ak+2

+ max
k+1≤i≤n−1

µ(CE ∩ [ai+1, ai])
ai − ai+1

+
µ(CE ∩ [ak+1, ak])

ak+1 − ak+2
.

Hence by (4) and by the definition of ai

µ(CE ∩ [x, y])
|x− y|

≤ κ

4
+

κ
4 (an − an+1)
ak+1 − ak+2

+
κ
4 (ak − ak+1)

ak−ak+1
2

≤ κ

4
+

κ

4
· 1

2
+

κ

2
< κ ,

which eliminates the first case.
If y < x0 and x ∈ [an+1, an] with x− y < h0

2 , than by Lemma 1 and by
(4)

µ(CE ∩ [x, y])
x− y

≤ max
{

µ(CE ∩ [y, x0])
x0 − y

,
µ(CE ∩ [x0, x])

x− x0

}
≤ κ

4
.

which eliminates the second case and completes the proof of the inclusion
A ⊂ A1 ∪ A2 ∪ A3 . Thus in order to prove that the right-hand density
d+(A, x0) of the set A at x0 is 0, it suffices to prove that d+(Aj , x0) = 0 for
each j = 1, 2, 3 .

Define

λi = max
k≥i

µ(CE ∩ [ak+1, ak])
ak − ak+1

.

Since f is approximately continuous at x0, the point x0 is a dispersion point
of the set CE and therefore λi → 0 as i → +∞ . By Lemma 4 we get

µA1 ≤
(

2
κ
− 1
)

µ(CE ∩ [ai+1, ai]) ≤
(

2
κ
− 1
)

λi
h0

2i
.

Thus, given any ε > 0,

µ(A1 ∩ [ai+1, ai])
ai − ai+1

< ε

for all sufficiently large i. Hence for those n by Lemma 1

µ(A1 ∩ [x0, an])
an − x0

= lim
k→+∞

µ(A1 ∩ [an+k, an])
an − an+k

≤ lim inf
k→+∞

max
n≤i≤n+k−1

µ(A1 ∩ [ai+1, ai])
ai − ai+1

≤ ε .
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Thus for any x ∈ [an+1, an] and for those sufficiently large n

µ(A1 ∩ [x0, x])
x− x0

≤ µ(A1 ∩ [x0, an])
an+1 − x0

= 2
µ(A1 ∩ [x0, an])

an − x0
≤ 2ε

implying d+(A1, x0) ≤ 2ε . Since ε was arbitrary, we have proven that x0 is a
right-hand dispersion point of the set A1.

Our next step is to compute the right-hand density of A2 at x0. Given
x ∈ [an+1, an] , n > 1 , and h ∈ (0, h0/2) such that x + h ∈ [an, an−1] and

µ([x, x + h] ∩ CE)
h

≥ κ , (5)

we get

µ([x, x+h]∩CE) ≤ λn(an−an+1)+λn−1(an−1−an) ≤ λn−1(an−1−an+1) .

Hence by (5)

h ≤ 1
κ

λn−1(an−1 − an+1)

and therefore

an −
1
κ

λn−1(an−1 − an+1) ≤ x ≤ an .

It follows that

(A2 ∩ [an+1, an])
an − an+1

≤ λn−1(an−1 − an+1)
an+1 − an+2

=
6
κ

λn−1 ,

and thus for x ∈ [an+1, an] by Lemma 1

µ(A2 ∩ [x0, x])
x− x0

≤

∞∑
k=n

µ(A2 ∩ [ak+1, ak])

∞∑
k=n+1

(ak − ak+1)

≤ max
k≥n

µ(A2 ∩ [ak+1, ak])
ak+1 − ak+2

≤ 6
κ

λn−1 .

The last expression tends to 0 as n increases. Hence d+(A2, x0) = 0 .
The computation of the right-hand density of A3 at x0 is quite similar, but

we will write it down for the sake of completeness. Given an x ∈ [an+1, an] ,
and an h ∈ (−h0/2, 0) such that x + h ∈ [an+2, an+1] and

µ([x, x + h] ∩ CE)
h

≥ κ , (6)
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we get

µ([x+h, x]∩CE) ≤ λn(an−an+1) +λn+1(an+1−an+2) ≤ λn(an−an+2) .

Hence by (6)

|h| ≤ 1
κ

λn(an − an+2)

and therefore

an+1 ≤ x ≤ an+1 +
1
κ

λn(an − an+2) .

It follows that

(A3 ∩ [an+1, an])
an+1 − an+2

≤ λn(an − an+2)
an+1 − an+2

=
3
κ

λn ,

and thus for x ∈ [an+1, an] by Lemma 1

µ(A3 ∩ [x0, x])
x− x0

≤

∞∑
k=n

µ(A3 ∩ [ak+1, ak])

∞∑
k=n+1

(ak − ak+1)

≤ max
k≥n

µ(A3 ∩ [ak+1, ak])
ak+1 − ak+2)

≤ 3
κ

λn−1 .

The last expression tends to 0 as n increases. Hence d+(A2, x0) = 0 . There-
fore d+(A, x0) = 0 which completes the proof of our claim.

