Janusz Matkowski, Institute of Mathematics, University of Zielona Góra, PL-65-246 Zielona Góra, Poland. email: J.Matkowski@im.uz.zgora.pl

CONVEX FUNCTIONS WITH RESPECT TO A MEAN AND A CHARACTERIZATION OF QUASI-ARITHMETIC MEANS

Abstract

Let $M:(0, \infty)^{2} \rightarrow(0, \infty)$ be a homogeneous strict mean such that the function $h:=M(\cdot, 1)$ is twice differentiable and $0 \neq h^{\prime}(1) \neq 1$. It is shown that if there exists an M-affine function, continuous at a point which is neither constant nor linear, then M must be a weighted power mean. Moreover the homogeneity condition of M can be replaced by M-convexity of two suitably chosen linear functions. With the aid of iteration groups, some generalizations characterizing the weighted quasi-arithmetic means are given. A geometrical aspect of these results is discussed.

1 Introduction

A real function M defined on the Cartesian product $J \times J$ of an interval $J \subset \mathbb{R}$ is said to be a mean if it is internal; that is, if $\min \leq M \leq \max$. A function φ mapping a subinterval I of J into J is called, M-affine, M-convex, and M-concave, if, respectively,

$$
\begin{aligned}
& \varphi(M(x, y))=M(\varphi(x), \varphi(y)) \\
& \varphi(M(x, y)) \leq M(\varphi(x), \varphi(y)) \\
& \varphi(M(x, y)) \leq M(\varphi(x), \varphi(y))
\end{aligned}
$$

for all $x, y \in I$ (cf. G. Aumann [5] where even two different means are involved; also J. Aczél [1], and [12], [13]). For $M=A$ where A is the arithmetic mean, we obtain the classical notions of Jensen convexity, concavity and affinity. It

[^0]is well known that every measurable, or one-sided bounded at a point, Jensen affine function is of the form $\varphi(x)=a x+b$ for some real a, b. The family of all A-affine functions is rich in the following sense. For any two distinct points from the domain of A there exists exactly one A-affine function the graph of which passes through these points. This fact allows the acquisition of the epigraph of an A-convex function as the intersection of all the epigraphs of its supporting A-affine functions. This property is also shared by functions convex with respect to the weighed quasi-arithmetic means. (In this connection, in the last section, we introduce a notion of " M-affinely convex function".) In [11] it is shown that the logarithmic mean L does not have this property, because every L-affine function is either constant or linear (that is, of the form $\varphi(x)=a x)$.

The main result of Section 3 says that if a mean M is homogeneous, the function $M(\cdot, 1)$ is twice differentiable, and there is an M-affine function, continuous at least at one point, which is neither linear nor constant, then M must be a power mean. In Section 4 we generalize this result replacing the homogeneity of M by the assumption that two suitably chosen linear functions are M-convex. A mean M on $(0, \infty)$ is homogeneous iff for every $a>0$ the linear function $\varphi(x)=a x$ is M-affine and, moreover, the family of these functions forms a (multiplicative) iteration group. In Section 5, replacing the homogeneity condition of M in the main result of Section 3 by the assumption that there is a family of M-affine functions which form an iteration group, we prove that M must be a weighted quasi-arithmetic mean, which is a new characterization of this kind of means. In the last section, to discuss some consequences of these results in relation to classically convex functions we define a function to be " M-affinely convex". Finally we mention a recent result by J. Aczél and R. Duncan Luce [3], motivated by some problems in utility theory and psychophysics, in which the functional equation $H[K(s, t)]=L[h(s), h(t)]$ is considered, and we formulate an open problem.

Note that some questions related to a characterization of L^{p}-norm [9] and the Euler gamma function [6], [7] in a natural way lead to the M-convexity with $M \neq A$.

2 Preliminaries

Let $J \subset \mathbb{R}$ be an interval. A function $M: J^{2} \rightarrow \mathbb{R}$ is said to be a mean on J if $\min (x, y) \leq M(x, y) \leq \max (x, y), x, y \in J$. Moreover, if for all $x, y \in J, x \neq y$, these inequalities are strict, M is called a strict mean and if $M(x, y)=M(y, x)$ for all $x, y \in I, M$ is called symmetric.

If $M: J^{2} \rightarrow \mathbb{R}$ is a mean, then M is reflexive; that is, $M(x, x)=x, x \in J$.

It is easy to see that every reflexive function $M: J^{2} \rightarrow \mathbb{R}$ which is (strictly) increasing with respect to each variable is a (strict) mean. The reflexivity of a mean M implies that $M\left(I^{2}\right)=I$ for every interval $I \subset J$, and $\left.M\right|_{I \times I}$. is a mean on I. This property permits to generalize the classical notions of the convex, concave and affine functions in the following way (cf. [1], [5], [12], [13]).
Definition 1. Let $J \subset \mathbb{R}$ be an interval, $M: J^{2} \rightarrow J$ a mean on J, and $I \subset J$ an interval. A function $\varphi: I \rightarrow J$ is said to be:
convex with respect to M on I, or simply, M-convex on I, if

$$
\varphi(M(x, y)) \leq M(\varphi(x), \varphi(y)), x, y \in I
$$

M-concave on I, if the inequality is reversed and
M-affine on I, if it is both M-convex and M-concave; i.e., if,

$$
\varphi(M(x, y))=M(\varphi(x), \varphi(y)), x, y \in I
$$

Remark 1. Suppose that $M: J^{2} \rightarrow J$ is a mean. Then

1. every constant function $\varphi: J \rightarrow J$ and the identity function $\varphi=\left.i d\right|_{J}$ is M-affine,
2. for $M=\min$ or $M=\max$ every increasing function $\varphi: J \rightarrow J$ is M affine. Thus, if M is not strict, then the class of M-affine functions is, in general, essentially lager,
3. if $\varphi: J \rightarrow J$ is M-convex, strictly increasing and onto, then the inverse function φ^{-1} is M-concave.

Note that taking in these definitions $M=A$, where $A: \mathbb{R}^{2} \rightarrow \mathbb{R}$ denotes the arithmetic mean, $A(x, y)=\frac{x+y}{2}$, we obtain the classical Jensen affine and Jensen convex functions.
Remark 2. Suppose that a mean $M:(0, \infty)^{2} \rightarrow(0, \infty)$ is a homogeneous function of an order $p \in \mathbb{R}$; that is, $M(t x, t y)=t^{p} M(x, y), t, x, y>0$. Then

1. $p=1$,
2. setting $h(t):=M(t, 1), t>0$, we have

$$
\begin{aligned}
M(x, y) & =y h\left(\frac{x}{y}\right), x, y>0 ; h(1)=1 \\
0 & \leq \frac{h(x)-1}{x-1} \leq 1, x>0, x \neq 1
\end{aligned}
$$

and these inequalities are strict iff M is a strict mean. Moreover, if h is differentiable at the point 1 , then $0 \leq h^{\prime}(1) \leq 1$,
3. besides the constant functions, every linear function $\varphi(x)=\varphi(1) x, x \in$ \mathbb{R}, is M-affine,
4. if $c \in(0, \infty)$ and $\varphi:(0, \infty) \rightarrow(0, \infty)$ is M-affine, then so is $c \varphi$.

