Janusz Matkowski, Institute of Mathematics, University of Zielona Góra, PL-65-246 Zielona Góra, Poland. email: J.Matkowski@im.uz.zgora.pl

CONVEX FUNCTIONS WITH RESPECT TO A MEAN AND A CHARACTERIZATION OF QUASI-ARITHMETIC MEANS

Abstract

Let $M: (0,\infty)^2 \to (0,\infty)$ be a homogeneous strict mean such that the function $h := M(\cdot, 1)$ is twice differentiable and $0 \neq h'(1) \neq 1$. It is shown that if there exists an *M*-affine function, continuous at a point which is neither constant nor linear, then *M* must be a weighted power mean. Moreover the homogeneity condition of *M* can be replaced by *M*-convexity of two suitably chosen linear functions. With the aid of iteration groups, some generalizations characterizing the weighted quasi-arithmetic means are given. A geometrical aspect of these results is discussed.

1 Introduction

A real function M defined on the Cartesian product $J \times J$ of an interval $J \subset \mathbb{R}$ is said to be a *mean* if it is internal; that is, if min $\leq M \leq \max$. A function φ mapping a subinterval I of J into J is called, M-affine, M-convex, and M-concave, if, respectively,

$$\begin{split} \varphi\left(M(x,y)\right) &= M(\varphi(x),\varphi(y))\\ \varphi\left(M(x,y)\right) &\leq M(\varphi(x),\varphi(y))\\ \varphi\left(M(x,y)\right) &\leq M(\varphi(x),\varphi(y)) \end{split}$$

for all $x, y \in I$ (cf. G. Aumann [5] where even two different means are involved; also J. Aczél [1], and [12], [13]). For M = A where A is the arithmetic mean, we obtain the classical notions of Jensen convexity, concavity and affinity. It

Key Words: mean, homogeneous function, M-affine function, M-convex function, power mean, quasi-arithmetic mean, differential equation, iteration group

Mathematical Reviews subject classification: Primary 26Å51, 26E60, 39B22, Secondary 39B12

Received by the editors December 16, 2002 Communicated by: B. S. Thomson

is well known that every measurable, or one-sided bounded at a point, Jensen affine function is of the form $\varphi(x) = ax + b$ for some real a, b. The family of all A-affine functions is rich in the following sense. For any two distinct points from the domain of A there exists exactly one A-affine function the graph of which passes through these points. This fact allows the acquisition of the epigraph of an A-convex function as the intersection of all the epigraphs of its supporting A-affine functions. This property is also shared by functions convex with respect to the weighed quasi-arithmetic means. (In this connection, in the last section, we introduce a notion of "M-affinely convex function".) In [11] it is shown that the logarithmic mean L does not have this property, because every L-affine function is either constant or linear (that is, of the form $\varphi(x) = ax$).

The main result of Section 3 says that if a mean M is homogeneous, the function $M(\cdot, 1)$ is twice differentiable, and there is an M-affine function, continuous at least at one point, which is neither linear nor constant, then Mmust be a power mean. In Section 4 we generalize this result replacing the homogeneity of M by the assumption that two suitably chosen linear functions are *M*-convex. A mean *M* on $(0, \infty)$ is homogeneous iff for every a > 0the linear function $\varphi(x) = ax$ is *M*-affine and, moreover, the family of these functions forms a (multiplicative) iteration group. In Section 5, replacing the homogeneity condition of M in the main result of Section 3 by the assumption that there is a family of *M*-affine functions which form an iteration group, we prove that M must be a weighted quasi-arithmetic mean, which is a new characterization of this kind of means. In the last section, to discuss some consequences of these results in relation to classically convex functions we define a function to be "*M*-affinely convex". Finally we mention a recent result by J. Aczél and R. Duncan Luce [3], motivated by some problems in utility theory and psychophysics, in which the functional equation H[K(s,t)] = L[h(s), h(t)]is considered, and we formulate an open problem.

Note that some questions related to a characterization of L^p -norm [9] and the Euler gamma function [6], [7] in a natural way lead to the *M*-convexity with $M \neq A$.

2 Preliminaries

Let $J \subset \mathbb{R}$ be an interval. A function $M : J^2 \to \mathbb{R}$ is said to be a *mean on J* if $\min(x, y) \leq M(x, y) \leq \max(x, y), x, y \in J$. Moreover, if for all $x, y \in J, x \neq y$, these inequalities are strict, M is called a *strict* mean and if M(x, y) = M(y, x) for all $x, y \in I$, M is called *symmetric*.

If $M: J^2 \to \mathbb{R}$ is a mean, then M is reflexive; that is, $M(x, x) = x, x \in J$.

It is easy to see that every reflexive function $M: J^2 \to \mathbb{R}$ which is (strictly) increasing with respect to each variable is a (strict) mean. The reflexivity of a mean M implies that $M(I^2) = I$ for every interval $I \subset J$, and $M|_{I \times I}$. is a mean on I. This property permits to generalize the classical notions of the convex, concave and affine functions in the following way (cf. [1], [5], [12], [13]).

Definition 1. Let $J \subset \mathbb{R}$ be an interval, $M : J^2 \to J$ a mean on J, and $I \subset J$ an interval. A function $\varphi : I \to J$ is said to be:

convex with respect to M on I, or simply, M-convex on I, if

 $\varphi(M(x,y)) \le M(\varphi(x),\varphi(y)), \ x,y \in I,$

M-concave on I, if the inequality is reversed and

M-affine on *I*, if it is both *M*-convex and *M*-concave; i.e., if,

$$\varphi(M(x,y)) = M(\varphi(x),\varphi(y)), \ x,y \in I.$$

Remark 1. Suppose that $M: J^2 \to J$ is a mean. Then

- 1. every constant function $\varphi: J \to J$ and the identity function $\varphi = id \mid_J$ is M-affine,
- 2. for $M = \min$ or $M = \max$ every increasing function $\varphi : J \to J$ is *M*-affine. Thus, if *M* is not strict, then the class of *M*-affine functions is, in general, essentially lager,
- 3. if $\varphi: J \to J$ is *M*-convex, strictly increasing and onto, then the inverse function φ^{-1} is *M*-concave.

Note that taking in these definitions M = A, where $A : \mathbb{R}^2 \to \mathbb{R}$ denotes the arithmetic mean, $A(x, y) = \frac{x+y}{2}$, we obtain the classical Jensen affine and Jensen convex functions.

