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CLUSTER SETS AND APPROXIMATION
PROPERTIES OF QUASI-CONTINUOUS

AND CLIQUISH FUNCTIONS

Abstract

The crucial concept for studying quasi-continuous and cliquish func-
tions on arbitrary topological spaces X is the concept of a semi-open
subset of X. On the one hand, it gives rise to the cluster set SO-C(f ; x)
of a function f : X → R at a point x ∈ X, which turns out to be an
appropriate tool for investigating both local and global properties of f .
On the other hand, the concept of a semi-open set is used for introduc-
ing so-called semi-open partitions of X. A central result of the paper
says that every quasi-continuous function can be represented as a uni-
form limit of step functions defined on a chain of semi-open partitions
of X. Similarly, every cliquish function is proved to be the uniform
limit of step functions defined on a chain of so-called almost semi-open
partitions of X.

1 Survey and Historical Remarks

The notion of a quasi-continuous function was introduced by Kempisty in
1932 (cf. [16]). An independent definition was given by Bledsoe in 1952,
who created the notion of a neighborly function (cf. [4]). Thielman in his 1953
paper [29] expanded the class of neighborly functions into the class of so-called
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cliquish functions on arbitrary topological spaces. Finally, Marcus in 1961
gave a summary of the various definitions and developed further properties of
quasi-continuous and cliquish functions, illustrating them by functions of real
variables (cf. [19]).

A real-valued function f on a topological spaceX is called quasi-continuous
at the point x0 ∈ X if, for every ε > 0 and for every neighborhood U ∈ U(x0)
of x0, there exists a non-empty open set G ⊆ U such that |f(x)− f(x0)| < ε
for all x ∈ G. The function f is called cliquish at the point x0 ∈ X if under the
same conditions as above |f(x) − f(x′)| < ε for all x, x′ ∈ G. The function f
is called quasi-continuous or cliquish on X if it is quasi-continuous or cliquish,
respectively, at each point of X.

A new view on functions quasi-continuous in the large was opened in 1963
when Levine introduced the notion of a semi-open set (cf. [17]). According to
his definition a subset S of a topological space X is semi-open if S ⊆ cl(int S);
that is, if S is contained in the closure of its interior. A semi-continuous
function f in [17] is defined to be a function such that the inverse image f−1(V )
of every open subset V ⊆ R is semi-open in X. Levine’s local characterization
says that a function f is semi-continuous at a point x0 ∈ X if, for every open
subset V ⊆ R with f(x0) ∈ V , there exists a semi-open set S ⊆ X with x0 ∈ S
and f(x) ∈ V for all x ∈ S. In the local situation, however, an open set S = G
with x0 ∈ cl(G) would do.

Independently, Nj̊astad in 1965 introduced so-called “β-sets” (cf. [22]).
His definition coincides with Levine’s definition of semi-open sets. Moreover,
Nj̊astad in his 1965 paper points out that quasi-continuous mappings in the
sense of Kempisty can be characterized by the property that the inverse image
f−1(V ) of every open set V is a β-set; that is, a semi-open set. Without
referring to semi-open sets or β-sets explicitly, Bruteanu 1970 (cf. [7]) ends
up with the same characterization of quasi-continuity (cf. also [20]) .

Though Levine’s notation “semi-continuous function” fits in with the no-
tation “semi-open subset”, we shall stick to the original notation of a “quasi-
continuous function” due to Kempisty, that has been preserved in the 70th
and 80th (cf. e.g. [7], [18], [20], [21]). Only in the 90th another notation
came up, when Shi, Zheng, and Zhuang rediscovered quasi-continuous func-
tions and semi-open sets calling them “robust functions” and “robust sets”,
respectively (cf. [27]). They were motivated by numerical problems arising in
global optimization in the case of discontinuous functions. The title “Discon-
tinuous robust mappings are approximatable” of their paper is to announce
the following local property of quasi-continuous functions f on a Baire space
X. For every point x0 ∈ X, there exists a directed system {xα} ⊆ X of
continuity points xα of f such that limα xα = x0 and limα f(xα) = f(x0).
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Let us mention that in the case of a real-valued function f of one or several
real variables the idea of calculating the value of f in a discontinuity point by
an appropriate sequence of continuity points has already been developed by
Schoenflies in 1900 (cf. [26], pp. 125–144). In this very article Schoenflies, on
the basis of results of Brodén (cf. [6]), studies the discontinuities of pointwise
discontinuous functions (functions with a dense set of continuity points).

The main result of the present paper is a global one. It says that a quasi-
continuous function f on an arbitrary topological space X can be represented
as a uniform limit of a sequence of piecewise constant functions ϕn on a chain
K = (Pn)∞n=1 of semi-open partitions Pn of X (partitions into semi-open sets).
If f is locally bounded or bounded on X, the partitions Pn of the chain K can
be chosen to be locally finite or finite, respectively (see Section 3).

According to this result quasi-continuous functions on a topological space
X can be arranged with respect to their discontinuities. Indeed, the chain K =
(Pn)∞n=1 of semi-open partitions Pn is the common characteristic for a linear
space AK(X) of quasi-continuous functions which can be approximated by step
functions on the partitions of K, the discontinuity points of all the functions
f ∈ AK(X) being boundary points of partition elements of K. Since the
partitions Pn of the chain K can be chosen to be finite if f is bounded, under
these circumstances a space AK(X) consisting of bounded quasi-continuous
functions is obtained which, moreover, turns out to be a Banach space with
respect to the supremum norm. In the paper [27] a separate section is devoted
to “Banach spaces of bounded robust mappings”. The construction developed
there, in contrast with ours, refers to a common set S of points of continuity
for a subclass of quasi-continuous functions, which has to be dense in X. The
space X itself is supposed to be a complete metric space in [27].

Finally, the results of Section 3 concerning quasi-continuous functions can
be employed to derive similar results for cliquish functions. In Section 5 we
show that a cliquish function on an arbitrary topological space can be repre-
sented as a uniform limit of a sequence of piecewise constant functions ϕn on
a chain K = (Pn)∞n=1 of so-called almost semi-open partitions Pn of X. The
crucial point of the proof is the transformation of cliquish functions into quasi-
continuous functions, which can be carried out under rather general conditions
by changing the values in the discontinuity points (see Section 4).

Thielman in 1953 stated that the points of discontinuity of a cliquish func-
tion on an arbitrary topological space form a set of the first category (cf.
[29]). For pointwise discontinuous functions of several real variables this prop-
erty had already been proved by Schoenflies in the survey article quoted above
(cf. pp. 128–129). Hahn in his book from 1921 (cf. [14], p. 204) admitted
pointwise discontinuous functions on arbitrary metric spaces. For cliquish
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functions on metric spaces a proof was given by Marcus in 1961 (cf. [19]).
Levine 1963 was working in arbitrary topological spaces, however, he consid-
ered quasi-continuous functions only, called semi-continuous in his terminology
(cf. [17]). A detailed proof of Thielman’s general claim was worked out by
Neubrunnová in 1974 (cf. [21]). We shall refer to the set of discontinuity
points of a cliquish function as a set of the first category in Section 4 when
studying cliquish functions on Baire spaces. According to the definition of a
Baire space the complement of any subset of the first category is dense in the
space. This implies that an arbitrary cliquish function on a Baire space X is
pointwise discontinuous.