Remark 3. Suppose that $M: J^{2} \rightarrow J$ is a mean and $I_{1}, I_{2} \subseteq J$ are intervals. If $\varphi_{1}: I_{1} \rightarrow I_{2}, \varphi_{2}: I_{2} \rightarrow J$ are M-affine, then clearly, the composition $\varphi_{2} \circ \varphi_{1}$ is also M-affine.

Let us note the following.
Lemma 1. Let $J \subset \mathbb{R}$ be an interval and $M: J^{2} \rightarrow \mathbb{R}$ a strict and continuous mean. Suppose that M is strictly monotonic with respect to one of the variables (in a neighborhood of the diagonal $\{(x, x): x \in J\}$). If $I \subset J$ is an interval and $\varphi, \psi: I \rightarrow J$ are M-affine, continuous, and $\varphi\left(x_{1}\right)=\psi\left(x_{1}\right), \varphi\left(x_{2}\right)=\psi\left(x_{2}\right)$ for some $x_{1}, x_{2} \in I, x_{1} \neq x_{2}$, then $\varphi=\psi$.

Proof. Assume that M is strictly monotonic with respect to the first variable. Put $I_{0}:=\{x \in I: \varphi(x)=\psi(x)\}$. By the continuity of φ and ψ the set I_{0} is closed in I. Assume that $x_{1}<x_{2}$. We shall show that $\left[x_{1}, x_{2}\right] \subset I_{0}$. Indeed, in the opposite case the set $\left[x_{1}, x_{2}\right] \backslash I_{0}$ would be at most countable sum of nonempty intervals. If (a, b) is one of such an intervals, then $\varphi(a)=\psi(a)$, $\varphi(b)=\psi(b)$. Hence we get

$$
\varphi(M(a, b))=M(\varphi(a), \varphi(b))=M(\psi(a), \psi(b))=\psi(M(a, b))
$$

Since M is a strict mean, we have $a<M(a, b)<b$ and consequently, $M(a, b) \in$ I_{0}; that is, a desired contradiction. In particular we have proved that I_{0} is an interval. Suppose that $I_{0} \neq I$. Then at least one of the endpoints of the interval I_{0} would be an interior point of I. Assume, for instance, that $c:=\min I_{0}$ belongs to I. Let us take $x_{0} \in I_{0}, x_{0}>c$. Since M is strict, we have $c<M\left(c, x_{0}\right)<x_{0}$. The continuity of the function $I \ni x \rightarrow M\left(x, x_{0}\right)$ implies that there is a $\delta>0$ such that $\left[c-\delta, x_{0}\right] \subset I$ and $M\left(x, x_{0}\right) \in\left[c, x_{0}\right]$ for all $x \in\left[c-\delta, x_{0}\right]$. Hence for $x \in\left[c-\delta, x_{0}\right]$ we have

$$
\begin{aligned}
M\left(\psi(x), \varphi\left(x_{0}\right)\right) & =M\left(\psi(x), \psi\left(x_{0}\right)\right)=\psi\left(M\left(x, x_{0}\right)\right) \\
& =\varphi\left(M\left(x, x_{0}\right)\right)=M\left(\varphi(x), \varphi\left(x_{0}\right)\right)
\end{aligned}
$$

Since M is strictly increasing with respect to the first variable, we infer that $\psi(x)=\varphi(x)$ for all $x \in\left[c-\delta, x_{0}\right]$, which contradicts to the definition of c. (Choosing x_{0} close enough to c, we can argue similarly in the case when M is increasing with respect to the first variable in a neighborhood of the diagonal.)

3 A Basic Result for Homogeneous Means

The main result of this section reads as follows.
Theorem 1. Let $M:(0, \infty)^{2} \rightarrow(0, \infty)$ be a strict and homogeneous mean. Suppose that the function $h:(0, \infty) \rightarrow(0, \infty)$ defined by $h(x):=M(x, 1), x>$ 0 , is twice differentiable, and $0 \neq h^{\prime}(1) \neq 1$. If there exists an M-affine function, continuous at a point which is neither constant nor linear, then there is a $p \in \mathbb{R}$ such that

$$
M(x, y)=\left\{\begin{array}{ll}
\left(w x^{p}+(1-w) y^{p}\right)^{1 / p} & \text { for } p \neq 0 \\
x^{w} y^{1-w} & \text { for } p=0
\end{array}, x, y>0\right.
$$

where $w:=h^{\prime}(1)$.
Proof. Let $\varphi:(0, \infty) \rightarrow(0, \infty)$ be continuous at a point x_{0}, and M-affine function; i.e.,

$$
\begin{equation*}
\varphi(M(x, y))=M(\varphi(x), \varphi(y)), x, y>0 \tag{1}
\end{equation*}
$$

Suppose that φ is nontrivial; that is, it is neither linear nor constant in $(0, \infty)$. By Remark 2 we have $0<h^{\prime}(1)<1$. The continuity of h^{\prime} implies that h is strictly monotonic in a neighborhood of 1 . It follows that in a neighborhood of the diagonal M is locally strictly increasing with respect to both variables. To show it note that there is an $\varepsilon>0$ such that $0<h^{\prime}(t)<1, t \in(1-\varepsilon, 1+\varepsilon)$. Let us fix an arbitrary $y>0$. Since, by the homogeneity of M,

$$
\begin{equation*}
M(x, y)=y h\left(\frac{x}{y}\right), x, y>0 \tag{2}
\end{equation*}
$$

we have

$$
\frac{\partial M}{\partial x}(x, y)=h^{\prime}\left(\frac{x}{y}\right), x, y>0
$$

and, consequently, there is an $\varepsilon>0$ such that $\frac{\partial M}{\partial x}(x, y)>0$ for all $x, y>0$ such that $1-\varepsilon<\frac{x}{y}<1+\varepsilon$. which proves that $M(\cdot, y)$ is increasing in a neighborhood of y for every $y>0$. Similarly, since

$$
\frac{\partial M}{\partial y}(x, y)=h\left(\frac{x}{y}\right)-\frac{x}{y} h^{\prime}\left(\frac{x}{y}\right), x, y>0
$$

and, $h(1)=1$, we infer that, there is an $\varepsilon>0$ such that $\frac{\partial M}{\partial y}(x, y)>0$ for all $x, y>0$ such that $1-\varepsilon<\frac{x}{y}<1+\varepsilon$. This proves that our mean M is strictly increasing with respect to both variables in a neighborhood of the diagonal.