Remark 2. Suppose that a mean $M : (0, \infty)^2 \to (0, \infty)$ is a homogeneous function of an order $p \in \mathbb{R}$; that is, $M(tx, ty) = t^p M(x, y), t, x, y > 0$. Then

1. p = 1,

2. setting h(t) := M(t, 1), t > 0, we have

$$M(x,y) = yh\left(\frac{x}{y}\right), \ x,y > 0; \ h(1) = 1$$
$$0 \le \frac{h(x) - 1}{x - 1} \le 1, \ x > 0, \ x \ne 1,$$

and these inequalities are strict iff M is a strict mean. Moreover, if h is differentiable at the point 1, then $0 \le h'(1) \le 1$,

- 3. besides the constant functions, every linear function $\varphi(x) = \varphi(1)x, x \in \mathbb{R}$, is *M*-affine,
- 4. if $c \in (0,\infty)$ and $\varphi: (0,\infty) \to (0,\infty)$ is *M*-affine, then so is $c\varphi$.

Remark 3. Suppose that $M: J^2 \to J$ is a mean and $I_1, I_2 \subseteq J$ are intervals. If $\varphi_1: I_1 \to I_2, \varphi_2: I_2 \to J$ are *M*-affine, then clearly, the composition $\varphi_2 \circ \varphi_1$ is also *M*-affine.

Let us note the following.

Lemma 1. Let $J \subset \mathbb{R}$ be an interval and $M : J^2 \to \mathbb{R}$ a strict and continuous mean. Suppose that M is strictly monotonic with respect to one of the variables (in a neighborhood of the diagonal $\{(x, x) : x \in J\}$). If $I \subset J$ is an interval and $\varphi, \psi : I \to J$ are M-affine, continuous, and $\varphi(x_1) = \psi(x_1), \varphi(x_2) = \psi(x_2)$ for some $x_1, x_2 \in I, x_1 \neq x_2$, then $\varphi = \psi$.

PROOF. Assume that M is strictly monotonic with respect to the first variable. Put $I_0 := \{x \in I : \varphi(x) = \psi(x)\}$. By the continuity of φ and ψ the set I_0 is closed in I. Assume that $x_1 < x_2$. We shall show that $[x_1, x_2] \subset I_0$. Indeed, in the opposite case the set $[x_1, x_2] \setminus I_0$ would be at most countable sum of nonempty intervals. If (a, b) is one of such an intervals, then $\varphi(a) = \psi(a)$, $\varphi(b) = \psi(b)$. Hence we get

$$\varphi(M(a,b)) = M(\varphi(a),\varphi(b)) = M(\psi(a),\psi(b)) = \psi(M(a,b)).$$

Since M is a strict mean, we have a < M(a, b) < b and consequently, $M(a, b) \in I_0$; that is, a desired contradiction. In particular we have proved that I_0 is an interval. Suppose that $I_0 \neq I$. Then at least one of the endpoints of the interval I_0 would be an interior point of I. Assume, for instance, that $c := \min I_0$ belongs to I. Let us take $x_0 \in I_0, x_0 > c$. Since M is strict, we have $c < M(c, x_0) < x_0$. The continuity of the function $I \ni x \to M(x, x_0)$ implies that there is a $\delta > 0$ such that $[c - \delta, x_0] \subset I$ and $M(x, x_0) \in [c, x_0]$ for all $x \in [c - \delta, x_0]$. Hence for $x \in [c - \delta, x_0]$ we have

$$M(\psi(x),\varphi(x_0)) = M(\psi(x),\psi(x_0)) = \psi(M(x,x_0))$$
$$= \varphi(M(x,x_0)) = M(\varphi(x),\varphi(x_0)).$$

Since M is strictly increasing with respect to the first variable, we infer that $\psi(x) = \varphi(x)$ for all $x \in [c - \delta, x_0]$, which contradicts to the definition of c. (Choosing x_0 close enough to c, we can argue similarly in the case when M is increasing with respect to the first variable in a neighborhood of the diagonal.)

3 A Basic Result for Homogeneous Means

The main result of this section reads as follows.

Theorem 1. Let $M : (0, \infty)^2 \to (0, \infty)$ be a strict and homogeneous mean. Suppose that the function $h : (0, \infty) \to (0, \infty)$ defined by h(x) := M(x, 1), x > 0, is twice differentiable, and $0 \neq h'(1) \neq 1$. If there exists an M-affine function, continuous at a point which is neither constant nor linear, then there is a $p \in \mathbb{R}$ such that

$$M(x,y) = \begin{cases} \left(wx^p + (1-w)y^p\right)^{1/p} & \text{for } p \neq 0\\ x^w y^{1-w} & \text{for } p = 0 \end{cases}, \ x, y > 0,$$

where w := h'(1).

PROOF. Let $\varphi : (0,\infty) \to (0,\infty)$ be continuous at a point x_0 , and *M*-affine function; i.e.,

$$\varphi\left(M(x,y)\right) = M(\varphi(x),\varphi(y)), \ x,y > 0. \tag{1}$$

Suppose that φ is nontrivial; that is, it is neither linear nor constant in $(0, \infty)$. By Remark 2 we have 0 < h'(1) < 1. The continuity of h' implies that h is strictly monotonic in a neighborhood of 1. It follows that in a neighborhood of the diagonal M is locally strictly increasing with respect to both variables. To show it note that there is an $\varepsilon > 0$ such that 0 < h'(t) < 1, $t \in (1 - \varepsilon, 1 + \varepsilon)$. Let us fix an arbitrary y > 0. Since, by the homogeneity of M,

$$M(x,y) = yh\left(\frac{x}{y}\right), \ x, y > 0,$$
(2)

we have

$$\frac{\partial M}{\partial x}(x,y) = h'\left(\frac{x}{y}\right), \ x,y > 0,$$

and, consequently, there is an $\varepsilon > 0$ such that $\frac{\partial M}{\partial x}(x,y) > 0$ for all x, y > 0 such that $1 - \varepsilon < \frac{x}{y} < 1 + \varepsilon$. which proves that $M(\cdot, y)$ is increasing in a neighborhood of y for every y > 0. Similarly, since

$$\frac{\partial M}{\partial y}(x,y) = h\left(\frac{x}{y}\right) - \frac{x}{y}h'\left(\frac{x}{y}\right), \ x,y > 0,$$

and, h(1) = 1, we infer that, there is an $\varepsilon > 0$ such that $\frac{\partial M}{\partial y}(x, y) > 0$ for all x, y > 0 such that $1 - \varepsilon < \frac{x}{y} < 1 + \varepsilon$. This proves that our mean M is strictly increasing with respect to both variables in a neighborhood of the diagonal.