The global connection between cliquish functions and quasi-continuous
functions represented in Section 4 rests on the local characterizations given
in Section 2. The so-called SO-cluster set SO-C(f ;x0) of a real-valued func-
tion f in a point x0 ∈ X introduced in Section 2 strengthens the notion of
the classical cluster set C(f ;x0). While the cluster set C(f ;x0) can be used
to study upper and lower semi-continuity of the function f in the point x0

(cf. [1], pp. 150–151), the SO-cluster set SO-C(f ;x0) turns out to be an
appropriate tool for characterizing quasi-continuity and cliquishness of f in x0

(see Section 2).
To end this introductory section, let us remark that the emphasis of the

present paper is on the approximation of quasi-continuous and cliquish func-
tions by semi-open and almost semi-open step functions, respectively. For this
reason we have confined ourselves to quasi-continuous and cliquish mappings
with values in R.

2 The SO-Cluster Set

Hahn in his book from 1921 associated a so-called “cluster function” to an
arbitrary real-valued function on a metric space (cf. [14], p. 185). However,
only in his 1932 book he gave the first explicit definition of a cluster set (cf.
[15], p. 188). Of course, cluster phenomena appearing with real functions of
one and of several real variables had already been studied 40 years earlier by
Bettazzi 1892 (cf. [2]) and by Brodén 1897 (cf. [6]) and were presented by
Schoenflies in his survey article [26]. The general theory of cluster sets was
finally continued by Aumann in 1954 who considered maps between arbitrary
topological spaces (cf. [1], pp. 140–141). But Aumann’s notation did not sur-
vive. Collingwood with his papers on functions meromorphic in the unit disc,
which appeared in the 50s (cf. [8], [9], [10], [11], [12]), pursued the mainstream
originating in ideas of Painlevé (cf. [23], p. 438) and was more successful by
this. Weston 1958 (cf. [31]) preserved Collingwood’s notation when transfer-
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ring the notion of a cluster set to maps between arbitrary topological spaces,
as Aumann had done four years earlier. The standard symbol C(f ;x0) for the
cluster set of a function f at a point x0 ∈ X used since that time stands for

C(f ;x0) =
⋂

U∈B(x0)
cl(f(U)),

the neighborhoods U of x0 running through an arbitrary basis B(x0) of the
neighborhood system U(x0) of x0. Obviously, one always has f(x0) ∈ C(f ;x0).
In the case of a real-valued function f on a topological space X the above
definition amounts to

C(f ;x0) = {γ ∈ R : for every ε > 0 there exists a subset A ⊆ X

with x0 ∈ cl(A) and |f(x)− γ| < ε for all x ∈ A}.

Instead of working with arbitrary subsets A of X, we shall confine ourselves
to semi-open sets S ⊆ X in the following and thus end up with another type
of cluster set of a function f : X → R.

Definition. Given a real-valued function f on a topological space X, the set

SO-C(f ;x0) = {γ ∈R : for every ε > 0 there exists a semi-open subset
S ⊆ X with x0 ∈ cl(S) and |f(x)− γ| < ε for all x ∈ S}.

is to be called the SO-cluster set of the function f at the point x0 ∈ X.

Let us remark that, owing to the definition of a semi-open set S, the
definition of the SO-cluster set SO-C(f ;x0) can be formulated by using open
subsets G ⊆ X with x0 ∈ cl(G) instead of semi-open sets S. The notion of
a semi-open subset, however, proves to be an appropriate tool for studying
quasi-continuous functions in the large as already mentioned in Section 1.

The local version of quasi-continuity can be derived from the so-called
“local sieve” generated by the semi-open sets in the sense of Ţevy/Bruteanu
(cf. [28], pp. 122, 130). The interest of these authors lies in “pseudotopologies”
and corresponding continuity notions. Thomson in his 1985 book pursues the
same aim for functions f : R → R. He operates with “local systems” S on
R and introduces the notion of “S-continuity” as well as “S-cluster sets” for
real-valued functions (cf. [30], pp. 3, 45, 70). Among others, he also briefly
refers to quasi-continuous functions in this context (cf. [30], pp. 26–27). But
an explicit and detailed treatment of the SO-cluster set SO-C(f ;x0), as we
call it, is missing in the literature so far.

One recognizes that SO-C(f ;x0) ⊆ C(f ;x0). Whereas f(x0) belongs to
C(f ;x0) in any case, the SO-cluster set SO-C(f ;x0) may be empty. This can
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easily be demonstrated by the function

f(x) =

{
1
x for x 6= 0,
0 for x = 0

on R. It is C(f ; 0) = {0} but, on the other hand, SO-C(f ; 0) = ∅.
If f is locally bounded at x0, the fact C(f ;x0) = {f(x0)} indicates conti-

nuity of f at x0. In the general situation the membership f(x0) ∈ SO-C(f ;x0)
reflects quasi-continuity of f at x0, as can be seen immediately from the defi-
nitions. For later use we formulate a first proposition.

Proposition 1. A real-valued function f on a topological space X is quasi-
continuous at a point x0 ∈ X if and only if f(x0) ∈ SO-C(f ;x0).

The following claim concerns an interesting global phenomenon.

Proposition 2. If a real-valued function f on a topological space X is quasi-
continuous, then SO-C(f ;x) = C(f ;x) for all ∈ X.

Proof. We consider an arbitrary element γ ∈ C(f ;x) and fix a neighborhood
U ∈ U(x) as well as ε > 0. We then can find a point y ∈ intU with |f(y) −
γ| < ε

2 . On the other hand, there exists a non-empty open subset G ⊆
U such that |f(z) − f(y)| < ε

2 for all z ∈ G, since f is quasi-continuous
at y and U is a neighborhood of y, too. The triangular inequality yields
|f(z) − γ| < ε for all z ∈ G, which proves that γ ∈ SO-C(f ;x) and hence
C(f ;x) ⊆ SO-C(f ;x).

If the function f is not quasi-continuous on the whole space, the SO-cluster
set SO-C(f ;x0) may be a proper subset of the cluster set C(f ;x0) at a point
x0 of quasi-continuity. To demonstrate this phenomenon let us consider the
function

f(x) =

{
1 for x = 2−k,

0 otherwise

on the interval [0, 1]. It is cliquish at the points xk = 2−k, k = 1, 2, 3, . . ., quasi-
continuous at x0 = 0, and even continuous everywhere else. Nevertheless,
SO-C(f ; 0) = {0} is properly contained in the cluster set C(f ; 0) = {0, 1}.