Suppose that φ is continuous at a point $x_{0}>0$. Choose $y>0, y \neq x_{0}$, such that M is strictly increasing with respect to both variables in a joint neighborhood of the points $\left(x_{0}, x_{0}\right),\left(x_{0}, y\right),(y, y)$. Assume, for instance, that $x_{0}<y$. Then $x_{0}<M\left(x_{0}, y\right)<y$. Take an arbitrary point $z_{0} \in\left(x_{0}, M\left(x_{0}, y\right)\right)$. By the continuity and the strict increasing monotonicity of the function $M\left(x_{0}, \cdot\right)$, there is a unique $y_{0} \in\left(x_{0}, y\right)$ such that $z_{0}=M\left(x_{0}, y_{0}\right)$ and the function $M\left(\cdot, y_{0}\right)$ is strictly increasing in a neighborhood of x_{0}. Let $\left(z_{n}\right)$ be an arbitrary sequence such that $z_{n} \rightarrow z_{0}$ as $n \rightarrow \infty$ and $z_{n} \in\left(x_{0}, M\left(x_{0}, y\right)\right)$ for all $n \in \mathbb{N}$. Hence, for every n there is a unique $x_{n} \in\left(x_{0}, y\right)$ such that $M\left(x_{n}, y_{0}\right)=z_{n}$. Moreover we have $z_{n} \rightarrow z_{0}$ as $n \rightarrow \infty$. In fact, in the opposite case, for a subsequence of $\left(x_{n_{k}}\right)$, by the continuity of M, we would get

$$
\lim _{k \rightarrow \infty} M\left(x_{n_{k}}, y_{0}\right)=M\left(\bar{x}, y_{0}\right)=z_{0}
$$

for some $\bar{x} \neq x_{0}$, which contradicts to the strict monotonicity of $M\left(\cdot, y_{0}\right)$ in $\left[x_{0}, y\right]$. Now, making use of the M-affinity of φ, the continuity of M, and the continuity of φ at x_{0}, we get

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \varphi\left(z_{n}\right) & =\lim _{k \rightarrow \infty} \varphi\left(M\left(x_{n}, y_{0}\right)\right)=\lim _{k \rightarrow \infty} M\left(\varphi\left(x_{n}\right), \varphi\left(y_{0}\right)\right) \\
& =M\left(\varphi\left(x_{0}\right), \varphi\left(y_{0}\right)\right)=\varphi\left(M\left(x_{0}, y_{0}\right)\right)=\varphi\left(z_{0}\right)
\end{aligned}
$$

which proves that φ is right-continuous at z_{0}. Assuming that $y<M\left(x_{0}, y\right)<$ x_{0} in the same way we can show that φ is left-continuous at z_{0}. Thus we have shown that φ is continuous in a neighborhood of the point x_{0}. (The argument used in the proof of the continuity is similar to that applied in [10].)

Let (a, b) denote the maximal open interval of the continuity of φ such that $x_{0} \in(a, b)$. Suppose that $b<\infty$. Since M is strictly increasing in a neighborhood of (b, b), choosing z_{0} sufficiently close to b, and the numbers $x_{0}, y_{0}, x_{0}<b \leq z_{0}<y_{0}$, we can argue as in the previous step to show that φ is continuous in a right neighborhood of b. This contradicts the definition of b and proves that $b=\infty$. A similar argument shows that $a=0$. Thus φ is continuous on $(0, \infty)$ is completed.

Since the constant and linear functions are M-affine, Lemma 1 implies that φ is strictly monotonic and there is no interval $I \subset(0, \infty)$ such that $\left.\varphi\right|_{I}$ is constant or linear. Moreover equation (1) can be written in the form

$$
\begin{equation*}
\varphi\left(y h\left(\frac{x}{y}\right)\right)=\varphi(y) h\left(\frac{\varphi(x)}{\varphi(y)}\right), x, y>0 \tag{3}
\end{equation*}
$$

The function φ, being monotonic, is differentiable almost everywhere. Let $x>$ 0 be a differentiability point of φ. Relation (3) and the assumed differentiability
of h imply that, for arbitrarily fixed $y>0$, the function φ is differentiable at a point $y h\left(\frac{x}{y}\right)$. Consequently, φ is differentiable everywhere.

Differentiation of both sides with respect to x and y gives, respectively,

$$
\begin{equation*}
\varphi^{\prime}\left(y h\left(\frac{x}{y}\right)\right) h^{\prime}\left(\frac{x}{y}\right)=\varphi^{\prime}(x) h^{\prime}\left(\frac{\varphi(x)}{\varphi(y)}\right), x, y>0 \tag{4}
\end{equation*}
$$

and

$$
\begin{align*}
& \varphi^{\prime}\left(y h\left(\frac{x}{y}\right)\right)\left[h\left(\frac{x}{y}\right)-h^{\prime}\left(\frac{x}{y}\right) \frac{x}{y}\right] \\
& =\varphi^{\prime}(y) h\left(\frac{\varphi(x)}{\varphi(y)}\right)-h^{\prime}\left(\frac{\varphi(x)}{\varphi(y)}\right) \frac{\varphi(x) \varphi^{\prime}(y)}{\varphi(y)}, x, y>0 \tag{5}
\end{align*}
$$

(Note that the continuity of the right-hand side of (4) with respect to y implies the continuity of $\varphi^{\prime}\left(y h\left(\frac{x}{y}\right)\right)$ with respect to y and, consequently, the continuity of φ^{\prime}.) Suppose that $\varphi^{\prime}\left(x_{0}\right)=0$ for some $x_{0}>0$. Since h^{\prime} is continuous at 1 and $h^{\prime}(1) \neq 0$, relation (4) implies that $\varphi^{\prime}\left(y h\left(\frac{x_{0}}{y}\right)\right)=0$ for all y from a neighborhood of the point x_{0}. Moreover, the function $y \rightarrow y h\left(\frac{x_{0}}{y}\right)$ maps every interval neighborhood of x_{0} on a nontrivial interval. In fact, in the opposite case, this function would be constant on some neighborhood of x_{0}; i.e., $h\left(\frac{x_{0}}{y}\right)=\frac{c}{y}$. Since $h(1)=1$, we infer that $c=x_{0}$ and $h(t)=t$ in a neighborhood of the point 1 . Consequently, $M(x, y)=x$ in a neighborhood of the point $\left(x_{0}, x_{0}\right)$. This is a contradiction because M is a strict mean. Hence $\varphi^{\prime}(x)=0$ in a neighborhood of x_{0}, and φ would be constant in this neighborhood. By Lemma 1, φ would be constant on $(0, \infty)$. This contradicts the assumption that φ is nontrivial. Thus we have shown that $\varphi^{\prime} \neq 0$ in $(0, \infty)$.