Suppose that φ is continuous at a point $x_0 > 0$. Choose y > 0, $y \neq x_0$, such that M is strictly increasing with respect to both variables in a joint neighborhood of the points $(x_0, x_0), (x_0, y), (y, y)$. Assume, for instance, that $x_0 < y$. Then $x_0 < M(x_0, y) < y$. Take an arbitrary point $z_0 \in (x_0, M(x_0, y))$. By the continuity and the strict increasing monotonicity of the function $M(x_0, \cdot)$, there is a unique $y_0 \in (x_0, y)$ such that $z_0 = M(x_0, y_0)$ and the function $M(\cdot, y_0)$ is strictly increasing in a neighborhood of x_0 . Let (z_n) be an arbitrary sequence such that $z_n \to z_0$ as $n \to \infty$ and $z_n \in (x_0, M(x_0, y))$ for all $n \in \mathbb{N}$. Hence, for every n there is a unique $x_n \in (x_0, y)$ such that $M(x_n, y_0) = z_n$. Moreover we have $z_n \to z_0$ as $n \to \infty$. In fact, in the opposite case, for a subsequence of (x_{n_k}) , by the continuity of M, we would get

$$\lim_{k \to \infty} M(x_{n_k}, y_0) = M(\bar{x}, y_0) = z_0,$$

for some $\bar{x} \neq x_0$, which contradicts to the strict monotonicity of $M(\cdot, y_0)$ in $[x_0, y]$. Now, making use of the *M*-affinity of φ , the continuity of *M*, and the continuity of φ at x_0 , we get

$$\lim_{k \to \infty} \varphi(z_n) = \lim_{k \to \infty} \varphi(M(x_n, y_0)) = \lim_{k \to \infty} M(\varphi(x_n), \varphi(y_0))$$
$$= M(\varphi(x_0), \varphi(y_0)) = \varphi(M(x_0, y_0)) = \varphi(z_0)$$

which proves that φ is right-continuous at z_0 . Assuming that $y < M(x_0, y) < x_0$ in the same way we can show that φ is left-continuous at z_0 . Thus we have shown that φ is continuous in a neighborhood of the point x_0 . (The argument used in the proof of the continuity is similar to that applied in [10].)

Let (a, b) denote the maximal open interval of the continuity of φ such that $x_0 \in (a, b)$. Suppose that $b < \infty$. Since M is strictly increasing in a neighborhood of (b, b), choosing z_0 sufficiently close to b, and the numbers $x_0, y_0, x_0 < b \leq z_0 < y_0$, we can argue as in the previous step to show that φ is continuous in a right neighborhood of b. This contradicts the definition of b and proves that $b = \infty$. A similar argument shows that a = 0. Thus φ is continuous on $(0, \infty)$ is completed.

Since the constant and linear functions are *M*-affine, Lemma 1 implies that φ is strictly monotonic and there is no interval $I \subset (0, \infty)$ such that $\varphi|_I$ is constant or linear. Moreover equation (1) can be written in the form

$$\varphi\left(yh\left(\frac{x}{y}\right)\right) = \varphi(y)h\left(\frac{\varphi(x)}{\varphi(y)}\right), \ x, y > 0.$$
(3)

The function φ , being monotonic, is differentiable almost everywhere. Let x > 0 be a differentiability point of φ . Relation (3) and the assumed differentiability

of h imply that, for arbitrarily fixed y > 0, the function φ is differentiable at a point $yh\left(\frac{x}{y}\right)$. Consequently, φ is differentiable everywhere.

Differentiation of both sides with respect to x and y gives, respectively,

$$\varphi'\left(yh\left(\frac{x}{y}\right)\right)h'\left(\frac{x}{y}\right) = \varphi'(x)h'\left(\frac{\varphi(x)}{\varphi(y)}\right), \ x, y > 0 \tag{4}$$

and

$$\varphi'\left(yh\left(\frac{x}{y}\right)\right)\left[h\left(\frac{x}{y}\right) - h'\left(\frac{x}{y}\right)\frac{x}{y}\right]$$

= $\varphi'(y)h\left(\frac{\varphi(x)}{\varphi(y)}\right) - h'\left(\frac{\varphi(x)}{\varphi(y)}\right)\frac{\varphi(x)\varphi'(y)}{\varphi(y)}, \ x, y > 0.$ (5)

(Note that the continuity of the right-hand side of (4) with respect to y implies the continuity of $\varphi'\left(yh\left(\frac{x}{y}\right)\right)$ with respect to y and, consequently, the continuity of φ' .) Suppose that $\varphi'(x_0) = 0$ for some $x_0 > 0$. Since h' is continuous at 1 and $h'(1) \neq 0$, relation (4) implies that $\varphi'\left(yh\left(\frac{x_0}{y}\right)\right) = 0$ for all y from a neighborhood of the point x_0 . Moreover, the function $y \to yh\left(\frac{x_0}{y}\right)$ maps every interval neighborhood of x_0 on a nontrivial interval. In fact, in the opposite case, this function would be constant on some neighborhood of x_0 ; i.e., $h\left(\frac{x_0}{y}\right) = \frac{c}{y}$. Since h(1) = 1, we infer that $c = x_0$ and h(t) = t in a neighborhood of the point 1. Consequently, M(x, y) = x in a neighborhood of the point (x_0, x_0) . This is a contradiction because M is a strict mean. Hence $\varphi'(x) = 0$ in a neighborhood of x_0 , and φ would be constant in this neighborhood. By Lemma 1, φ would be constant on $(0, \infty)$. This contradicts the assumption that φ is nontrivial. Thus we have shown that $\varphi' \neq 0$ in $(0, \infty)$.