Comparing the two examples we notice that SO-C(f ;x) 6= ∅ everywhere
in the case of the second one. This turns out to be a characteristic property
for locally bounded functions to be cliquish.

Proposition 3. Let f be a real-valued function on a topological space X. If
SO-C(f ;x0) 6= ∅, then f is cliquish at x0 ∈ X. Conversely, if f is cliquish
and locally bounded at x0, then SO-C(f ;x0) 6= ∅.
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Proof. Clearly, f is cliquish at x0 if SO-C(f ;x0) 6= ∅. So let f be cliquish and
locally bounded at x0. Then there exists a base B(x0) for the neighborhood
system U(x0) of x0 such that the sets f(B) are bounded for B ∈ B(x0).
Accordingly, the corresponding sets

H(f ;B, ε) = {γ ∈ R : there exists a non-empty open set
G ⊆ B with |f(x)− γ| < ε for all x ∈ G}

are bounded, too. Moreover, they turn out to be non-empty, because f is
cliquish at x0. Obviously, the SO-cluster set SO-C(f ;x0) admits the repre-
sentation

SO-C(f ;x0) =
⋂

B∈B(x0), ε>0H(f ;B, ε),

which can easily be changed into

SO-C(f ;x0) =
⋂

B∈B(x0), ε>0 cl(H(f ;B, ε)),

since cl(H(f ;B, ε)) ⊆ H(f ;B, 2ε). This way SO-C(f ;x0) appears as an in-
tersection of bounded and closed sets and hence proves to be a bounded and
closed set itself; that is, a compact set of real numbers. Thus, if SO-C(f ;x0)
were empty, even a finite intersection

⋂n
i=1 cl(H(f ;Bi, εi)) had to be empty.

However, one easily checks that

cl(H(f ;B1, ε1)) ∩ cl(H(f ;B2, ε2)) ⊇H(f ;B1, ε1) ∩H(f ;B2, ε2)
⊇H(f ;B1 ∩B2,min{ε1, ε2})
⊇ cl

(
H

(
f ;B1 ∩B2,

1
2 min{ε1, ε2}

))
6=∅.

As a by-product of the proof of Proposition 3 we have obtained that
SO-C(f ;x0) is a compact set of real numbers if f is locally bounded at x0.

3 Quasi-Continuous Functions as Uniform Limits of Semi-
Open Step Functions

Usually a step function is defined to be a function with finitely many values
only. For the interests of the present paper, however, we shall give a definition
which takes the topology of the underlying space X into account.

Definition. A real-valued function ϕ on a topological space X is called a
semi-open step function if there exists a partition P = {Pι : ι ∈ I} of X into
semi-open subsets Pι such that ϕ is constant on the sets Pι.
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In what follows we shall often speak of semi-open partitions of a topological
space X, thereby automatically thinking of partitions of X into semi-open
subsets. Given a quasi-continuous step function ϕ in the usual sense; that
is, a step function having finitely many values only, a simple consideration
shows that ϕ is a semi-open step function on a finite semi-open partition of
X. Conversely, semi-open step functions quite generally turn out to be quasi-
continuous.

Proposition 4. Every semi-open step function is quasi-continuous.

Proof. Let the step function ϕ be defined on a semi-open partition P = {Pι :
ι ∈ I}. If V ⊆ R is an open set, then f−1(V ) is the union of certain semi-open
sets Pι and thus is semi-open itself.

It is a well-known fact that the uniform limit of any sequence of quasi-
continuous functions is also quasi-continuous (cf. [4], [17]). Hence, in partic-
ular, the uniform limit of any sequence of semi-open step functions is quasi-
continuous. The converse claim, however, is surprising, the proof being rather
involved.

Theorem 1. Let f be a real-valued quasi-continuous function on a topological
space X. Then f can be represented as the uniform limit of a sequence (ϕn)∞n=1

of semi-open step functions which are defined on a chain K = (Pn)∞n=1 of semi-
open partitions Pn =

{
P

(n)
ι : ι ∈ In

}
. If f is locally bounded, then there exists

a chain K of locally finite partitions with the above property. If f is bounded,
then K can be chosen to be a chain of finite partitions.

Preliminary Remarks. 1. A chain K of partitions of X is a sequence of
partitions Pn such that Pn+1 is a refinement of Pn, though not necessarily a
proper one. A partition P or, more generally, a covering C = {Cι : ι ∈ I} of
a topological space X is called locally finite if, for every x ∈ X, there exists
a neighborhood U ∈ U(x) intersecting only finitely many covering sets Cι. A
covering, in particular a partition, is called finite if it consists of finitely many
elements only.

2. The proof of Theorem 1 will be combined with the proof of Theorem 2,
which makes a still more detailed claim concerning quasi-continuous functions
on compact metrizable spaces. Let us remark here that, in contrast with a
continuous function, a quasi-continuous function f on a compact metric space
need not be bounded. This phenomenon can be demonstrated by the function

f(x) =

{
1
x sin 1

x for x 6= 0,
0 for x = 0

on the compact interval [0, 1].
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Theorem 2. Let f be a real-valued quasi-continuous function on a compact
metrizable space X. Then there exists a chain K = (Pn)∞n=1 of semi-open
partitions Pn =

{
P

(n)
ι : ι ∈ In

}
of the space X such that f as well as any

real-valued continuous function on X can be attained as the uniform limit of a
sequence of semi-open step functions which are defined on K. If f is bounded,
then K can be chosen to be a chain of finite partitions.

The lemma to follow is the basis for the proof of both the Theorems 1
and 2. The sets Af,ε(x) appearing in this context are understood to be the
semi-open subsets

Af,ε(x) = f−1
(
(f(x)− ε, f(x) + ε)

)
defined by a quasi-continuous function f on X for arbitrary ε > 0.

Lemma 1. Let f be a real-valued quasi-continuous function on a topological
space X and let P be a semi-open partition of X which corresponds to f in the
sense that, for every x ∈ X, every neighborhood U ∈ U(x), and every ε > 0,

intP (x) ∩ int U ∩ intAf,ε(x) 6= ∅, (1)

where P (x) is the partition element from P that contains x. Moreover, suppose
that C = {C1, C2, . . . , Ck} is an arbitrary finite open covering of X and let
δ > 0. Then there exists a semi-open refinement Q of P satisfying the following
conditions:

(i) The partition Q again corresponds to f in the above sense; that is,

intQ(x) ∩ int U ∩ intAf,ε(x) 6= ∅

for every x ∈ X, U ∈ U(x), and ε > 0, where Q(x) is the set from Q
that contains x.

(ii) For all Q ∈ Q there exists a set Ci ∈ C such that Q ⊆ cl(Ci).

(iii) For all Q ∈ Q there exists an integer l such that f(Q) ⊆ [lδ, (l + 1)δ].

(iv) If f is locally bounded and P locally finite, then Q can be chosen to be
locally finite as well. If f is bounded and P finite, then Q can be chosen
to be finite.