Let $(\alpha, \beta) \subset(0, \infty)$ be the maximal interval such that $1 \in(\alpha, \beta)$ and $h^{\prime}(t) \neq 0$ for all $t \in(\alpha, \beta)$. Take arbitrary $t \in(\alpha, \beta)$ and $x, y>0$ such that $\frac{x}{y}=t$. Since $\varphi^{\prime} \neq 0$, from (4) we infer that $\frac{\varphi(x)}{\varphi(y)} \in(\alpha, \beta)$. Now from (5) and (4) we obtain

$$
\frac{h\left(\frac{x}{y}\right)-h^{\prime}\left(\frac{x}{y}\right) \frac{x}{y}}{h^{\prime}\left(\frac{x}{y}\right)}=\frac{\varphi^{\prime}(y)}{\varphi^{\prime}(x)}\left(\frac{h\left(\frac{\varphi(x)}{\varphi(y)}\right)}{h^{\prime}\left(\frac{\varphi(x)}{\varphi(y)}\right)}-\frac{\varphi(x)}{\varphi(y)}\right)
$$

i.e.,

$$
\begin{equation*}
\frac{h(t)}{h^{\prime}(t)}-t=\frac{\varphi^{\prime}(y)}{\varphi^{\prime}(t y)}\left(\frac{h\left(\frac{\varphi(t y)}{\varphi(y)}\right)}{h^{\prime}\left(\frac{\varphi(t y)}{\varphi(y)}\right)}-\frac{\varphi(t y)}{\varphi(y)}\right), t \in(\alpha, \beta) ; y>0 \tag{6}
\end{equation*}
$$

Setting $H(t):=\frac{h(t)}{h^{\prime}(t)}-t, t \in(\alpha, \beta)$, we get

$$
\begin{equation*}
H(t)=\frac{\varphi^{\prime}(y)}{\varphi^{\prime}(t y)} H\left(\frac{\varphi(t y)}{\varphi(y)}\right), t \in(\alpha, \beta) ; y>0 \tag{7}
\end{equation*}
$$

and, of course, H is differentiable in (α, β). Suppose that there is a $t_{0} \in(\alpha, \beta)$, $t_{0} \neq 1$, such that $H\left(t_{0}\right)=0$. Then we would have $H\left(\frac{\varphi\left(t_{0} y\right)}{\varphi(y)}\right)=0$ for all $y>0$. Hence either $H(t)=0$ in a neighborhood of t_{0} or $\frac{\varphi\left(t_{0} y\right)}{\varphi(y)}=t_{0}$ for all $y>0$. The first case cannot occur because, by the definition of H, we would have $h(t)=c t$ in a neighborhood of t_{0}, and, consequently, by (2), $M(x, y)=y h\left(\frac{x}{y}\right)=k x$ for some $k>0$ and for all $x, y>0$ such that $\frac{x}{y}$ belongs to the neighborhood of t_{0}. Since M is a strict mean, we have k <1. Hence, by (1), $\varphi(k x)=\varphi(M(x, y))=M(\varphi(x), \varphi(y))=k \varphi(x)$; that is, $\frac{\varphi(k x)}{k x}=\frac{\varphi(x)}{x}$ for all $x>0$. Thus φ coincides with a linear function at the points x and $k x$. By Lemma 1, the function φ must be linear, which is the desired contradiction. In the second case we would have $\frac{\varphi\left(t_{0} y\right)}{t_{0} y}=\frac{\varphi(t y)}{y}$ for all $y>0$, and again, φ would be a linear function. Thus we have shown that $H(t) \neq 0$ for all $t \in(\alpha, \beta), t \neq 1$.

Setting $y=1$ here we get $\varphi^{\prime}(t)=\varphi^{\prime}(1) \frac{H(\varphi(t))}{H(t)}, t \in(\alpha, \beta), t \neq 1$. Whence, the differentiability of H implies that φ is twice differentiable in $(\alpha, \beta) \backslash\{1\}$. Taking (7) into account, we infer that φ is twice differentiable in $(0, \infty)$. Differentiating both sides of (7) with respect to $t \in(\alpha, \beta)$ we obtain

$$
H^{\prime}(t)=-\frac{\varphi^{\prime}(y) \varphi^{\prime \prime}(t y) y}{\left[\varphi^{\prime}(t y)\right]^{2}} H\left(\frac{\varphi(t y)}{\varphi(y)}\right)+\frac{\varphi^{\prime}(y) y}{\varphi(y)} H^{\prime}\left(\frac{\varphi(t y)}{\varphi(y)}\right)
$$

for all $t \in(\alpha, \beta) ; y>0$. Taking $t:=1$ here and replacing y by x, we get

$$
\begin{equation*}
H(1) x \frac{\varphi^{\prime \prime}(x)}{\varphi^{\prime}(x)}-H^{\prime}(1) x \frac{\varphi^{\prime}(x)}{\varphi(x)}+H^{\prime}(1)=0, x>0 \tag{8}
\end{equation*}
$$

Note that $H(1) \neq 0$ as, in the opposite case, we would get

$$
H^{\prime}(1) x \frac{\varphi^{\prime}(x)}{\varphi(x)}-H^{\prime}(1)=0, x>0
$$

Since $h(1)=1$ and, by assumption, $h^{\prime}(1) \neq 1$, we have

$$
H^{\prime}(1)=\frac{h(t)}{h^{\prime}(t)}-t=\frac{1}{h^{\prime}(1)}-1 \neq 0
$$

Hence $x \frac{\varphi^{\prime}(x)}{\varphi(x)}-1=0, x>0$, and, consequently, there would exist a $c>0$ such that $\varphi(x)=c x, x>0$, which is a contradiction.

Putting $p:=1-\frac{H^{\prime}(1)}{H(1)}$, we can write equation (8) in the following equivalent form

$$
\frac{\varphi^{\prime \prime}(x)}{\varphi^{\prime}(x)}-(1-p) \frac{\varphi^{\prime}(x)}{\varphi(x)}+\frac{1-p}{x}=0, x>0
$$

For $p=1$ the only functions satisfying this differential equations are linear. Solving this differential equation for $p \neq 1$ we obtain

1. if $0 \neq p \neq 1$, then, for some $a, b \in \mathbb{R}, a>0, b>0$,

$$
\begin{equation*}
\varphi(x)=\left(a x^{p}+b\right)^{1 / p}, x>0 \tag{9}
\end{equation*}
$$

2. if $p=0$, then, for some $a, b \in \mathbb{R}, 0 \neq a \neq 1, b \neq 0$,

$$
\begin{equation*}
\varphi(x)=b x^{a}, x>0 \tag{10}
\end{equation*}
$$

(we have excluded here the constant and linear functions).
Now we shall find the form of the mean M in each of these two cases. In the first case, when $0 \neq p \neq 1$, from (3) we have

$$
\left(a\left[y h\left(\frac{x}{y}\right)\right]^{p}+b\right)^{1 / p}=\left(a y^{p}+b\right)^{1 / p} h\left(\frac{\left(a x^{p}+b\right)^{1 / p}}{\left(a y^{p}+b\right)^{1 / p}}\right), x, y>0
$$

Replacing $a^{1 / p} x$ and $a^{1 / p} y$, here respectively by x and y we obtain

$$
\left(\left[y h\left(\frac{x}{y}\right)\right]^{p}+b\right)^{1 / p}=\left(y^{p}+b\right)^{1 / p} h\left(\left(\frac{x^{p}+b}{y^{p}+b}\right)^{1 / p}\right), x, y>0
$$

Multiplying both sides by an arbitrary $c>0$ (cf. Remark 2, part 4) we get, for all $x, y>0$,

$$
\left(\left[c y h\left(\frac{c x}{c y}\right)\right]^{p}+c^{p} b\right)^{1 / p}=\left((c y)^{p}+c^{p} b\right)^{1 / p} h\left(\left(\frac{(c x)^{p}+c^{p} b}{(c y)^{p}+c^{p} b}\right)^{1 / p}\right)
$$