Let $(\alpha, \beta) \subset (0, \infty)$ be the maximal interval such that $1 \in (\alpha, \beta)$ and $h'(t) \neq 0$ for all $t \in (\alpha, \beta)$. Take arbitrary $t \in (\alpha, \beta)$ and x, y > 0 such that $\frac{x}{y} = t$. Since $\varphi' \neq 0$, from (4) we infer that $\frac{\varphi(x)}{\varphi(y)} \in (\alpha, \beta)$. Now from (5) and (4) we obtain

$$\frac{h\left(\frac{x}{y}\right) - h'\left(\frac{x}{y}\right)\frac{x}{y}}{h'\left(\frac{x}{y}\right)} = \frac{\varphi'(y)}{\varphi'(x)} \left(\frac{h\left(\frac{\varphi(x)}{\varphi(y)}\right)}{h'\left(\frac{\varphi(x)}{\varphi(y)}\right)} - \frac{\varphi(x)}{\varphi(y)}\right);$$

i.e.,

$$\frac{h\left(t\right)}{h'\left(t\right)} - t = \frac{\varphi'(y)}{\varphi'(ty)} \left(\frac{h\left(\frac{\varphi(ty)}{\varphi(y)}\right)}{h'\left(\frac{\varphi(ty)}{\varphi(y)}\right)} - \frac{\varphi(ty)}{\varphi(y)}\right), \ t \in (\alpha, \beta); \ y > 0.$$
(6)

Setting $H(t) := \frac{h(t)}{h'(t)} - t$, $t \in (\alpha, \beta)$, we get

$$H(t) = \frac{\varphi'(y)}{\varphi'(ty)} H\left(\frac{\varphi(ty)}{\varphi(y)}\right), \ t \in (\alpha, \beta); \ y > 0, \tag{7}$$

and, of course, H is differentiable in (α, β) . Suppose that there is a $t_0 \in (\alpha, \beta)$, $t_0 \neq 1$, such that $H(t_0) = 0$. Then we would have $H\left(\frac{\varphi(t_0y)}{\varphi(y)}\right) = 0$ for all y > 0. Hence either H(t) = 0 in a neighborhood of t_0 or $\frac{\varphi(t_0y)}{\varphi(y)} = t_0$ for all y > 0. The first case cannot occur because, by the definition of H, we would have h(t) = ct in a neighborhood of t_0 , and, consequently, by (2), $M(x,y) = yh\left(\frac{x}{y}\right) = kx$ for some k > 0 and for all x, y > 0 such that $\frac{x}{y}$ belongs to the neighborhood of t_0 . Since M is a strict mean, we have k < 1. Hence, by (1), $\varphi(kx) = \varphi(M(x,y)) = M(\varphi(x), \varphi(y)) = k\varphi(x)$; that is, $\frac{\varphi(kx)}{kx} = \frac{\varphi(x)}{x}$ for all x > 0. Thus φ coincides with a linear function at the points x and kx. By Lemma 1, the function φ must be linear, which is the desired contradiction. In the second case we would have $\frac{\varphi(t_0y)}{t_0y} = \frac{\varphi(ty)}{y}$ for all y > 0, and again, φ would be a linear function. Thus we have shown that $H(t) \neq 0$ for all $t \in (\alpha, \beta), t \neq 1$.

Setting y = 1 here we get $\varphi'(t) = \varphi'(1) \frac{H(\varphi(t))}{H(t)}, t \in (\alpha, \beta), t \neq 1$. Whence, the differentiability of H implies that φ is twice differentiable in $(\alpha, \beta) \setminus \{1\}$. Taking (7) into account, we infer that φ is twice differentiable in $(0, \infty)$. Differentiating both sides of (7) with respect to $t \in (\alpha, \beta)$ we obtain

$$H'(t) = -\frac{\varphi'(y)\varphi''(ty)y}{[\varphi'(ty)]^2}H\left(\frac{\varphi(ty)}{\varphi(y)}\right) + \frac{\varphi'(y)y}{\varphi(y)}H'\left(\frac{\varphi(ty)}{\varphi(y)}\right)$$

for all $t \in (\alpha, \beta)$; y > 0. Taking t := 1 here and replacing y by x, we get

$$H(1)x\frac{\varphi''(x)}{\varphi'(x)} - H'(1)x\frac{\varphi'(x)}{\varphi(x)} + H'(1) = 0, \ x > 0.$$
(8)

Note that $H(1) \neq 0$ as, in the opposite case, we would get

$$H'(1)x\frac{\varphi'(x)}{\varphi(x)} - H'(1) = 0, \ x > 0.$$

Since h(1) = 1 and, by assumption, $h'(1) \neq 1$, we have

$$H'(1) = \frac{h(t)}{h'(t)} - t = \frac{1}{h'(1)} - 1 \neq 0$$

Hence $x \frac{\varphi'(x)}{\varphi(x)} - 1 = 0$, x > 0, and, consequently, there would exist a c > 0 such that $\varphi(x) = cx$, x > 0, which is a contradiction. Putting $p := 1 - \frac{H'(1)}{H(1)}$, we can write equation (8) in the following equivalent

form

$$\frac{\varphi^{\prime\prime}(x)}{\varphi^{\prime}(x)} - (1-p)\frac{\varphi^{\prime}(x)}{\varphi(x)} + \frac{1-p}{x} = 0, \ x > 0.$$

For p = 1 the only functions satisfying this differential equations are linear. Solving this differential equation for $p \neq 1$ we obtain

- 1. if $0 \neq p \neq 1$, then, for some $a, b \in \mathbb{R}$, a > 0, b > 0, $\varphi(x) = (ax^p + b)^{1/p}, \ x > 0;$ (9)
- 2. if p = 0, then, for some $a, b \in \mathbb{R}$, $0 \neq a \neq 1$, $b \neq 0$,

$$\varphi(x) = bx^a, \ x > 0,\tag{10}$$

(we have excluded here the constant and linear functions).

Now we shall find the form of the mean M in each of these two cases. In the first case, when $0 \neq p \neq 1$, from (3) we have

$$\left(a\left[yh\left(\frac{x}{y}\right)\right]^{p} + b\right)^{1/p} = (ay^{p} + b)^{1/p} h\left(\frac{(ax^{p} + b)^{1/p}}{(ay^{p} + b)^{1/p}}\right), \ x, y > 0.$$

Replacing $a^{1/p}x$ and $a^{1/p}y$, here respectively by x and y we obtain

$$\left(\left[yh\left(\frac{x}{y}\right)\right]^p + b\right)^{1/p} = \left(y^p + b\right)^{1/p} h\left(\left(\frac{x^p + b}{y^p + b}\right)^{1/p}\right), \ x, y > 0.$$

Multiplying both sides by an arbitrary c > 0 (cf. Remark 2, part 4) we get, for all x, y > 0,

$$\left(\left[cyh\left(\frac{cx}{cy}\right)\right]^p + c^pb\right)^{1/p} = \left((cy)^p + c^pb\right)^{1/p}h\left(\left(\frac{(cx)^p + c^pb}{(cy)^p + c^pb}\right)^{1/p}\right).$$

