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REARRANGEMENTS OF
TRIGONOMETRIC SERIES AND
TRIGONOMETRIC POLYNOMIALS

Abstract

The paper is related to the following question of P. L. Ul’yanov. Is it
true that for any 2m-periodic continuous function f there is a uniformly
convergent rearrangement of its trigonometric Fourier series? In par-
ticular, we give an affirmative answer if the absolute values of Fourier
coefficients of f decrease. Also, we study how to choose m terms of a
trigonometric polynomial of degree n to make the uniform norm of their
sum as small as possible.

1 Introduction

P. L. Ul'yanov [U]] raised the following question. Is it true that for any 2m-
periodic continuous function f there is a uniformly convergent rearrangement
of its trigonometric Fourier series? The problem is still open.

Let T = R/27xZ, C(T) be the space of all continuous functions f : T — C,
[IfIl be the uniform norm of f € C(T). We associate with every function
f € C(T) its Fourier series in complex form

f ~ cheikx

and in real form

f~ Z A(z), Ax(x) = dy cos(kz + ¢r).
k=0
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Observe that Ap(z) = ce™ + c_re ™. Tt is easy to see that if Ul’yanov’s
conjecture is true for the series in a real form (that is, there is a permutation
o of N such that ||f —do — > p_; Ayl| — 0 as n — o0), then it is also true
for the series in complex form because for n — oo

n

£ =do =3 (o™ ™ + e ®2)
k=1

‘—>0.

Sz.Gy. Révész[R, R2] proved that for any f € C(T) there is a rear-
rangement of its trigonometric Fourier series such that some subsequence
of the sequence of partial sums of the rearranged series converges to f uni-
formly. Due to this result, Ul’yanov’s conjecture is equivalent to the follow-
ing. There is an absolute constant C' > 0 such that for any trigonometric
polynomial (with a zero constant term) ».;_, Ai(z) there is a permutation
o:{l,...,n} = {1,...,n} such that for m=1,...,n

|3 o] < € 3o o]
k=1 k=1

It is known that
|- @) < Clogtn+ 1| Y- Auto)
k=1 k=1

(see [Z][ chapter 2, §12]). Let

w(f,0) = sup |f(z) = fy)l
o<

be the modulus of continuity of f. By the Dini-Lipschitz theorem [Z] [chap-
ter 2, §10], if w(f,0) = o(1/log1/d) as § — 0, then the Fourier series of f
converges to f uniformly. Moreover, the condition on w(f,d) is sharp and
cannot be replaced by w(f,d) = O(1/log1/6)[Z] [chapter 8, §2].

The author[K, K2] proved the following results.

Theorem 1. For any trigonometric polynomial Y ._, Ax(x) there is a per-
mutation o : {1,...,n}— {1,...,n} such that form=1,....n

H iAouc)(z)H < Cloglog(n + 2)H zn:Ak(x)H.
k=1 k=1
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Theorem 2. Let f € C(T) and w(f,d§) = o(1/loglog1/d) as 6 — 0. Then
there is a permutation o : N — N such that

[~ do = 35 oy @)]| = 0 (= ).
k=1

Theorem 2 follows from Theorem 1 by using Theorem 5 from [R].

To approach Ul’yanov’s conjecture, one can try to prove that there is an
absolute constant C' > 0 such that for any trigonometric polynomial (with
a zero constant term) Y ,_; Agx(x) and for any m < n there is an injection
o:{1,...,m} — {1,...,n} such that

I3 st < ]

I cannot prove this either.

Theorem 3. For any trigonometric polynomial >_;_, Ax(z) and for any m <
n there is a set K C {1,...,n} such that |K| =m and

H Z Ak(x)H < C'logloglog(n + 20)” iAk(x)H
keK k=1

Theorem 4. Let f € C(T),
f~ Z Ag(x), Ag(x) = dj, cos(kz + ¢r),
k=0
and d, = O(k='/2). Then there is a permutation o : N — N such that
|£=do =" Asy (@) =0 (1 0).
k=1

In particular, Theorem 4 works if the sequence {|dj|} is nonincreasing.
Note that, by a theorem of Salem [S], there exists an even continuous func-
tion such that its Fourier series diverges at = 0 and the sequence {|dj|} is
nonincreasing,

By C,C",C1,Cs, ... we denote positive constants. Let [u] and {u} be the
integer and the fractional part of the real number u, respectively.
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2 Proof of Theorem 3

Let n € N, T be a trigonometric polynomial,
T(z) = Z Ag(z) = Z dy, cos(kx + ¢r,).
k=1 k=1

We use the following lemmas from [K2].