Replacing $c x, c y, c^{p} b$, here respectively, by x, y and r, we obtain

$$
\left[y h\left(\frac{x}{y}\right)\right]^{p}+r=\left(y^{p}+r\right)\left[h\left(\left(\frac{x^{p}+r}{y^{p}+r}\right)^{1 / p}\right)\right]^{p} \text { for all } r, x, y>0
$$

Hence, for all $r, x, y>0$,

$$
[M(x, y)]^{p}=\left[y h\left(\frac{x}{y}\right)\right]^{p}=\left(y^{p}+r\right)\left[h\left(\left(\frac{x^{p}+r}{y^{p}+r}\right)^{1 / p}\right)\right]^{p}-r
$$

Taking into account that the right hand side does not depend on $r>0$, and the relation $h(1)=1$, we obtain, for all $x, y>0$,

$$
\begin{aligned}
{[M(x, y)]^{p} } & =\lim _{r \rightarrow \infty}\left\{\left(y^{p}+r\right)\left[h\left(\left(\frac{x^{p}+r}{y^{p}+r}\right)^{1 / p}\right)\right]^{p}-r\right\} \\
& =y^{p} \lim _{r \rightarrow \infty} h\left(\left(\frac{x^{p}+r}{y^{p}+r}\right)^{1 / p}\right)^{p}+\lim _{r \rightarrow \infty} \frac{\left[h\left(\left(\frac{x^{p}+r}{y^{p}+r}\right)^{1 / p}\right)\right]^{p}-1}{\frac{1}{r}} \\
& =h(1) y^{p}+\lim _{r \rightarrow \infty} \frac{\left(\frac{x^{p}+r}{y^{p}+r}\right)^{1 / p}-1}{\frac{1}{r}} \frac{\left[h\left(\left(\frac{x^{p}+r}{y^{p}+r}\right)^{1 / p}\right)\right]^{p}-\left[h\left(1^{1 / p}\right)\right]^{p}}{\left(\frac{x^{p}+r}{y^{p}+r}\right)^{1 / p}-1} \\
& =y^{p}-h^{\prime}(1)\left(y^{p}-x^{p}\right) .
\end{aligned}
$$

Consequently, $M(x, y)=\left(w x^{p}+(1-w) y^{p}\right)^{1 / p}, x, y>0$, where $w:=h^{\prime}(1)$. Since $w \in(0,1), M$ is a weighted power mean.

Now consider the second case when $p=0$. From (3) we have

$$
b\left[y h\left(\frac{x}{y}\right)\right]^{a}=b y^{a} h\left(\frac{b x^{a}}{b y^{a}}\right), x, y>0
$$

Putting $t:=\frac{x}{y}$ for $x, y>0$, we obtain the functional equation

$$
[h(t)]^{a}=h\left(t^{a}\right), t>0
$$

Define $F: \mathbb{R} \rightarrow \mathbb{R}$ by $F:=\log \circ h \circ \exp$. Then $F(0)=0, F$ is differentiable at 0 , $F(0)=h^{\prime}(1)$, and F satisfies the functional equation $F(a u)=a F(u), u \in \mathbb{R}$. Since this equation is equivalent to $a^{-1} F(u)=F\left(a^{-1} u\right),(u \in \mathbb{R})$, we can assume, without loss of generality, that $|a|<1$. Hence, by induction, $F\left(a^{n} u\right)=$ $a^{n} F(u)$ for all $u \in \mathbb{R}$ and $n \in \mathbb{N}$. Thus $F(u)=\frac{F\left(a^{n} u\right)}{a^{n} u} u, u \in \mathbb{R}, n \in \mathbb{N}$. Letting $n \rightarrow \infty$ we get $F(u)=F^{\prime}(0) u, u \in \mathbb{R}$, and, consequently, $h(t)=t^{w}, t>0$. Of course we have $0<w<1$. Thus in this case $M(x, y)=x^{w} y^{1-w}, x, y>0$, where $w:=h^{\prime}(1)$ which proves that M is a weighted geometric mean.
Remark 4. Note that in the case $p \neq 0$ every function φ of the form (9) with positive a and b is M-affine, and in the case $p=0$, every function of the form (10) with positive a and b is M-affine.

Remark 5. Let $M:(0, \infty)^{2} \rightarrow(0, \infty)$ be a homogeneous mean and let h, h^{\star} : $(0, \infty) \rightarrow(0, \infty)$ be defined by $h(x):=M(x, 1), h^{\star}(x):=M(1, x), x>0$. Then $h^{\star}(x)=x h\left(\frac{1}{x}\right), x>0$. If moreover h is differentiable at the point 1 and $h^{\prime}(1)=0$, then $\left(h^{\star}\right)^{\prime}(1)=1$ and vice versa.

To show that the assumption $0 \neq h^{\prime}(1) \neq 1$ is essential consider the following.

Remark 6. Let $M:(0, \infty)^{2} \rightarrow(0, \infty)$ be a homogeneous mean. Suppose that $h:(0, \infty) \rightarrow(0, \infty)$ defined by $h(x):=M(x, 1), x>0$, is twice differentiable (in a neighborhood of 1) and $h^{\prime}(1)=0, \quad h^{\prime \prime}(1) \neq 0$. If $\varphi:(0, \infty) \rightarrow(0, \infty)$ is a twice differentiable M-affine function, then either φ is linear or constant. The same remains true if twice differentiability is replaced by nth differentiability and $h^{\prime}(1)=h^{\prime \prime}(1)=\ldots=h^{(n-1)}(1)=0, h^{(n)}(1) \neq 0$.

Proof. Differentiating twice both sides of (3) with respect to x we obtain

$$
\begin{aligned}
& \varphi^{\prime \prime}\left(y h\left(\frac{x}{y}\right)\right)\left[h^{\prime}\left(\frac{x}{y}\right)\right]^{2}+\frac{2}{y} \varphi^{\prime}\left(y h\left(\frac{x}{y}\right)\right) h^{\prime \prime}\left(\frac{x}{y}\right) \\
& =h^{\prime \prime}\left(\frac{\varphi(x)}{\varphi(y)}\right) \frac{\left[\varphi^{\prime}(x)\right]^{2}}{\varphi(y)}+h^{\prime}\left(\frac{\varphi(x)}{\varphi(y)}\right) \varphi^{\prime \prime}(x)
\end{aligned}
$$

Taking here $y:=x$ and making use of the assumptions $h^{\prime}(1)=0, h^{\prime \prime}(1) \neq 0$, we get $h^{\prime \prime}(1) \varphi^{\prime}(x)\left(\frac{\left[\varphi^{\prime}(x)\right]}{\varphi(x)}-\frac{1}{x}\right)=0$. If φ is not constant, then $\frac{\left[\varphi^{\prime}(x)\right]}{\varphi(x)}=\frac{1}{x}$, and, consequently, φ is linear. The same argument works in the case $n \geq 3$ as after n times differentiation of both sides of (3) and the substitution $y:=x$ only two summands do not disappear and we again get the above differential equation.