Replacing cx, cy, c^pb , here respectively, by x, y and r, we obtain

$$\left[yh\left(\frac{x}{y}\right)\right]^p + r = (y^p + r)\left[h\left(\left(\frac{x^p + r}{y^p + r}\right)^{1/p}\right)\right]^p \text{ for all } r, x, y > 0.$$

Hence, for all r, x, y > 0,

$$[M(x,y)]^p = \left[yh\left(\frac{x}{y}\right)\right]^p = (y^p + r)\left[h\left(\left(\frac{x^p + r}{y^p + r}\right)^{1/p}\right)\right]^p - r.$$

Taking into account that the right hand side does not depend on r > 0, and the relation h(1) = 1, we obtain, for all x, y > 0,

$$\begin{split} \left[M(x,y)\right]^{p} &= \lim_{r \to \infty} \left\{ \left(y^{p} + r\right) \left[h\left(\left(\frac{x^{p} + r}{y^{p} + r}\right)^{1/p}\right)\right]^{p} - r \right\} \\ &= y^{p} \lim_{r \to \infty} h\left(\left(\frac{x^{p} + r}{y^{p} + r}\right)^{1/p}\right)^{p} + \lim_{r \to \infty} \frac{\left[h\left(\left(\frac{x^{p} + r}{y^{p} + r}\right)^{1/p}\right)\right]^{p} - 1}{\frac{1}{r}} \\ &= h(1)y^{p} + \lim_{r \to \infty} \frac{\left(\frac{x^{p} + r}{y^{p} + r}\right)^{1/p} - 1}{\frac{1}{r}} \frac{\left[h\left(\left(\frac{x^{p} + r}{y^{p} + r}\right)^{1/p}\right)\right]^{p} - \left[h\left(1^{1/p}\right)\right]^{p}}{\left(\frac{x^{p} + r}{y^{p} + r}\right)^{1/p} - 1} \\ &= y^{p} - h'(1)(y^{p} - x^{p}). \end{split}$$

Consequently, $M(x,y) = (wx^p + (1-w)y^p)^{1/p}$, x, y > 0, where w := h'(1). Since $w \in (0,1)$, M is a weighted power mean.

Now consider the second case when p = 0. From (3) we have

$$b\left[yh\left(\frac{x}{y}\right)\right]^{a} = by^{a}h\left(\frac{bx^{a}}{by^{a}}\right), \ x, y > 0$$

Putting $t := \frac{x}{y}$ for x, y > 0, we obtain the functional equation

$$[h(t)]^{a} = h(t^{a}), t > 0.$$

Define $F : \mathbb{R} \to \mathbb{R}$ by $F := \log \circ h \circ \exp$. Then F(0) = 0, F is differentiable at 0, F(0) = h'(1), and F satisfies the functional equation F(au) = aF(u), $u \in \mathbb{R}$. Since this equation is equivalent to $a^{-1}F(u) = F(a^{-1}u)$, $(u \in \mathbb{R})$, we can assume, without loss of generality, that |a| < 1. Hence, by induction, $F(a^n u) = a^n F(u)$ for all $u \in \mathbb{R}$ and $n \in \mathbb{N}$. Thus $F(u) = \frac{F(a^n u)}{a^n u}u$, $u \in \mathbb{R}$, $n \in \mathbb{N}$. Letting $n \to \infty$ we get F(u) = F'(0)u, $u \in \mathbb{R}$, and, consequently, $h(t) = t^w$, t > 0. Of course we have 0 < w < 1. Thus in this case $M(x, y) = x^w y^{1-w}$, x, y > 0, where w := h'(1) which proves that M is a weighted geometric mean.

Remark 4. Note that in the case $p \neq 0$ every function φ of the form (9) with positive *a* and *b* is *M*-affine, and in the case p = 0, every function of the form (10) with positive *a* and *b* is *M*-affine.

238

Remark 5. Let $M: (0, \infty)^2 \to (0, \infty)$ be a homogeneous mean and let $h, h^{\bigstar}: (0, \infty) \to (0, \infty)$ be defined by $h(x) := M(x, 1), h^{\bigstar}(x) := M(1, x), x > 0$. Then $h^{\bigstar}(x) = xh\left(\frac{1}{x}\right), x > 0$. If moreover h is differentiable at the point 1 and h'(1) = 0, then $(h^{\bigstar})'(1) = 1$ and vice versa.

To show that the assumption $0 \neq h'(1) \neq 1$ is essential consider the following.

Remark 6. Let $M: (0,\infty)^2 \to (0,\infty)$ be a homogeneous mean. Suppose that $h: (0,\infty) \to (0,\infty)$ defined by h(x) := M(x,1), x > 0, is twice differentiable (in a neighborhood of 1) and h'(1) = 0, $h''(1) \neq 0$. If $\varphi: (0,\infty) \to (0,\infty)$ is a twice differentiable M-affine function, then either φ is linear or constant. The same remains true if twice differentiability is replaced by nth differentiability and $h'(1) = h''(1) = \ldots = h^{(n-1)}(1) = 0$, $h^{(n)}(1) \neq 0$.

PROOF. Differentiating twice both sides of (3) with respect to x we obtain

$$\begin{split} \varphi^{\prime\prime} \left(yh\left(\frac{x}{y}\right) \right) \left[h^{\prime}\left(\frac{x}{y}\right) \right]^2 &+ \frac{2}{y} \varphi^{\prime} \left(yh\left(\frac{x}{y}\right) \right) h^{\prime\prime}\left(\frac{x}{y}\right) \\ &= h^{\prime\prime} \left(\frac{\varphi(x)}{\varphi(y)} \right) \frac{[\varphi^{\prime}(x)]^2}{\varphi(y)} + h^{\prime} \left(\frac{\varphi(x)}{\varphi(y)} \right) \varphi^{\prime\prime}(x). \end{split}$$

Taking here y := x and making use of the assumptions h'(1) = 0, $h''(1) \neq 0$, we get $h''(1) \varphi'(x) \left(\frac{[\varphi'(x)]}{\varphi(x)} - \frac{1}{x}\right) = 0$. If φ is not constant, then $\frac{[\varphi'(x)]}{\varphi(x)} = \frac{1}{x}$, and, consequently, φ is linear. The same argument works in the case $n \geq 3$ as after n times differentiation of both sides of (3) and the substitution y := xonly two summands do not disappear and we again get the above differential equation. \Box

As a consequence of Theorem 1 we obtain the following.