Lemma 1. Let |T]| < 1,1 €N, j € Z, K;; ={k: 1
+j(mod 1)}. Then
| 32 a=<>

kEKl,j

IN
o
IN
S
o
Il

Lemma 2. Let |T|| < 1. Then there exists an odd prime p < 2log®(n + 3)

such that
Z |dk1|2|dk2‘2 <

k17#ko
k1=k2( mod p)

Ch
12/ 1\ (1)
log“(n+1)

Lemma 3. Letp be a prime satisfying (1), j € Z, Kp; ={k: 1<k <n, k=
+j(mod p)}, N; = |K,;|. Then there exists a bijection T : {1,...,N;} —
K, ; such that for any m = 1,..., N; the inequality

H zm:Ar(j)H < Co(1+ 7))

Jj=1
holds.

In the proof of Theorem 3 we assume that n is sufficiently large and ||T']] <
1. We can also assume that m < n/2; otherwise we can take the complement
to a set constructed for n —m < n/2 instead of m. Also, it is sufficient
to construct a set K’ C {1,...,n} such that |[K'| = m’ for some m’ < m,
m—m’ <0.2n/ 1og3 n, and

H Z Ak(ac)H < (C'logloglogn.
keK’

Indeed, take an odd prime p < 2log®(n + 3) satisfying Lemma 2. Define the
sets K ; as in Lemma 3. Since |K’| < n/2, we can find j so that

[Kpj \ K| = (n = |K'|)/p 2 n/(410g*(n + 3)) 2 0.2n/log’ n
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provided that n > 20. Applying Lemma 3 to the polynomial

Ak»
ke{l,...n}\ K’

we can define the set K as K’ U {7(1),...,7(m)} where m is such that

{r(1),...,7(m)}\ K' =m —m’.

By the above arguments we can assume that m > 0.2n/ log® n; otherwise, we
take m’ = 0 and K’ = ().
We shall use the following known fact.

Lemma 4. For any real o € (0, 1] there exist positive integers ly,la, ..., such
that for any positive integer s

S

1 .
0<a—> <27 " (2)
j=1"

Proor. We construct [ inductively by

= min{!: a—zl %

The inequalities (2) can be checked by induction on s. The proof of the first
inequality is straightforward. The induction base for the second inequality
holds: a — 1/1; <1/2.

By the induction supposition (2), we have [g41 — 1 > 22" Also, by the

definition of ls41, a — 377, - —— < 0. Therefore,
;L

1 1 s
a— — < <27
Z l s+1 - 1 ls+1 (ls+1 - 1)2 -
and (2) is established for s 4+ 1. Lemma 4 is proved. O

Take s = [2logloglogn]. Note that for sufficiently large n we have
272" < 0.05/log® n. (3)

One can try to define the numbers Iy, ...,ls by Lemma 3 with « close to m/n
and to take, for example,

=JK;, K;={k=+1(mod 21;)},
j=1
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By Lemma 1,

| 3 4 <2

keK;

and Y i |K| is close to m. However, the sets K; might have common points,
and in general we cannot give good estimates for ||Zk€K, Ak” and for |K|.
We show how to correct the construction.

Let Iy = [5logloglogn], v = lom/n — 0.1/log®>n, g = [7], @ = {y}. Note
that g > 0. Because of our supposition m > 0.2n/ log® n. Take the numbers
li,...,ls in accordance with Lemma 4 and define

g s
K =|JK;ulJKj
j=1 j=1

where K; = {k = £j(mod 2lo)}, K} = {k £ (g9 + j) = O0(mod 2lyl;)}. Note
that the residues classes +j(mod 2lp) (j = 1,...,9 + s), are all distinct since
g+ s <ly/2+s <lyp— 1. Therefore, the sets K, K;- are pairwise disjoint.
Further, by Lemma 1,

| 2 af <2 | ¥ <2
kEK; kEK!

Hence,

H Z AkH < 2(g+ s) < 10logloglogn.
keK’

Also, it is not difficult to check that
1K —n/lo] < LK —n/(lol;)] < 1.