Proof. 1. LetD = {D1, D2, . . . , Dk} consist of the setsDi = Ci\cl
( ⋃i−1

j=1 Cj

)
.

Obviously, the sets from D are open and pairwise disjoint their union being
dense in X.
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2. Similarly, the system E = {El : l ∈ Z} with El = int f−1
(
[lδ, (l + 1)δ)

)
consists of open and pairwise disjoint sets and the union

⋃
l∈Z El is dense in X.

This second claim is obvious up to the fact that
⋃

l∈Z El is dense.
We have to show that every non-empty open subset G ⊆ X has a non-

empty intersection with
⋃

l∈Z El. So let us choose x0 ∈ G and let l0 ∈ Z
be such that f(x0) ∈ ((l0 − 1)δ, (l0 + 1)δ). Then, by the quasi-continuity of
f at x0, there exists a non-empty open subset G1 ⊆ G such that f(G1) ⊆
((l0 − 1)δ, (l0 + 1)δ). In the case f(G1) = {l0δ} we obtain G1 ⊆ El0 and
G ∩

⋃
l∈Z El ⊇ G1 6= ∅. Otherwise we find x1 ∈ G1 with f(x1) 6= l0δ, say

f(x1) ∈ (l0δ, (l0 +1)δ). Then there exists a non-empty open set G2 ⊆ G1 with
f(G2) ⊆ (l0δ, (l0 + 1)δ) according to the quasi-continuity of f at x1. Hence
G2 ⊆ El0 and G ∩

⋃
l∈Z El ⊇ G2 6= ∅. Thus

⋃
l∈Z El is dense in X.

3. For x ∈ X we define a set H(x) of pairs of indices by

H(x) = {(i, l) ∈ {1, 2, . . . , k} × Z : for all U ∈ U(x) and all ε > 0,
int P (x) ∩ int U ∩ int Af,ε(x) ∩Di ∩ El 6= ∅}.

Then H(x) 6= ∅.
Let us assume the contrary, i.e. H(x) = ∅. We choose l0 ∈ Z such that

f(x) ∈ ((l0−1)δ, (l0 +1)δ). Putting ε0 = min{f(x)−(l0−1)δ, (l0 +1)δ−f(x)}
we obtain

int Af,ε0(x) ∩ El = ∅ for l /∈ {l0 − 1, l0}.

For (i, l) ∈ {1, 2, . . . , k} × {l0 − 1, l0} there exist U(i, l) ∈ U(x) and ε(i, l) > 0
such that

int P (x) ∩ int U(i, l) ∩ int Af,ε(i,l)(x) ∩Di ∩ El = ∅,

since H(x) = ∅. Now we define U1 =
⋂

1≤i≤k , l0−1≤l≤l0
U(i, l) ∈ U(x) and

ε1 = min({ε0} ∪ {ε(i, l) : 1 ≤ i ≤ k, l0 − 1 ≤ l ≤ l0}) > 0. Then

int P (x) ∩ int U1 ∩ int Af,ε1(x) ∩Di ∩ El = ∅

for all pairs (i, l) ∈ {1, 2, . . . , k} × Z. But, by the first two steps of the proof,
the union

⋃
1≤i≤k, l∈Z(Di ∩ El) is dense in X. Hence

int P (x) ∩ int U1 ∩ int Af,ε1(x) = ∅.

This contradicts property (1) and thus proves that H(x) 6= ∅.
4. We obtain

H(y) = {(i0, l0)} if y ∈ Di0 ∩ El0 .

Indeed, if (i, l) ∈ H(y) then (Di0 ∩ El0) ∩ Di ∩ El = U0 ∩ Di ∩ El 6= ∅,
since U0 = Di0 ∩El0 ∈ U(y). The systems D and E both consisting of disjoint
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sets, we obtain (i, l) = (i0, l0). Hence H(y) ⊆ {(i0, l0)} and, by H(y) 6= ∅,
H(y) = {(i0, l0)}.

5. For every x ∈ X we fix i(x) and l(x) such that (i(x), l(x)) ∈ H(x).
Then we define a new partition

Q =
{
Q(P,i,l) : P ∈ P, i ∈ {1, 2, . . . , k}, l ∈ Z

}
\ {∅}

where
Q(P,i,l) = {x ∈ P : i(x) = i, l(x) = l}.

Clearly, Q is a refinement of P.
6. Q fulfils condition (i). (This implies in particular that Q is a semi-open

partition, since int Q(x) ∩ U 6= ∅ for all x ∈ X and U ∈ U(x)).
Let x ∈ X, U ∈ U(x), and ε > 0 be fixed. Then Q(x) = Q(P (x),i(x),l(x)).

Step 4 of the proof shows that int P (x)∩Di(x)∩El(x) ⊆ int {y ∈ P (x) : i(y) =
i(x), l(y) = l(x)} = int Q(x). Accordingly,

int Q(x)∩int U∩int Af,ε(x) ⊇ int P (x)∩int U∩int Af,ε(x)∩Di(x)∩El(x) 6= ∅

because of (i(x), l(x)) ∈ H(x). This proves (i).
7. Q fulfils condition (ii). Namely,

Q ⊆ cl(Ci) if Q = Q(P,i,l) ∈ Q.

Let x ∈ Q = Q(P,i,l). Then (i, l) = (i(x), l(x)) ∈ H(x). This yields in
particular U ∩ Di 6= ∅ for all U ∈ U(x); that is, x ∈ cl(Di). Hence Q ⊆
cl(Di) ⊆ cl(Ci) by the definition of Di.

8. Q fulfils condition (iii). More precisely,

f(Q) ⊆ [lδ, (l + 1)δ] if Q = Q(P,i,l) ∈ Q.

Again we start with x ∈ Q and obtain (i, l) = (i(x), l(x)) ∈ H(x). This
implies that, for all ε > 0, there exists at least one point yε ∈ Af,ε(x) ∩ El.
Consequently, |f(x)− f(yε)| < ε, since yε ∈ Af,ε(x), and f(yε) ∈ [lδ, (l + 1)δ)
because of yε ∈ El. Hence f(x) ∈ (lδ− ε, (l+ 1)δ+ ε) for all x ∈ Q and ε > 0.
This proves that f(Q) ⊆ [lδ, (l + 1)δ].

9. Q fulfils condition (iv).
Assume first that f is bounded and P finite. Then P = {P1, P2, . . . , Pm0}.

Moreover, only finitely many of the sets El are non-empty, say El = ∅ if
|l| > l0. Hence the sets Q(P,i,l) are empty if |l| > l0, since |l(x)| ≤ l0 for all
x ∈ X. This yields

Q ⊆
{
Q(Pm,i,l) : 1 ≤ m ≤ m0, 1 ≤ i ≤ k, −l0 ≤ l ≤ l0

}
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showing that Q is finite.
If f is locally bounded and P locally finite, then the above arguments apply

to a suitable open neighborhood U of x for arbitrary x ∈ X. Thus Q is locally
finite. This completes the proof of Lemma 1.