As a consequence of Theorem 1 we obtain the following.
Corollary 1. Let $M:(0, \infty)^{2} \rightarrow(0, \infty)$ be a strict, symmetric, and homogeneous mean. Suppose that the function $h:(0, \infty) \rightarrow(0, \infty)$ defined by $h(x):=M(x, 1), x>0$, is twice differentiable. If there exists an M-affine function, continuous at a point which is neither constant nor linear, then there is a $p \in \mathbb{R}$ such that

$$
M(x, y)= \begin{cases}\left(\frac{x^{p}+y^{p}}{2}\right)^{1 / p} & \text { for } p \neq 0 \\ \sqrt{x y} & \text { for } p=0\end{cases}
$$

4 A Generalization Involving M-Convex Functions

Theorem 2. Let $M:(0, \infty)^{2} \rightarrow(0, \infty)$ be a strict continuous mean. Suppose that:

1. there are $a, b>0, a<1<b, \frac{\log b}{\log a} \notin \mathbb{Q}$, such that the linear functions $(0, \infty) \ni x \rightarrow a x,(0, \infty) \ni x \rightarrow b x$ are both M-convex (or both M concave),
2. the function $h(x):=M(x, 1), x>0$, is twice differentiable, and $0 \neq$ $h^{\prime}(1) \neq 1$.
If there exists an M-affine function, continuous at least at one point, which is neither constant nor linear, then there is a $p \in \mathbb{R}$ such that

$$
M(x, y)=\left\{\begin{array}{ll}
\left(w x^{p}+(1-w) y^{p}\right)^{1 / p} & \text { for } p \neq 0 \\
x^{w} y^{1-w} & \text { for } p=0
\end{array}, x, y>0\right.
$$

where $w:=h^{\prime}(1)$.
Proof. The assumed convexity of the functions $(0, \infty) \ni x \rightarrow a x$ and $(0, \infty) \ni$ $x \rightarrow b x$ implies that

$$
a M(x, y) \leq M(a x, a y), b M(x, y) \leq M(b x, b y), x, y>0
$$

Hence, by induction, for all $n, m \in \mathbb{N}$ and $x, y>0$,

$$
a^{m} M(x, y) \leq M\left(a^{m} x, a^{m} y\right) ; b^{n} M(x, y) \leq M\left(b^{n} x, b^{n} y\right)
$$

whence

$$
a^{m} b^{n} M(x, y) \leq M\left(a^{m} b^{n} x, a^{m} b^{n} y\right) ; m, n, \in \mathbb{N}, x, y>0
$$

The assumptions on a and b imply that the set $\left\{a^{m} b^{n}: m, n, \in \mathbb{N}\right\}$ is dense in $(0, \infty)$. The continuity of M implies that $t M(x, y) \leq M(t x, t y) ; t, x, y>0$, which, obviously yields the homogeneity of M. Now our theorem follows from Theorem 1.

5 Non-Homogeneous Means - A Characterization of Weighted Quasi-Arithmetic Means

By Remark 3, if $g: J \rightarrow J$ is M-affine, then, for every $n \in \mathbb{N}$, its nth iterate g^{n} is M-affine If, moreover, g is invertible, then the inverse g^{-1} is M-affine on $g(J)$, and the family of iterates $\left\{g^{k}: k \in \mathbb{Z}\right\}$ is a group consisting of M-affine functions.

We begin with recalling the following.

Definition 2. Let $J \subset \mathbb{R}$ be an interval. A one-parameter family $\left\{g^{u}: u \in \mathbb{R}\right\}$ of continuous functions $g^{u}: J \rightarrow J$ such that $g^{u} \circ g^{v}=g^{u+v}, u, v \in \mathbb{R}$; $g^{0}=\left.i d\right|_{J}$ is said to be an iteration group (cf. M. Kuczma [8], p.197-198). If for every $x \in J$ the function $(-\infty, \infty) \ni u \rightarrow g^{u}(x)$ is continuous or measurable, the iteration group is called, respectively, continuous or measurable.
Remark 7. Suppose that $\left\{g^{u}: u \in \mathbb{R}\right\}$ is an iteration group in an interval J. Then the function $F: J \times \mathbb{R} \rightarrow J, F(x, u):=g^{u}(x)$, satisfies the translation equation $F(F(x, u), v)=F(x, u+v), x \in J, u, v \in \mathbb{R}$. If J is open and $\left\{g^{t}: t \in \mathbb{R}\right\}$ is a continuous iteration group, then (J. Aczél, [2], p. 248), there is a surjective homeomorphic function $\gamma: J \rightarrow \mathbb{R}$, determined uniquely up to an additive constant (cf. [2], p. 246), such that $F(x, u)=\gamma^{-1}(\gamma(x)+u)$, $x \in J, u \in \mathbb{R}$ and, consequently, $g^{u}(x)=\gamma^{-1}(\gamma(x)+u), x \in J, u \in \mathbb{R}$. Setting $\alpha:=\exp \circ \gamma$ we can write this iteration group in the form $g^{u}(x)=\alpha^{-1}\left(e^{u} \alpha(x)\right)$, $x \in J ; u \in \mathbb{R}$, where $\alpha: J \rightarrow(0, \infty)$ is a surjective homeomorphism determined uniquely up to a multiplicative positive constant. The function α is referred to as a generator of the iteration group. Note that the family $\left\{f^{t}: t>0\right\}$ defined by $f^{t}:=g^{\log t}, t>0$, is a "multiplicative" iteration group; that is, $f^{s} \circ f^{t}=f^{s t}, s, t>0$, and

$$
\begin{equation*}
f^{t}(x)=\alpha^{-1}(t \alpha(x)), t>0, x \in J \tag{11}
\end{equation*}
$$

In the sequel it is convenient to write the iteration groups in their multiplicative forms.

Let us mention that M. C. Zdun [14] proved that every measurable iteration group is continuous.

A motivation for the present section is the following obvious comment.
Remark 8. The family $\left\{f^{t}: t>0\right\}$ of linear functions $f^{t}:(0, \infty) \rightarrow(0, \infty)$, $f^{t}(x):=t x, x>0$ is a continuous (multiplicative) iteration group. Moreover, a mean $M:(0, \infty)^{2} \rightarrow(0, \infty)$ is homogeneous if, and only if, every function of this family is M-affine.

Now we prove this assertion.
Theorem 3. Let $J \subset \mathbb{R}$ be an open interval and $M: J^{2} \rightarrow J$ a strict mean. Suppose that there exists a continuous iteration group $\left\{f^{t}: t>0\right\}$ of the form (11) which consists of M-affine functions. Furthermore, suppose that $h:(0, \infty) \rightarrow(0, \infty)$ defined by $h(u):=\alpha\left(M\left(\alpha^{-1}(u), 1\right), u>0\right.$ is twice differentiable, and $0 \neq h^{\prime}(1) \neq 1$. If there exists an M-affine function, continuous at a point, that is neither constant nor an element of the iteration group $\left\{f^{t}: t>0\right\}$, then

$$
M(x, y)=\beta^{-1}(w \beta(x)+(1-w) \beta(y)), x, y \in J
$$

for some continuous and strictly monotonic function $\beta: J \rightarrow(0, \infty)$ and $w=h^{\prime}(1)$; that is, M is a weighted quasi-arithmetic mean.