Therefore,

|K'| = ng/lo + Zn/(lolj) + O(logloglog n).

j=1

Taking (2) and (3) into account, we get
ng/lo + Zn/(lolj) <m —0.1n/log*n
j=1

ng/lo + Zn/(lolj) >m — 0.1n/log®n — 0.05n/ log® n.

j=1
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Combining three last inequalities, we obtain
m > |K'| >m —0.2n/logn,

as required. This completes the proof of Theorem 3. O

3 Spencer’s Theorem and Its Corollaries

Let u be a vector u = (ul,...,u") € R" and let |u|o, = maxy |u*|. J. Spencer

[Sp] actually proved the following theorem.

Theorem A. Let r < n be a positive integer, uj € R", |uj|o < 1. Then for
some choice of signs

| £ ug £+ uploe < Cs(rlog(2n/r))/2.

Corollary 1. Let r < n be positive integers and K C {1,...,n}, |K| = r.
Consider a trigonometric polynomial

> Ag(x), Ag(x) = di cos(kz + ).

keK

Then there are sets Ky C K and K_ C K such that

Ky UK =K, K, nK_ =0, |K;|=[K]|/2] (4)
and
| 3 A= > A < Culrtog(2n/m)/ max dil. (5)
kJEK+ keK_

PROOF. Let d = maxgek |di|. We apply Theorem A to the vectors up €
R20n+1 k¢ K, defined as

U = (éR(Ak(7Tl/(5n))/d)l:()’m’lon,l, %(Ak(Tl'l/(f)n))/d)l:()’m’lonfl7 1)
Then there exist numbers o, = +1 (k € K) such that
H 3 okAk“ < 3v2C5(r log((40n + 2) /r))Y/2d (6)
keK

and

|3 ok| < Carlog((40n +2)/r)) /2. (7)

keK
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For the proof of (6) we use that for any trigonometric polynomial T' of order
n

<
1T <3 _ max [T(xl/(5n)]

PR

(see, for example, [K1]). Without loss of generality we can assume that
Dorerx 0k 20 Take Ky, ={kc K: op =1}, K. ={ke K: o, =—1}. We
have
2K, | = K[+ ) o < 2[|K]/2).
keK
Take an arbitrary set K1 C K’ such that |K,| = [|K|/2] — |K,|. By (7),
| K| < Cs3(rlog((40n + 2)/7))*/? /2. Hence,

H Z AkH < Cg(rlog((40n+2)/r))1/2d/2. (8)

keKy

Denote K = K/, UK, K_ = K’ \ K;. The conditions (4) are satisfied. By
(6) and (8) we get

H Z A — Z AkH §6C3(r10g((40n+2)/r))1/2d.

]CEK+ keK_
Therefore, (5) also holds, and Corollary 1 is proved. O

Corollary 2. Let r < n be positive integers and K C {1,...,n}, |K| = r.
Consider a trigonometric polynomial

Z apAg(z), Ag(z) = dy cos(kz + ¢p),

keK

where ay, are real numbers. Then there are numbers By, € {[ak], [ax] + 1} such
that

H kEZKakAk — Z ﬁkAkH < ()'4(7’10g(2n/7’))1/2 Iknea;{ddk\.

keK

In fact, the deduction of Corollary 2 from Corollary 1 is exhibited in [KI].

Corollary 3. Let r,n be positive integers, r < n/5 and K C {1,...,n},
|K| =r. Consider a trigonometric polynomial

Z Ag(x), Ag(x) = dy cos(kz + ¢y).

keK
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Then there exists a bijection o : {1,...,r} — K such that for anym =1,...,r
the inequality

[3" 406 = 2 Ad| < (46 + ) 1og(2n/m) 2 max i (9)
j=1 kEK

holds.

PROOF. Let d = maxgex |di|. We fix n and use induction on r. If r < 8 then
we take an arbitrary bijection o. For any m < r we have

H iAom - T};{AkH <md + %(rd) < 2md
J= €

< 2rd = (2r)"/2(27)"/2d < 4(r log(2n/r))"/*d,

and (9) holds. Let us assume that 9 < r < n/5 and that the statement of the
corollary is satisfied for all 7' < 7.