Proof of Theorem 1. Given a quasi-continuous function f , the chain K
can be constructed inductively by the aid of Lemma 1. We start with the trivial
partition P0 = {X} which fulfils property (1), since f is quasi-continuous. For
n ≥ 1, we obtain the partition Pn by applying Lemma 1 to the previous
partition Pn−1, the trivial covering Cn = {X}, and δn = 1

n . Obviously, K =
(Pn)∞n=1 is a chain of semi-open partitions which are locally finite or finite if
f is locally bounded or bounded, respectively.

Now let Pn =
{
P

(n)
ι : ι ∈ In

}
be a fixed partition from K. By claim (iii) of

the lemma, there exist reals λ(n)
ι such that f

(
P

(n)
ι

)
⊆

[
λ

(n)
ι − 1

2δn, λ
(n)
ι + 1

2δn
]

for ι ∈ In. Putting ϕn =
∑

ι∈In
λ

(n)
ι I

P
(n)
ι

we obtain supx∈X |f(x)− ϕn(x)| ≤
1
2δn = 1

2n . Here I
P

(n)
ι

denotes the characteristic function of the set P (n)
ι .

Hence f is the uniform limit of the semi-open step functions ϕn, n ≥ 1,
which are defined on the partitions from K.

Proof of Theorem 2. Let us assume that X is equipped with a metric
d. Given a quasi-continuous function f on X, the construction of K differs
from the procedure in the above proof in so far as we use a covering Cn ={
B

(
x

(n)
1 ; 1

n

)
, B

(
x

(n)
2 ; 1

n

)
, . . . , B

(
x

(n)
kn

; 1
n

)}
by open balls of radius 1

n instead of
the trivial covering {X} when generating the refinement Pn of Pn−1.

In addition to the proof of Theorem 1 we have to show that any real-
valued continuous function g on X is the uniform limit of a sequence (ψn)∞n=1

of semi-open step functions defined on the partitions Pn =
{
P

(n)
ι : ι ∈ In

}
from K. Claim (ii) of Lemma 1 says that any set P (n)

ι from Pn is contained
in the closure of a suitable ball from Cn, say P

(n)
ι ⊆ cl

(
B

(
x

(n)
i(ι,n);

1
n

))
. This

yields d
(
x, x

(n)
i(ι,n)

)
≤ 1

n for all x ∈ P
(n)
ι . We define semi-open step functions

by ψn =
∑

ι∈In
g
(
x

(n)
i(ι,n)

)
I
P

(n)
ι

. For arbitrary x ∈ X, say x ∈ P
(n)
ι , we can

estimate

|g(x)− ψn(x)| =
∣∣g(x)− g

(
x

(n)
i(ι,n)

)∣∣ ≤ sup
{
|g(s)− g(t)| : d(s, t) ≤ 1

n

}
.

Accordingly,

supx∈X |g(x)− ψn(x)| ≤ sup
{
|g(s)− g(t)| : d(s, t) ≤ 1

n

}
= ω

(
g; 1

n

)
,

where ω(g; ·) denotes the modulus of continuity of g. This proves that the
functions ψn uniformly approach g.
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Remarks. 1. Theorem 2, in contrast with Theorem 1, claims the existence
of a chain K = (Pn)∞n=1 of semi-open partitions on X which in a sense is
universal. Indeed, under the suppositions of Theorem 2, simultaneously with
the given quasi-continuous function f , any continuous function on X can be
uniformly approximated by step functions on K. The assumption that X be
a compact metrizable space can be shown to be necessary in the following
sense: If X is a completely regular space which possesses a sequence of finite
partitions Pn such that any bounded real-valued continuous function on X
appears as a uniform limit of a sequence of step functions defined on the
partitions Pn, then X is compact metrizable (cf. [25]).

2. Theorem 1 enables us to arrange quasi-continuous functions on a topo-
logical space X in such a way that they appear as elements of certain linear
spaces. In fact, given a quasi-continuous function f , we can refer to a chain
K = (Pn)∞n=1 of semi-open partitions Pn of X such that f turns out to be
the uniform limit of a sequence of step functions ϕn defined on the partitions
Pn. The class AK(X) of all uniform limits arising this way then obviously is a
linear space of quasi-continuous functions which contains the original function
f . A common property of the functions belonging to the space AK(X) is that
their discontinuities all are boundary points of partition elements of K. To
demonstrate this, we consider the chain of partition elements Pn(x0) ∈ Pn

containing a point x0 ∈ X. If x0 is supposed to be an inner point of all
the sets Pn(x0), n = 1, 2, 3, . . ., an easy computation shows that every func-
tion g ∈ AK(X) is continuous at x0. Consequently, the set Dg of discontinuity
points of a function g ∈ AK(X) is a subset of the set BK of boundary points of
partition elements of K. The set BK admits a representation BK =

⋃∞
n=1Bn

where Bn stands for the set of points appearing as boundary points of parti-
tion elements P ∈ Pn. Since the partition elements P ∈ Pn are semi-open,
the sets Bn prove to be nowhere dense. Accordingly, the set BK is of the first
category. As a by-product of Theorem 1 we thus once more obtain that the
points of discontinuity of any quasi-continuous function form a set of the first
category.

3. In the case of a bounded quasi-continuous function f on a topological
space X the partitions Pn of the chain K can be chosen to be finite. Then
the whole space AK(X) consists of bounded functions exclusively. Moreover,
AK(X) turns out to be a Banach space with respect to the supremum norm.
But on the other hand, a Banach space of bounded quasi-continuous functions
on X is not necessarily contained in a space of type AK(X). We refer to
quasi-continuous regulated functions f on [−1, 1] which are continuous from
the left (see [1], p. 236). These functions are characterized by the properties
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that
limt→x+0 f(t) exists for − 1 < x < 1,
limt→−1+0 f(t) = f(−1), and
limt→x−0 f(t) = f(x) for − 1 < x ≤ 1.

They obviously form a Banach space E of bounded quasi-continuous func-
tions with respect to the supremum norm. But this Banach space cannot be
involved in a space of type AK(X), for any point x0 ∈ (−1, 1) happens to be
a discontinuity of an appropriate function f0 ∈ E (cf. [24]).

4 Transforming Cliquish Functions into Quasi-Continuous
Functions

In this section we shall study real-valued functions f on a topological space X
with SO-C(f ;x) 6= ∅ for all x ∈ X. According to Proposition 3 these functions
are cliquish and, vice versa, locally bounded cliquish functions fulfil the condi-
tion SO-C(f ;x) 6= ∅ for all x ∈ X. The mechanism for transforming functions
f with SO-C(f ;x) 6= ∅ into quasi-continuous functions to be presented rests
upon the concept of an admissible modification f̃ of a function f . Denoting
the set of continuity points of f and f̃ by Cf and Cf̃ , respectively, one can
describe this concept as follows (cf. [1], p. 162): A function f̃ is said to be an
admissible modification of a function f if

f̃(x) = f(x) for all x ∈ Cf and Cf ⊆ Cf̃ .