Corollary 1. Let $M : (0,\infty)^2 \to (0,\infty)$ be a strict, symmetric, and homogeneous mean. Suppose that the function $h : (0,\infty) \to (0,\infty)$ defined by h(x) := M(x,1), x > 0, is twice differentiable. If there exists an M-affine function, continuous at a point which is neither constant nor linear, then there is a $p \in \mathbb{R}$ such that

$$M(x,y) = \begin{cases} \left(\frac{x^p + y^p}{2}\right)^{1/p} & \text{for } p \neq 0\\ \sqrt{xy} & \text{for } p = 0. \end{cases}$$

4 A Generalization Involving *M*-Convex Functions

Theorem 2. Let $M : (0, \infty)^2 \to (0, \infty)$ be a strict continuous mean. Suppose that:

- 1. there are a, b > 0, a < 1 < b, $\frac{\log b}{\log a} \notin \mathbb{Q}$, such that the linear functions $(0, \infty) \ni x \to ax$, $(0, \infty) \ni x \to bx$ are both *M*-convex (or both *M*-concave),
- 2. the function h(x) := M(x, 1), x > 0, is twice differentiable, and $0 \neq h'(1) \neq 1$.

If there exists an M-affine function, continuous at least at one point, which is neither constant nor linear, then there is a $p \in \mathbb{R}$ such that

$$M(x,y) = \begin{cases} (wx^p + (1-w)y^p)^{1/p} & \text{for } p \neq 0.\\ x^w y^{1-w} & \text{for } p = 0 \end{cases}, \ x, y > 0.$$

where w := h'(1).

PROOF. The assumed convexity of the functions $(0, \infty) \ni x \to ax$ and $(0, \infty) \ni x \to bx$ implies that

$$aM(x,y) \le M(ax,ay), \ bM(x,y) \le M(bx,by), \ x,y > 0.$$

Hence, by induction, for all $n, m \in \mathbb{N}$ and x, y > 0,

$$a^m M(x,y) \le M(a^m x, a^m y); \ b^n M(x,y) \le M(b^n x, b^n y),$$

whence

$$a^m b^n M(x, y) \le M(a^m b^n x, a^m b^n y); \ m, n, \in \mathbb{N}, x, y > 0.$$

The assumptions on a and b imply that the set $\{a^m b^n : m, n, \in \mathbb{N}\}$ is dense in $(0, \infty)$. The continuity of M implies that $tM(x, y) \leq M(tx, ty)$; t, x, y > 0, which, obviously yields the homogeneity of M. Now our theorem follows from Theorem 1.

5 Non-Homogeneous Means - A Characterization of Weighted Quasi-Arithmetic Means

By Remark 3, if $g: J \to J$ is *M*-affine, then, for every $n \in \mathbb{N}$, its *n*th iterate g^n is *M*-affine If, moreover, g is invertible, then the inverse g^{-1} is *M*-affine on g(J), and the family of iterates $\{g^k: k \in \mathbb{Z}\}$ is a group consisting of *M*-affine functions.

We begin with recalling the following.

Definition 2. Let $J \subset \mathbb{R}$ be an interval. A one-parameter family $\{g^u : u \in \mathbb{R}\}$ of continuous functions $g^u : J \to J$ such that $g^u \circ g^v = g^{u+v}$, $u, v \in \mathbb{R}$; $g^0 = id |_J$ is said to be an iteration group (cf. M. Kuczma [8], p.197-198). If for every $x \in J$ the function $(-\infty, \infty) \ni u \to g^u(x)$ is continuous or measurable, the iteration group is called, respectively, continuous or measurable.

Remark 7. Suppose that $\{g^u : u \in \mathbb{R}\}$ is an iteration group in an interval J. Then the function $F : J \times \mathbb{R} \to J$, $F(x, u) := g^u(x)$, satisfies the translation equation $F(F(x, u), v) = F(x, u + v), x \in J, u, v \in \mathbb{R}$. If J is open and $\{g^t : t \in \mathbb{R}\}$ is a continuous iteration group, then (J. Aczél, [2], p. 248), there is a surjective homeomorphic function $\gamma : J \to \mathbb{R}$, determined uniquely up to an additive constant (cf. [2], p. 246), such that $F(x, u) = \gamma^{-1}(\gamma(x) + u),$ $x \in J, u \in \mathbb{R}$ and, consequently, $g^u(x) = \gamma^{-1}(\gamma(x) + u), x \in J, u \in \mathbb{R}$. Setting $\alpha := \exp \circ \gamma$ we can write this iteration group in the form $g^u(x) = \alpha^{-1}(e^u\alpha(x)),$ $x \in J; u \in \mathbb{R}$, where $\alpha : J \to (0, \infty)$ is a surjective homeomorphism determined uniquely up to a multiplicative positive constant. The function α is referred to as a generator of the iteration group. Note that the family $\{f^t : t > 0\}$ defined by $f^t := g^{\log t}, t > 0$, is a "multiplicative" iteration group; that is, $f^s \circ f^t = f^{st}, s, t > 0$, and

$$f^{t}(x) = \alpha^{-1}(t\alpha(x)), \ t > 0, x \in J.$$
 (11)

In the sequel it is convenient to write the iteration groups in their multiplicative forms.

Let us mention that M. C. Zdun [14] proved that every measurable iteration group is continuous.

A motivation for the present section is the following obvious comment.

Remark 8. The family $\{f^t : t > 0\}$ of linear functions $f^t : (0, \infty) \to (0, \infty)$, $f^t(x) := tx, x > 0$ is a continuous (multiplicative) iteration group. Moreover, a mean $M : (0, \infty)^2 \to (0, \infty)$ is homogeneous if, and only if, every function of this family is *M*-affine.

Now we prove this assertion.

Theorem 3. Let $J \subset \mathbb{R}$ be an open interval and $M : J^2 \to J$ a strict mean. Suppose that there exists a continuous iteration group $\{f^t : t > 0\}$ of the form (11) which consists of M-affine functions. Furthermore, suppose that $h : (0, \infty) \to (0, \infty)$ defined by $h(u) := \alpha(M(\alpha^{-1}(u), 1), u > 0)$ is twice differentiable, and $0 \neq h'(1) \neq 1$. If there exists an M-affine function, continuous at a point, that is neither constant nor an element of the iteration group $\{f^t : t > 0\}$, then

$$M(x,y) = \beta^{-1} (w\beta(x) + (1-w)\beta(y)), \ x, y \in J$$

for some continuous and strictly monotonic function $\beta : J \to (0, \infty)$ and w = h'(1); that is, M is a weighted quasi-arithmetic mean.