By Corollary 1, we split the sets K into the sets K and K_. The inequality
(5) can be rewritten as

DUy pras———
keEK

keK
We have
[r/2] Cy 1/2
S S < 24
H > Ac- 2y AkH < <t (rlog(2n/r)"/2d
keK keK
1 [r/2]
o) | Z
keK
1 10
Sg(r log(2n/r))Y%d + — (rd) (10)
2 2r
= %(r log(2n/r)Y/%d + d/2
1
<Gt 10g@nyr) 2.
By the induction supposition, there exist bijections o : {1,...,[r/2]} —

K, ando_ : {1,...,r — [r/2]} — K_ such that for any m < [r/2]

HZAﬂ(j) — Y A < @l )i tog(2n/ri)) 2, vy = /2, (1)
j=1 kEK,
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and for any m < r — [r/2]

H SA, - —=% AkH < (4Cy + 4)(r1 log(2n/r ) V2d, ry =1 — [r/2].
j=1 " per.
(12)
We take o(j) = 04 (j) for j < [r/2] and o(j) = o_(r+1—j) for j > [r/2].

If m < [r/2] then we have, by (10) and (11),

324002 5 < [ St 5=
Jj=1 keK j=1 kEK 4

m m
23 -yl
" er, " rex
- m
< Lo
X400 -7 2 4 (13
J=1 keK
[r/2]
o 2 a-EE3 A
keEK keK

<(4Cy + 4)(r1 log(2n/r))/2d

Cat 1(7" log(2n/r))"/2d, ri = [r/2].

Further, for r1 = [r/2] we have
1/2 3 1/2
(r1log(2n/r))/? < (g log(2n/r x 9/4)) < (; X 210g(2n/r)>

3 V2o
< <4rlog(2n/r)> < g(rlog(Qn/r))l/Q.
Substituting the last inequality into (13) we get the required
m
m
H PIPEEEEDS AkH < (4Cy + 4)(rlog(2n/r))"/2d.
j=1 keK
If m > [r/2], then, similarly to (13), we have
m m ' r—m
|40 - 5 L = 40 - =7 LA
j=1 kEK j=1 keK

<(4Cy + 4)(r1 log(2n/r1))"/?d
Cy+1
2

(14)

+ (rlog(Qn/r))l/zd, ri=r—|[r/2.
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For ry = [r/2] we have
1/2 1/2
4
(r1log(2n/r))/? < (5; log(2n/r x 2)) < (i: X 3log(2n/r)>

1/2
< <irlog(2n/r)> < g(rlog(Zn/r))l/z.

and after substitution of the last inequality into (14) we complete the proof of
Corollary 3. O

4 Proof of Theorem 4

We use Vallée Poussin sums defined for positive integers n > m as

m n _ k
Vinn(2) = Ap(x) + i Ap(o).
() kz:% (2) k:%;rl"_m (z)
It is known that for any f € C(T) there is a function n : N — N such that
n(m) > m for all m, lim,,_..n(m)/m = 1 and lim,, e |Vin.n — f|| = 0.
(This follows, for example, from [D] or from [St].) We define the increasing
sequence of positive integers {Nx}reny by N1 =1, Nyt = n(Ny) for A > 1.
We fix A > 1, take m = Ny, n = Ny;1 and use Corollary 2 for Ky =
{m+1,...,n}, ax = 2=%_ We find that there are numbers 3, € {0,1},
k € K, such that

[V =S A= 3 e
k=0 keK
< (((n —m)/n)log((2n)/(n —m)))'/* =0 (A — o0).

Also, by the choice of the sequence {Nx}}, we have limy_. [|Vin,n — f]| = 0.
Therefore, letting Ly = {1,...,m}U{k € Ky : Br =1} we get

Hf—do— ZA,CHHO(AHOO). (15)

k€L

To complete the proof, it is enough, by (15), to find a good permutation
of the terms of the polynomials ), Lasi\Ln Aj. We construct a permutation
in such a way that the numbers from L) \ Lx_; precede the numbers from
Lyy1\ Ly for all X for all A € N; we consider that Ly = (). The permutation
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can be constructed by Corollary 3, the partial sums can be estimated similarly
to (15), and we are done.

The author is grateful to the referee for a careful reading of the paper. Due
to his (or her) remarks, a series of misprints have been corrected.
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