Theorem 3. Let f be a real-valued function on a topological space X such
that SO-C(f ;x) 6= ∅ for all x ∈ X. Then every function f̃ with

f̃(x) ∈ SO-C(f ;x) for all x ∈ X

is a quasi-continuous admissible modification of f with

SO-C
(
f̃ ;x

)
= SO-C(f ;x) for all x ∈ X.

Proof. Let f̃ be such that f̃(x) ∈ SO-C(f ;x) for all x ∈ X. If f is continuous
at x, then SO-C(f ;x) = {f(x)} and thus f̃(x) = f(x). In order to show that
even f̃ is continuous at x, we fix ε > 0 arbitrarily. Owing to the continuity
of f , there exists an open neighborhood U ∈ U(x) such that f(U) ⊆ (f(x) −
ε, f(x) + ε). Because of f̃(y) ∈ SO-C(f ; y) and U ∈ U(y) for all y ∈ U , the
value f̃(y) can be approximated by values f(z) with z ∈ U for all y ∈ U .
This means that f̃(U) ⊆ cl(f(U)) and thus f̃(U) ⊆ [f(x) − ε, f(x) + ε] =
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[
f̃(x)− ε, f̃(x) + ε

]
. Accordingly, f̃ is continuous at x. This proves that f̃ is

an admissible modification of f .
In order to show the coincidence of SO-C

(
f̃ ;x

)
and SO-C(f ;x), we first

consider γ ∈ SO-C
(
f̃ ;x

)
. Given ε > 0 and U ∈ U(x), we can determine y ∈

int U such that
∣∣f̃(y)− γ

∣∣ < ε
2 . Because of f̃(y) ∈ SO-C(f ; y) and U ∈ U(y),

there exists a non-empty open set G ⊆ U with
∣∣f(z)− f̃(y)

∣∣ < ε
2 for all z ∈ G.

The triangle inequality finally gives the desired estimate |f(z)− γ| < ε for all
z ∈ G, which yields SO-C

(
f̃ ;x

)
⊆ SO-C(f ;x).

Now let γ ∈ SO-C(f ;x). For proving γ ∈ SO-C
(
f̃ ;x

)
, we fix ε > 0

and U ∈ U(x) and determine a non-empty open set G ⊆ U such that f(G) ⊆
(γ−ε, γ+ε). As we have seen above, the function f̃ then satisfies the inclusion
f̃(G) ⊆ cl(f(G)), which implies that f̃(G) ⊆ [γ− ε, γ+ ε] and thus shows that
γ ∈ SO-C

(
f̃ ;x

)
. This finishes the proof of SO-C

(
f̃ ;x

)
= SO-C(f ;x).

Finally, the choice of f̃ yields f̃(x) ∈ SO-C(f ;x) = SO-C
(
f̃ ;x

)
for all

x ∈ X. Applying Proposition 1 we recognize that the function f̃ is quasi-
continuous on X, as asserted.

From Proposition 3 we know that a real-valued function f on a topological
space X with SO-C(f ;x) 6= ∅ for all x ∈ X is cliquish on X. Hence the set
Df of discontinuity points of f is of the first category in X. Passing to an
admissible modification f̃ of f therefore amounts to changing the values of f
in a set of the first category only.

As a counterpart to Theorem 3 we prove that the validity of SO-C
(
f̃ ;x

)
=

SO-C(f ;x) for all x ∈ X is a necessary condition for any admissible modifi-
cation f̃ of f , provided that f is a cliquish function on a Baire space.

Theorem 4. Let f be a real-valued cliquish function on a Baire space X.
Then every admissible modification f̃ of f satisfies the condition

SO-C
(
f̃ ;x

)
= SO-C(f ;x) for all x ∈ X.

Proof. Let f̃ be an admissible modification of f . Suppose γ ∈ SO-C
(
f̃ ;x

)
.

For any ε > 0 and any neighborhood U ∈ U(x), we then can determine a
non-empty open set G̃ ⊆ U such that

∣∣f̃(z̃)− γ
∣∣ < ε

2 for all z̃ ∈ G̃. According
to the supposition the set of continuity points of the function f is dense in X.
Therefore we in particular find a continuity point y = z̃ of f in G̃. This implies
f̃(y) = f(y). Furthermore we may conclude that there exists a non-empty open
set G ⊆ G̃ which contains the point y and guarantees that |f(y) − f(z)| < ε

2
for all z ∈ G. Via the triangle inequality this yields |f(z)−γ| < ε for all z ∈ G
and thus proves that γ ∈ SO-C(f ;x).
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Next we consider γ ∈ SO-C(f ;x). Given ε > 0 and a neighborhood
U ∈ U(x), we can apply the same steps as before. By using Cf ⊆ Cf̃ and
f̃(y) = f(y) for y ∈ Cf we this time end up with a non-empty open subset
G̃ ⊆ U such that

∣∣f̃(z̃) − γ
∣∣ < ε for all z̃ ∈ G̃. This estimate tells us that

γ ∈ SO-C
(
f̃ ;x

)
and thus completes the proof of the assertion.

If X is not a Baire space, then there even may exist quasi-continuous
functions f on X having an admissible modification f̃ with

SO-C
(
f̃ ;x

)
6= SO-C(f ;x) for all x ∈ X.

For example, consider the function f(x) =
∑

xi≤x 2−i on the rational numbers
Q = {x1, x2, x3, . . .} equipped with the usual topology induced by the real
line. The function f is quasi-continuous, since it is continuous from the right.
But f does not have any continuity point, so that every function f̃ : Q → R
is an admissible modification of f .

5 Cliquish Functions as Uniform Limits of Almost Semi-
Open Step Functions

In order to obtain a representation theorem for cliquish functions that corre-
sponds to Theorem 1 for quasi-continuous functions, we first have to generalize
the notion of a semi-open step function. This requires a type of partitions on
a topological space which generalize semi-open partitions.

Definition. A partition P = {Pι : ι ∈ I} of a topological space X is to be
called almost semi-open if the union

⋃
ι∈I int Pι is dense in X. An almost

semi-open step function is understood to be a real-valued function ϕ on X
which is piecewise constant on the partition elements of an almost semi-open
partition P of X.

Note that, in contrast with the notion of a semi-open partition, the concept
of an almost semi-open partition P = {Pι : ι ∈ I} does not refer to a property
of the single partition sets Pι, but to a topological property of the whole
partition P. Owing to this fact almost semi-open partitions can be handled
in a simpler way than semi-open partitions as we shall see right now.

Lemma 2. If P = {Pι : ι ∈ I} and Q = {Qκ : κ ∈ K} are two almost
semi-open partitions of a topological space X, then the merged partition R =
{Pι ∩Qκ : Pι ∩Qκ 6= ∅, ι ∈ I, κ ∈ K} is almost semi-open as well.
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Proof. The open sets
⋃

ι∈I int Pι and
⋃

κ∈K int Qκ are dense in X, since P
and Q are almost semi-open. Then

⋃
R∈R int R =

⋃
ι∈I, κ∈K int (Pι ∩ Qκ) =

(
⋃

ι∈I int Pι) ∩ (
⋃

κ∈K int Qκ) is dense as well. This proves that R is almost
semi-open.