Proof. By assumption each function of the iteration group $\left\{f^{t}: t>0\right\}$ is M-affine; i.e., $f^{t}(M(x, y))=M\left(f^{t}(x), f^{t}(y)\right), t>0, x, y \in J$. There exists (cf. Remark 7) a surjective homeomorphism $\alpha: J \rightarrow(0, \infty)$ such that $f^{t}(x)=$ $\alpha^{-1}(t \alpha(x)), t>0, x \in J$. Hence

$$
\alpha^{-1}(t \alpha(M(x, y)))=M\left(\alpha^{-1}(t \alpha(x)), \alpha^{-1}(t \alpha(y))\right), t>0, x, y \in J
$$

Take arbitrary $u, v>0$. There are $x, y \in J$ such that $x=\alpha^{-1}(u)$ and $y=$ $\alpha^{-1}(v)$. Setting these numbers into the above formula, we obtain

$$
\alpha\left(M\left(\alpha^{-1}(t u), \alpha^{-1}(t v)\right)\right)=\operatorname{t\alpha }\left(M\left(\alpha^{-1}(u), M\left(\alpha^{-1}(v)\right)\right), t, u, v>0\right.
$$

which shows that the function $K:(0, \infty)^{2} \rightarrow(0, \infty)$ defined by $K(u, v):=$ $\alpha\left(M\left(\alpha^{-1}(u), \alpha^{-1}(v)\right)\right), u, v>0$, is homogeneous. It is also obvious that K is a strict mean. By Theorem $1, K$ is a weighted power mean with a power $p \in \mathbb{R}$ and the weight $w=h^{\prime}(1)$. Whence

$$
M(x, y)=\left\{\begin{array}{ll}
\alpha^{-1}\left[\left(w[\alpha(x)]^{p}+(1-w)[\alpha(y)]^{p}\right)^{1 / p}\right] & \text { for } p \neq 0 \\
\alpha^{-1}\left[\alpha(x)^{w} \alpha(y)^{1-w}\right] & \text { for } p=0
\end{array}, x, y \in J\right.
$$

To complete the proof it is enough to take $\beta(x):=\alpha(x)^{p}, x \in J$, in the case $p \neq 0$, and $\beta:=\ln \circ \alpha$ in the case $p=0$.

Remark 9. If M is a weighted quasi-arithmetic mean with generator β, then the family $\left\{\beta^{-1} \circ t \circ \beta: t>0\right\}$ is an iteration group and every function of this family is M-affine.

The following counterpart of Theorem 2 for non-homogeneous means is a characterization of the weighted quasi-arithmetic means.

Theorem 4. Let $J \subset \mathbb{R}$ be an open interval and $M: J^{2} \rightarrow J$ a strict continuous mean. Suppose that there is a homeomorphism $\alpha: J \rightarrow(0, \infty)$ such that

1. for some $a, b>0, a<1<b$, the number $\frac{\log b}{\log a}$ is irrational and the functions $\alpha^{-1} \circ(a \alpha)$ and $\alpha^{-1} \circ(b \alpha)$ are both M-convex (or both $M-$ concave);
2. the function $h:(0, \infty) \rightarrow(0, \infty)$ defined by $h(x):=\alpha\left(M\left(\alpha^{-1}(x), 1\right)\right), x>$ 0 , is twice differentiable and $0 \neq h^{\prime}(1) \neq 1$.

If there exists an M-affine function, continuous at a point which is neither constant nor of the form $\alpha^{-1} \circ(t \alpha)$ for a $t>0$, then

$$
M(x, y)=\beta^{-1}(w \beta(x)+(1-w) \beta(y)), \quad x, y \in J
$$

for some continuous and strictly monotonic function $\beta: J \rightarrow(0, \infty)$ and $w=h^{\prime}(1)$; that is, M is a weighted quasi-arithmetic mean.

Proof. By the M-convexity of the functions $\alpha^{-1} \circ(a \alpha)$ and $\alpha^{-1} \circ(b \alpha)$ we have

$$
\alpha^{-1}(a \alpha(M(x, y))) \leq M\left(\alpha ^ { - 1 } \left(a\left(\alpha^{-1}(x)\right), \alpha^{-1}\left(a\left(\alpha^{-1}(y)\right)\right)\right.\right.
$$

and

$$
\alpha^{-1}(b \alpha(M(x, y))) \leq M\left(\alpha ^ { - 1 } \left(b\left(\alpha^{-1}(x)\right), \alpha^{-1}\left(b\left(\alpha^{-1}(y)\right)\right)\right.\right.
$$

for all $x, y>0$. Hence, taking into account that $\alpha^{-1} \circ(a \alpha)$ and $\alpha^{-1} \circ(b \alpha)$ are increasing, by induction, we obtain, for all $m \in \mathbb{N}$ and $x, y>0$,

$$
\alpha^{-1}\left(a^{m} \alpha(M(x, y))\right) \leq M\left(\alpha ^ { - 1 } \left(a^{m}\left(\alpha^{-1}(x)\right), \alpha^{-1}\left(a^{m}\left(\alpha^{-1}(y)\right)\right)\right.\right.
$$

and for all $n \in \mathbb{N}$ and $x, y>0$,

$$
\alpha^{-1}\left(b^{n} \alpha(M(x, y))\right) \leq M\left(\alpha ^ { - 1 } \left(b^{n}\left(\alpha^{-1}(x)\right), \alpha^{-1}\left(b^{n}\left(\alpha^{-1}(y)\right)\right) .\right.\right.
$$

From these two inequalities we get, for all $m, n \in \mathbb{N}$ and $x, y>0$,

$$
\alpha^{-1}\left(a^{m} b^{n} \alpha(M(x, y))\right) \leq M\left(\alpha ^ { - 1 } \left(a^{m} b^{n}\left(\alpha^{-1}(x)\right), \alpha^{-1}\left(a^{m} b^{n}\left(\alpha^{-1}(y)\right)\right)\right.\right.
$$

Now the density of the set $\left\{a^{m} b^{n}: m, n, \in \mathbb{N}\right\}$ in $(0, \infty)$ and the continuity of M imply that, for all $t, x, y>0$,

$$
\alpha^{-1}(t \alpha(M(x, y))) \leq M\left(\alpha ^ { - 1 } \left(t\left(\alpha^{-1}(x)\right), \alpha^{-1}\left(t\left(\alpha^{-1}(y)\right)\right)\right.\right.
$$

that is, for every $t>0$ the function $\alpha^{-1} \circ(t \alpha)$ is M-convex. Since, for every $t>0$, the function $\alpha^{-1} \circ(t \alpha)$ is increasing, its inverse, $\alpha^{-1} \circ\left(t^{-1} \alpha\right)$ is M concave (cf. Remark 3). It follows that $\alpha^{-1} \circ(t \alpha)$ is M-affine for every $t>0$. Since the family $\left\{f^{t}: t>0\right\}$ with $f^{t}:=\alpha^{-1} \circ(t \alpha)$ is an iteration group, our result follows from Theorem 3.