PROOF. By assumption each function of the iteration group $\{f^t : t > 0\}$ is M-affine; i.e., $f^t(M(x,y)) = M(f^t(x), f^t(y)), t > 0, x, y \in J$. There exists (cf. Remark 7) a surjective homeomorphism $\alpha : J \to (0, \infty)$ such that $f^t(x) = \alpha^{-1}(t\alpha(x)), t > 0, x \in J$. Hence

$$\alpha^{-1}(t\alpha(M(x,y))) = M\left(\alpha^{-1}(t\alpha(x)), \alpha^{-1}(t\alpha(y))\right), \ t > 0, x, y \in J.$$

Take arbitrary u, v > 0. There are $x, y \in J$ such that $x = \alpha^{-1}(u)$ and $y = \alpha^{-1}(v)$. Setting these numbers into the above formula, we obtain

$$\alpha\left(M\left(\alpha^{-1}(tu),\alpha^{-1}(tv)\right)\right) = t\alpha\left(M\left(\alpha^{-1}(u),M\left(\alpha^{-1}(v)\right)\right),\ t,u,v>0,$$

which shows that the function $K : (0, \infty)^2 \to (0, \infty)$ defined by $K(u, v) := \alpha(M(\alpha^{-1}(u), \alpha^{-1}(v))), u, v > 0$, is homogeneous. It is also obvious that K is a strict mean. By Theorem 1, K is a weighted power mean with a power $p \in \mathbb{R}$ and the weight w = h'(1). Whence

$$M(x,y) = \begin{cases} \alpha^{-1} \left[(w[\alpha(x)]^p + (1-w)[\alpha(y)]^p)^{1/p} \right] & \text{for } p \neq 0\\ \alpha^{-1} \left[\alpha(x)^w \alpha(y)^{1-w} \right] & \text{for } p = 0 \end{cases}, \ x, y \in J.$$

To complete the proof it is enough to take $\beta(x) := \alpha(x)^p$, $x \in J$, in the case $p \neq 0$, and $\beta := \ln \circ \alpha$ in the case p = 0.

Remark 9. If M is a weighted quasi-arithmetic mean with generator β , then the family $\{\beta^{-1} \circ t \circ \beta : t > 0\}$ is an iteration group and every function of this family is M-affine.

The following counterpart of Theorem 2 for non-homogeneous means is a characterization of the weighted quasi-arithmetic means.

Theorem 4. Let $J \subset \mathbb{R}$ be an open interval and $M : J^2 \to J$ a strict continuous mean. Suppose that there is a homeomorphism $\alpha : J \to (0, \infty)$ such that

- 1. for some a, b > 0, a < 1 < b, the number $\frac{\log b}{\log a}$ is irrational and the functions $\alpha^{-1} \circ (a\alpha)$ and $\alpha^{-1} \circ (b\alpha)$ are both *M*-convex (or both *M*-concave);
- 2. the function $h: (0, \infty) \to (0, \infty)$ defined by $h(x) := \alpha(M(\alpha^{-1}(x), 1)), x > 0$, is twice differentiable and $0 \neq h'(1) \neq 1$.

If there exists an M-affine function, continuous at a point which is neither constant nor of the form $\alpha^{-1} \circ (t\alpha)$ for a t > 0, then

$$M(x,y) = \beta^{-1} \left(w\beta(x) + (1-w)\beta(y) \right), \qquad x, y \in J$$

for some continuous and strictly monotonic function $\beta : J \to (0, \infty)$ and w = h'(1); that is, M is a weighted quasi-arithmetic mean.

PROOF. By the M-convexity of the functions $\alpha^{-1} \circ (a\alpha)$ and $\alpha^{-1} \circ (b\alpha)$ we have

$$\alpha^{-1}(a\alpha(M(x,y))) \le M(\alpha^{-1}(a(\alpha^{-1}(x)), \alpha^{-1}(a(\alpha^{-1}(y))))$$

 and

$$\alpha^{-1}(b\alpha(M(x,y))) \le M(\alpha^{-1}(b(\alpha^{-1}(x)), \alpha^{-1}(b(\alpha^{-1}(y))))$$

for all x, y > 0. Hence, taking into account that $\alpha^{-1} \circ (a\alpha)$ and $\alpha^{-1} \circ (b\alpha)$ are increasing, by induction, we obtain, for all $m \in \mathbb{N}$ and x, y > 0,

$$\alpha^{-1}(a^m \alpha(M(x,y))) \le M(\alpha^{-1}(a^m(\alpha^{-1}(x)), \alpha^{-1}(a^m(\alpha^{-1}(y)))),$$

and for all $n \in \mathbb{N}$ and x, y > 0,

$$\alpha^{-1}(b^n \alpha(M(x,y))) \le M(\alpha^{-1}(b^n(\alpha^{-1}(x)), \alpha^{-1}(b^n(\alpha^{-1}(y))).$$

From these two inequalities we get, for all $m, n \in \mathbb{N}$ and x, y > 0,

$$\alpha^{-1}(a^{m}b^{n}\alpha(M(x,y))) \le M(\alpha^{-1}(a^{m}b^{n}(\alpha^{-1}(x)), \alpha^{-1}(a^{m}b^{n}(\alpha^{-1}(y))).$$

Now the density of the set $\{a^m b^n : m, n, \in \mathbb{N}\}$ in $(0, \infty)$ and the continuity of M imply that, for all t, x, y > 0,

$$\alpha^{-1}(t\alpha(M(x,y))) \le M(\alpha^{-1}(t(\alpha^{-1}(x)),\alpha^{-1}(t(\alpha^{-1}(y)));$$

that is, for every t > 0 the function $\alpha^{-1} \circ (t\alpha)$ is *M*-convex. Since, for every t > 0, the function $\alpha^{-1} \circ (t\alpha)$ is increasing, its inverse, $\alpha^{-1} \circ (t^{-1}\alpha)$ is *M*-concave (cf. Remark 3). It follows that $\alpha^{-1} \circ (t\alpha)$ is *M*-affine for every t > 0. Since the family $\{f^t : t > 0\}$ with $f^t := \alpha^{-1} \circ (t\alpha)$ is an iteration group, our result follows from Theorem 3.

6 Some Conclusions for *M*-Convex and "*M*-Affinely Convex" Functions

Let us introduce the following notion.