Almost semi-open step functions turn out to be the simplest types of
cliquish functions.

Proposition 5. Every almost semi-open step function on a topological space
X is cliquish.

Proof. Given an almost semi-open step function ϕ, there exists an almost
semi-open partition P = {Pι : ι ∈ I} such that ϕ is constant on the partition
elements Pι. The union

⋃
ι∈I int Pι being dense in X, for arbitrary x ∈ X and

U ∈ U(x), a partition element Pι can be determined such that int U ∩ int Pι 6=
∅. The non-empty open set G = int U ∩ int Pι ⊆ U now can serve to prove
that ϕ is cliquish at x, for ϕ is constant on G.

If a step function ϕ in the usual sense; that is, a function with finitely many
values only, is known to be cliquish, then a straight-forward consideration
leads to a finite almost semi-open partition P of X such that ϕ is constant
on the partition elements of P. However, it is surprising again that arbitrary
cliquish functions on a topological space X can be traced back to almost semi-
open step functions, namely in so far as every cliquish function on X admits
a representation as a uniform limit of a sequence of almost semi-open step
functions defined on a chain of almost semi-open partitions. The following
lemma concerning locally bounded cliquish functions is the key to this general
result.

Lemma 3. Let f be a locally bounded real-valued cliquish function on a topo-
logical space X and let δ > 0. Then there exists a locally finite almost semi-
open partition P of X and an almost semi-open step function ϕ on P such
that supx∈X |f(x) − ϕ(x)| ≤ δ. If f is bounded, then P can be chosen to be
finite.

Proof. 1. By Proposition 3, we have SO-C(f ;x) 6= ∅ for all x ∈ X. Hence
Theorem 3 applies telling us that f admits a quasi-continuous admissible mod-
ification f̃ . Clearly, f̃ is locally bounded and even bounded if f is bounded.

2. Theorem 1 yields the existence of a locally finite semi-open partition P̃
and of a step function ϕ̃ on P̃ with supx∈X

∣∣f̃(x)− ϕ̃(x)
∣∣ ≤ δ

2 . Moreover, we
can assume that P̃ is finite if f is bounded, since f̃ is bounded in this case as
well.
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3. Let

Nf,δ =
{
x ∈ X : for all U ∈ U(x) there exists a

point y ∈ U with |f(x)− f(y)| > δ
2

}
.

Then Nf,δ is nowhere dense.
Indeed, if V is a non-empty open subset of X, then there exists a non-

empty open set G ⊆ V with |f(y) − f(z)| < δ
2 for all y, z ∈ G, since f is

cliquish at any point x0 ∈ V . Hence G ∩ Nf,δ = ∅, which shows that Nf,δ is
not dense in V .

4. The system P1 =
{
P̃ \ Nf,δ : P̃ ∈ P̃

}
is a locally finite partition

of X \ Nf,δ. It is even finite if f is bounded, for P̃ is finite in this case in
accordance with Step 2. Moreover, the union

⋃
P̃∈P̃ int P̃ being dense and

Nf,δ being nowhere dense in X, the union
⋃

P (1)∈P1
int P (1) is dense in X as

well.
5. Let the partition P2 = {Pk : k ∈ Z} \ {∅} of Nf,δ be defined by

Pk = {x ∈ Nf,δ : f(x) ∈ [kδ, (k + 1)δ)}.

Clearly, P2 is locally finite and even finite if f is bounded.
6. Now P = P1 ∪ P2 is a locally finite partition of X which is finite if f

is bounded. P is almost semi-open, since
⋃

P∈P int P =
⋃

P (1)∈P1
int P (1) is

dense in X.
7. The function

ϕ(x) =
{
ϕ̃(x) for x ∈ X \Nf,δ,
kδ for x ∈ Pk (⊆ Nf,δ )

is an almost semi-open step function defined on P. We shall finish the proof
by showing that

|f(x)− ϕ(x)| ≤ δ for all x ∈ X.

If x ∈ Pk then this estimate is obvious, since f(x) ∈ [kδ, (k+ 1)δ) and ϕ(x) =
kδ.

So let x ∈ X \ Nf,δ. The definition of Nf,δ implies that SO-C(f ;x) ⊆[
f(x)− δ

2 , f(x) + δ
2

]
. Hence

∣∣f(x)− f̃(x)
∣∣ ≤ δ

2 because of f̃(x) ∈ SO-C(f ;x).
Thus we get the estimate

|f(x)− ϕ(x)| = |f(x)− ϕ̃(x)| ≤
∣∣f(x)− f̃(x)

∣∣ +
∣∣f̃(x)− ϕ̃(x)

∣∣ ≤ δ
2 + δ

2 = δ.

This completes the proof of Lemma 3.



Properties of Quasi-Continuous and Cliquish Functions 317

Though the claim of Lemma 3 is restricted to locally bounded cliquish
functions, the representation theorem announced above can be proved for ar-
bitrary cliquish functions on a topological space X.

Theorem 5. Let f be a real-valued cliquish function on a topological space
X. Then f can be represented as the uniform limit of a sequence (ϕn)∞n=1 of
almost semi-open step functions which are defined on a chain K = (Pn)∞n=1 of
almost semi-open partitions. If f is locally bounded, then there exists a chain
K of locally finite partitions with the above property. If f is bounded, then K
can be chosen to be a chain of finite partitions.

Proof. First we assume that f is locally bounded. By Lemma 3, there exist
a sequence of locally finite almost semi-open partitions Qn, n ≥ 1, and step
functions ϕn on the partitions Qn with limn→∞ supx∈X |f(x) − ϕn(x)| = 0.
We define partitions Pn, n ≥ 1, inductively by P1 = Q1 and Pn+1 =

{
P (n) ∩

Q(n+1) : P (n) ∈ Pn, Q
(n+1) ∈ Qn+1

}
\ {∅}. Then K = (Pn)∞n=1 is a chain of

almost semi-open partitions according to Lemma 2. For each n ≥ 1, the step
function ϕn on Qn can be considered as a step function on Pn as well, since Pn

is a refinement of Qn. Hence f is the uniform limit of step functions defined
on K. Moreover, all partitions are locally finite, since they were formed by
merging locally finite partitions. If f is bounded then, by Lemma 3, we can
assume the partitions Qn to be finite. In this case the merged partitions Pn

from K are finite as well. This completes the proof of Theorem 5 if f is locally
bounded.