We now return to our investigation of the behavior of the function pε.
Let f be approximately continuous at x0 and let M > 0 be a constant such
that |f(x)| ≤ M/2 for all x ∈ R. Fix ε > 0 arbitrarily. Denote the set
{x : |f(x)− f(x0)| < ε/3 } by A. Then by our claim there is an h0 > 0 such
that the set

B =
{

x : ∀h 6= 0 |h| < h0

2
⇒ µ(CA ∩ [x, x + h])

|h|
<

ε

3M

}
has density one at x0. Approximate continuity of f at x0 implies that d(A, x0) =
1 and therefore d(A ∩ B, x0) = 1. We will show that pε(x) ≥ h0/2 for
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x ∈ A ∩B . Take any x ∈ A ∩B and take any h with |h| ∈ (0, h0
2 ). Then

∣∣∣∣ 1h
∫ x+h

x

f(t) dt− f(x)
∣∣∣∣ =

∣∣∣∣∣ 1h
∫ x+h

x

(f(t)− f(x)) dt

∣∣∣∣∣
≤ 1

|h|

∫
[x, x+h]

(
|f(t)− f(x0)|+ |f(x0)− f(x)|

)
dt

<
1
|h|

∫
[x, x+h]∩A

|f(t)− f(x0)| dt +
1
|h|

∫
[x, x+h]∩CA

|f(t)− f(x0)| dt +
ε

3

≤ ε

3
+

1
|h|

· ε|h|
3M

·M +
ε

3
= ε .

Thus pε(x) ≥ h0/2 .

Take an arbitrary γ > 0. If h0/2 ≥ pε(x)− γ , then

app lim inf
x→x0

pε(x) ≥ lim inf
A∩B3x→x0

pε(x) ≥ h0

2
≥ pε(x)− γ .

Otherwise, since | 1h
∫ x0+h

x0
f(t) dt − f(x0)| is a continuous function in h, it

attains its maximum on a set Z = {h : h0/2 ≤ |h| ≤ pε(x0)−γ } and hence
we get

inf
h∈Z

{
ε

∣∣∣∣∣ 1h
∫ x0+h

x0

f(t) dt− f(x0)

∣∣∣∣∣
}

> 0 . (7)

denote half of the minimum by η and set E = {x : |f(x)− f(x0)| < η/2 } .
Take any x ∈ E ∩A ∩B such that

4|x− x0|M
h0

<
η

2
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and take any h ∈ Z . Then∣∣∣∣∣
∣∣∣∣f(x)− 1

h

∫ x+h

x

f(t) dt

∣∣∣∣ − ∣∣∣∣f(x0)− 1
h

∫ x0+h

x0

f(t) dt

∣∣∣∣
∣∣∣∣∣

≤ |f(x)− f(x0)| +

∣∣∣∣∣ 1h
∫ x+h

x

f(t) dt− 1
h

∫ x0+h

x0

f(t) dt

∣∣∣∣∣
≤ η

2
+

2|x− x0|M
h

≤ η

2
+

4|x− x0|M
h0

< η .

Thus ∣∣∣∣∣f(x)− 1
h

∫ x+h

x

f(t) dt

∣∣∣∣∣ ≤
∣∣∣∣f(x0)− 1

h

∫ x0+h

x0

f(t) dt

∣∣∣∣+ η < ε ,

where the latter inequality is valid by (7). Since x ∈ A ∩B, we get∣∣∣∣∣f(x)− 1
h

∫ x+h

x

f(t) dt

∣∣∣∣∣ < ε

for all h 6= 0 such that |h| ≤ pε(x0)− γ. Thus

pε(x) ≥ pε(x0)− γ

for x ∈ E ∩A ∩B. Therefore

app lim inf
x→x0

pε(x) ≥ pε(x0)− γ .

Since γ was arbitrary, it completes the proof of approximate lower semiconti-
nuity of pε at the point x0.

Proposition 2. Let f be bounded and measurable. If f is approximately
continuous at a point x0, then for all ε > 0 the function

p̄ε(x) = sup
{
γ ∈ (0, 1] : ∀h 6= 0 |h| < γ ⇒

∣∣∣∣∣ 1h
∫ x+h

x

f(t) dt− f(x)

∣∣∣∣∣ ≤ ε
}

is approximately upper semicontinuous at x0.
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Proof. If lim supx→x0
p̄ε(x) = 0 , then p̄ε is upper semicontinuous at x0

for it takes positive values everywhere.
Assume now that lim supx→x0

p̄ε(x) = δ > 0 and take any γ ∈ (0, δ) .
Then the set E1 = {x : p̄ε(x) > γ } has positive upper density at x0. Let
E2 be a set of density one at x0 such that f |E2 is continuous. Then there is
a sequence (xn) of points of E1 ∩ E2 convergent to x0 such that xn 6= x0 for
all n. It is easy to see that for all 0 < |h| ≤ γ and for all positive integers n∣∣∣∣∣

∫ xn+h

xn

f(t) dt− f(xn)

∣∣∣∣∣ ≤ ε .

Passing to a limit with n →∞, we get∣∣∣∣∣
∫ x0+h

x0

f(t) dt− f(x0)

∣∣∣∣∣ ≤ ε .

Therefore p̄ε(x0) ≥ γ. Since γ < δ was arbitrary, we have p̄ε(x0) ≥ δ and the
proof is complete.

The SAC problem would be solved if it were possible to construct an ap-
proximately continuous function r such that 0 < r ≤ pε. In [6] we have shown
that if f is a positive approximately lower semicontinuous function of Baire
class one then the required function r can be found. However, there is no guar-
antee that our function pε is Baire class one and this assumption is crucial as
the following example shows.

Let (Kn)n∈N be a partition of all rationals from the interval [0,1] into
countably many subsets each of which is dense in the whole interval. Define
f to be 1

n+1 on Kn and to be 1 on the irrationals. It is obvious that f is
approximately lower semicontinuous and that it is not of Baire class one. It
is easy to see that there is no approximately continuous function r such that
0 < r ≤ f . Since each of the sets Kn is dense in [0, 1], so are the sets where r
is less than any given positive value, and hence every point of the interval is
a point of discontinuity of r. This can not happen for r is of Baire class one.

Open Problem Find a characterization of those approximately lower
semicontinuous functions f > 0 for which there is an approximately continuous
function r such that 0 < r ≤ f .
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