Definition 3. Let $J \subset \mathbb{R}$ and $I \subset J$ be intervals and $M : J^2 \to J$ a mean. A function $f : I \to J$ is said to be *M*-affinely convex if for every $x_0 \in I$ there is an *M*-affine function $\varphi : J \to J$ such that $f(x_0) = \varphi(x_0)$ and $\varphi(x) \leq f(x)$ for all $x \in I$.

For a function $f: I \to J$ denote by E(f) the epigraph of f; i.e., the set $E(f) := \{(x, y) \in I \times \mathbb{R} : f(x) \le y\}.$

Remark 10. A function $f : I \to J$ is *M*-affinely convex if, and only if, there is a family Φ of *M*-affine functions $\varphi : I \to J$ such that $E(f) = \bigcap \{E(\varphi) : \varphi \in \Phi\}$.

Theorem 5. Suppose that $M: J^2 \to J$ is a mean in an interval J which is increasing with respect to each variable. Then every M-affinely convex function is M-convex.

PROOF. Let $I \subset J$ be an interval and suppose that $f: I \to J$ is *M*-affinely convex. Take $x, y \in I$. By Definition 3 there is an *M*-affine function φ : $J \to J$ such that $f(M(x, y)) = \varphi(M(x, y))$ and $\varphi(u) \leq f(u)$ for all $u \in I$. Hence, by the *M*-affinity of φ and the increasing monotonicity of *M*, we have $f(M(x, y)) = \varphi(M(x, y)) = M(\varphi(x), \varphi(y)) \leq M(f(x), f(y))$.

Remark 11. Given a continuous and strictly monotonic function $\beta : J \to \mathbb{R}$ and $w \in (0, 1)$, denote by $M_{\beta} : J^2 \to J$ the quasi-arithmetic mean

$$M_{\beta}(x,y) = \beta^{-1} (w\beta(x) + (1-w)\beta(y)), \ x, y \in J.$$

Suppose that a function $f: I \to J$ is measurable (or the closure of the graph of f does not have interior points). Then, obviously,

- 1. if β is increasing, then f is M_{β} -convex iff the function $\beta \circ f \circ \beta^{-1}$ is convex,
- 2. if β is decreasing, then f is M_{β} -convex iff the function $\beta \circ f \circ \beta^{-1}$ is concave.

Now it is easy to see that

• f is M_{β} -convex iff it is M_{β} -affinely convex.

We obtain the following an immediate consequence of Theorem 1.

Proposition 1. Let $M : (0, \infty)^2 \to (0, \infty)$ be a strict homogeneous non power mean. If $h := M(\cdot, 1)$ is twice continuously differentiable and $0 \neq h'(1) \neq 1$, then the following conditions are equivalent:

- 1. a function $f:(0,\infty) \to (0,\infty)$ is M-affinely convex.
- 2. f is either constant or linear or $f(x) = \max(a, cx), x \in (0, \infty)$, for some a, c > 0.

Example 1. The logarithmic mean $L: (0, \infty)^2 \to (0, \infty)$,

$$L(x,y) := \begin{cases} \frac{x-y}{\log x - \log y} & \text{for } x \neq y\\ x & \text{for } x = y \end{cases}$$

is homogeneous and non-power. By Theorem 1 (cf. also [11]), every continuous at a point *L*-affine function is either constant or linear. Since the function $\exp|_{(0,\infty)}$ is *L*-convex (cf. 10]), taking into account the above Proposition, we infer that the notions of *L*-convexity and *L*-affine convexity are not equivalent.

7 Open Problems and Final Remarks

In Theorems 1-4 we assume twice differentiability of the mean. It is an open question wether these results remain true under weaker regularity conditions. Let us mention that in a recent paper [3], J. Aczél, R. Duncan Luce motivated by some problems in utility theory and psychophysics, considered the functional equation $H(K(s,t)) = L(H(s), H(t)), s \ge t \ge 1$, where K and L are homogeneous functions, which is more general than (1). Assuming that H is twice differentiable and strictly increasing, and the functions K and L are twice differentiable, the authors determine the forms of H and K. According to a personal communication, this functional equation will be also considered in [4].

Acknowledgement 1. I am greatly indebted to the referee for several valuable comments, in particular for a simplification of some calculations in the proof of Theorem 1.

References

- J. Aczél, A generalization of the notion of convex functions, Norske Vid. Selsk. Forhdl., 19 Nr. 24 (1947), 87–90.
- [2] J. Aczél, Lectures on functional equations and their applications, New York, London, 1966.
- [3] J. Aczél, R. Duncan Luce, Two functional equations preserving functional forms, Proc. Nat. Acad. Sci. USA, 99 (2002), 5212–5216.

- [4] J. Aczél and A. Lundberg, *Isomorphic pairs of homogeneous functions* and their morphisms (in preparation).
- [5] G. Aumann, Konvexe Funktionen und Induktion bei Ungleichungen zwischen Mittelverten, S.-B. math.-naturw. Abt. Bayer. Akad. Wiss. München, (1933), 405-413.
- [6] D. Gronau, J. Matkowski, Geometrical convexity and generalization of the Bohr-Mollerup theorem on the Gamma function, Math. Pannonica, 4/2 (1993), 153–160.
- D. Gronau and J. Matkowski, Geometrically convex solutions of certain difference equation and generalized Bohr-Mollerup type theorems, Results in Math., 26 (1994), 290-297.
- [8] M. Kuczma, Functional equations in a single variable, Monografie Mat 46 Polish Scientific Publishers, Warsaw, 1968
- [9] J. Matkowski, L^p-like paranorms, in Selected Topics in Functional Equations and Iteration Theory, Proceedings of the Austrian-Polish Seminar, Universität Graz, October 24–26, 1991, edited by D. Gronau and L. Reich, Grazer Math. Ber., **316** (1992), 103–139.
- [10] J. Matkowski, Continuous solutions of a functional equation, Publicationes Math. Debrecen, 52 (1998), 559–562.
- [11] J. Matkowski, Affine functions with respect to the logarithmic mean, Colloq. Math., 95 (2003), 217–230.
- [12] J. Matkowski, J. Rätz, Convexity of power functions with respect to symmetric homogeneous means, Internat. Ser. Num. Math., 123 (1997), 231– 247.
- [13] J. Matkowski, J. Rätz, Convex functions with respect to an arbitrary mean, Internat. Ser. Num. Math., 123 (1997), 249–259.
- [14] M. C. Zdun, Continuous and differentiable iteration groups, Prace Nauk. Uniw. Śląski., 308, Katowice, 1979.