Now we consider a cliquish function f which is not locally bounded. Let

Nf = {x ∈ X : f(U) is unbounded for all U ∈ U(x)}

be the set of all points x ∈ X where f is not locally bounded. Obviously, Nf

is closed. Moreover, every non-empty open set V ⊆ X contains a non-empty
open set G ⊆ V such that f is bounded on G, say |f(y) − f(z)| < 1 for all
y, z ∈ G, since f is cliquish at any point x0 ∈ V and V is a neighborhood of
x0. Hence Nf ∩G = ∅. This shows that Nf is nowhere dense.

The restriction f1 = f |X1 of f to X1 = X \ Nf is a locally bounded
cliquish function on X1. According to the first part of the proof there exist a
chain K1 = (Pn,1)∞n=1 of almost semi-open partitions of X1 and step functions
ϕn,1 on Pn,1 with limn→∞ supx∈X1

|f1(x)−ϕn,1(x)| = 0. We define the chain
K = (Pn)∞n=1 of partitions of the whole space X by Pn = Pn,1 ∪ {{x} :
x ∈ Nf}. Then Pn, n ≥ 1, is almost semi-open, since

⋃
P (n)∈Pn

int P (n) =⋃
P (n,1)∈Pn,1

int P (n,1) is dense inX1 and thus also inX, becauseNf is nowhere
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dense. Finally, we define step functions ϕn on Pn by

ϕn(x) =
{
ϕn,1(x) for x ∈ X1 = X \Nf ,
f(x) for x ∈ Nf .

So limn→∞ supx∈X |f(x) − ϕn(x)| = limn→∞ supx∈X1
|f1(x) − ϕn,1(x)| = 0.

This proves Theorem 5.

For compact metrizable spacesX, in analogy with Theorem 2, the existence
of “universal” chains K = (Pn)∞n=1 of almost semi-open partitions Pn can be
proved in the sense that a given cliquish function f can be approximated by
step functions on K simultaneously with all continuous functions on X.

Theorem 6. Let f be a real-valued cliquish function on a compact metrizable
space X. Then there exists a chain K = (Pn)∞n=1 of almost semi-open parti-
tions of the space X such that f as well as any real-valued continuous function
on X can be attained as the uniform limit of a sequence of almost semi-open
step functions defined on K. If f is bounded, then K can be chosen to be a
chain of finite partitions.

Proof. By Theorem 5, there exist a chain (Qn)∞n=1 of almost semi-open par-
titions of X and step functions ϕn, n ≥ 1, defined on the partitions Qn which
uniformly approach f . Furthermore we can assume that the partitions are
finite if f is bounded.

Application of Theorem 2 to the constant function f0 ≡ 0 yields a chain
(Rn)∞n=1 of finite semi-open partitions of X such that every real-valued con-
tinuous function g on X can be written as the uniform limit of a sequence of
step functions ψn, n ≥ 1, which are defined on the partitions Rn.

Now we can define the required chain K = (Pn)∞n=1 by putting Pn ={
Q ∩ R : Q ∩ R 6= ∅, Q ∈ Qn, R ∈ Rn

}
; that is, with Pn formed by merging

Qn and Rn. The chain K consists of almost semi-open partitions according
to Lemma 2.

For fixed n ≥ 1 the above mentioned step functions ϕn and ψn, which were
defined on Qn and Rn, respectively, are step functions on the partition Pn

as well, since Pn is a refinement of both Qn and Rn. Thus f as well as any
real-valued continuous function g is the uniform limit of a sequence of step
functions defined on the partitions from K.

If f is bounded, thenK consists of finite partitions Pn, since in this case the
partitions Pn have been obtained by merging finite partitions. This completes
the proof of Theorem 6.

Remarks. 1. The uniform limit of a sequence of cliquish functions obviously
is cliquish again. Combining this fact with the claims of Proposition 5 and
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Theorem 5 yields a characterization of cliquish functions on arbitrary topo-
logical spaces X as uniform limits of almost semi-open step functions defined
on chains of almost semi-open partitions of X.

2. According to Theorem 5, cliquish functions, similarly as quasi-contin-
uous functions, can be arranged to form linear spaces, a chain K = (Pn)∞n=1

of almost semi-open partitions Pn being a common characteristic of cliquish
functions belonging to the same linear space. Denoting the space of cliquish
functions defined by a chain K of almost semi-open partitions Pn by AK(X),
in correspondence with the notation of Remark 2 in Section 3, we again see
that the set Dg of discontinuity points of a function g ∈ AK(X) is contained
in the set BK of boundary points of the partition elements of K. By the same
arguments as in Section 3, we can reproduce the well-known result that the
points of discontinuity of any cliquish function form a set of the first category.

3. A bounded cliquish function f on a topological space X can always
be considered as an element of a space AK(X) defined by a chain K of fi-
nite almost semi-open partitions Pn. Then all the functions g ∈ AK(X) are
bounded, the space AK(X) itself being a Banach space with respect to the
supremum norm.

4. In contrast with quasi-continuous functions, cliquish functions on a
topological space X in their totality form a linear space. This well-known
property appears as an immediate consequence of Theorem 5 and Lemma 2.
If we restrict our attention to bounded cliquish functions, we recognize that
they form a Banach space with respect to the supremum norm.

5. A central result of [5] and [13] says that every cliquish function f
mapping a Baire space X into a separable metric space Y can be expressed as
the uniform limit of a sequence of simply continuous functions fn, n ≥ 1. We
recall that fn is simply continuous if f−1

n (V ) is simply open for every open set
V ⊆ Y ; that is, if f−1

n (V ) is the union of an open set and a nowhere dense set
(see [3]). Clearly, every almost semi-open step function ϕ is simply continuous.
Thus Theorem 5 generalizes the result mentioned above for the case Y = R in
so far as it refers to a very special kind of simply continuous functions, namely
to almost semi-open step functions. Besides that, in contrast with the papers
[5] and [13] which concern Baire spaces and perfect Baire spaces, respectively,
no additional supposition on the underlying topological space X is required.
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méromorphe dans le cercle unité, C. R. Acad. Sci. Paris, 240 (1955),
1502–1504.

[11] E. F. Collingwood, On sets of maximum indetermination of analytic func-
tions, Math. Z., 67 (1957), 377–396.

[12] E. F. Collingwood, Addendum: On sets of maximum indetermination of
analytic functions, Math. Z., 68 (1958), 498–499.

[13] J. Ewert, Note on limits of simply continuous and cliquish functions, In-
ternat. J. Math. Math. Sci., 17 (1994), 447–450.

[14] H. Hahn, Theorie der reellen Funktionen, Band I, Verlag Julius Springer,
Berlin, 1921.



Properties of Quasi-Continuous and Cliquish Functions 321

[15] H. Hahn, Reelle Funktionen, Erster Teil: Punktfunktionen, Akademische
Verlagsgesellschaft m.b.H., Leipzig, 1932, reprinted by Chelsea Publishing
Company, New York, 1948.

[16] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math., 19 (1932),
184–197.

[17] N. Levine, Semi-open sets and semi-continuity in topological spaces,
Amer. Math. Monthly, 70 (1963), 36–41.
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