6 Some Conclusions for M-Convex and " M-Affinely Convex" Functions

Let us introduce the following notion.

Definition 3. Let $J \subset \mathbb{R}$ and $I \subset J$ be intervals and $M: J^{2} \rightarrow J$ a mean. A function $f: I \rightarrow J$ is said to be M-affinely convex if for every $x_{0} \in I$ there is an M-affine function $\varphi: J \rightarrow J$ such that $f\left(x_{0}\right)=\varphi\left(x_{0}\right)$ and $\varphi(x) \leq$ $f(x)$ for all $x \in I$.

For a function $f: I \rightarrow J$ denote by $E(f)$ the epigraph of f; i.e., the set $E(f):=\{(x, y) \in I \times \mathbb{R}: f(x) \leq y\}$.

Remark 10. A function $f: I \rightarrow J$ is M-affinely convex if, and only if, there is a family Φ of M-affine functions $\varphi: I \rightarrow J$ such that $E(f)=$ $\bigcap\{E(\varphi): \varphi \in \Phi\}$.

Theorem 5. Suppose that $M: J^{2} \rightarrow J$ is a mean in an interval J which is increasing with respect to each variable. Then every M-affinely convex function is M-convex.

Proof. Let $I \subset J$ be an interval and suppose that $f: I \rightarrow J$ is M-affinely convex. Take $x, y \in I$. By Definition 3 there is an M-affine function φ : $J \rightarrow J$ such that $f(M(x, y))=\varphi(M(x, y))$ and $\varphi(u) \leq f(u)$ for all $u \in I$. Hence, by the M-affinity of φ and the increasing monotonicity of M, we have $f(M(x, y))=\varphi(M(x, y))=M(\varphi(x), \varphi(y)) \leq M(f(x), f(y))$.

Remark 11. Given a continuous and strictly monotonic function $\beta: J \rightarrow \mathbb{R}$ and $w \in(0,1)$, denote by $M_{\beta}: J^{2} \rightarrow J$ the quasi-arithmetic mean

$$
M_{\beta}(x, y)=\beta^{-1}(w \beta(x)+(1-w) \beta(y)), x, y \in J
$$

Suppose that a function $f: I \rightarrow J$ is measurable (or the closure of the graph of f does not have interior points). Then, obviously,

1. if β is increasing, then f is M_{β}-convex iff the function $\beta \circ f \circ \beta^{-1}$ is convex,
2. if β is decreasing, then f is M_{β}-convex iff the function $\beta \circ f \circ \beta^{-1}$ is concave.

Now it is easy to see that

- f is M_{β}-convex iff it is M_{β}-affinely convex.

We obtain the following an immediate consequence of Theorem 1.
Proposition 1. Let $M:(0, \infty)^{2} \rightarrow(0, \infty)$ be a strict homogeneous non power mean. If $h:=M(\cdot, 1)$ is twice continuously differentiable and $0 \neq h^{\prime}(1) \neq 1$, then the following conditions are equivalent:

1. a function $f:(0, \infty) \rightarrow(0, \infty)$ is M-affinely convex.
2. f is either constant or linear or $f(x)=\max (a, c x), x \in(0, \infty)$, for some $a, c>0$.

Example 1. The logarithmic mean $L:(0, \infty)^{2} \rightarrow(0, \infty)$,

$$
L(x, y):= \begin{cases}\frac{x-y}{\log x-\log y} & \text { for } x \neq y \\ x & \text { for } x=y\end{cases}
$$

is homogeneous and non-power. By Theorem 1 (cf. also [11]), every continuous at a point L-affine function is either constant or linear. Since the function $\left.\exp \right|_{(0, \infty)}$ is L-convex (cf. 10]), taking into account the above Proposition, we infer that the notions of L-convexity and L-affine convexity are not equivalent.

7 Open Problems and Final Remarks

In Theorems 1-4 we assume twice differentiability of the mean. It is an open question wether these results remain true under weaker regularity conditions. Let us mention that in a recent paper [3], J. Aczél, R. Duncan Luce motivated by some problems in utility theory and psychophysics, considered the functional equation $H(K(s, t))=L(H(s), H(t)), s \geq t \geq 1$, where K and L are homogeneous functions, which is more general than (1). Assuming that H is twice differentiable and strictly increasing, and the functions K and L are twice differentiable, the authors determine the forms of H and K. According to a personal communication, this functional equation will be also considered in [4].

Acknowledgement 1. I am greatly indebted to the referee for several valuable comments, in particular for a simplification of some calculations in the proof of Theorem 1 .

References

[1] J. Aczél, A generalization of the notion of convex functions, Norske Vid. Selsk. Forhdl., 19 Nr. 24 (1947), 87-90.
[2] J. Aczél, Lectures on functional equations and their applications, New York, London, 1966.
[3] J. Aczél, R. Duncan Luce, Two functional equations preserving functional forms, Proc. Nat. Acad. Sci. USA, 99 (2002), 5212-5216.
[4] J. Aczél and A. Lundberg, Isomorphic pairs of homogeneous functions and their morphisms (in preparation).
[5] G. Aumann, Konvexe Funktionen und Induktion bei Ungleichungen zwischen Mittelverten, S.-B. math.-naturw. Abt. Bayer. Akad. Wiss. München, (1933), 405-413.
[6] D. Gronau, J. Matkowski, Geometrical convexity and generalization of the Bohr-Mollerup theorem on the Gamma function, Math. Pannonica, 4/2 (1993), 153-160.
[7] D. Gronau and J. Matkowski, Geometrically convex solutions of certain difference equation and generalized Bohr-Mollerup type theorems, Results in Math., 26 (1994), 290-297.
[8] M. Kuczma, Functional equations in a single variable, Monografie Mat 46 Polish Scientific Publishers, Warsaw, 1968
[9] J. Matkowski, L ${ }^{p}$-like paranorms, in Selected Topics in Functional Equations and Iteration Theory, Proceedings of the Austrian-Polish Seminar, Universität Graz, October 24-26, 1991, edited by D. Gronau and L. Reich, Grazer Math. Ber., 316 (1992), 103-139.
[10] J. Matkowski, Continuous solutions of a functional equation, Publicationes Math. Debrecen, 52 (1998), 559-562.
[11] J. Matkowski, Affine functions with respect to the logarithmic mean, Colloq. Math., 95 (2003), 217-230.
[12] J. Matkowski, J. Rätz, Convexity of power functions with respect to symmetric homogeneous means, Internat. Ser. Num. Math., 123 (1997), 231247.
[13] J. Matkowski, J. Rätz, Convex functions with respect to an arbitrary mean, Internat. Ser. Num. Math., 123 (1997), 249-259.
[14] M. C. Zdun, Continuous and differentiable iteration groups, Prace Nauk. Uniw. Śląski., 308, Katowice, 1979.

[^0]: Key Words: mean, homogeneous function, M-affine function, M-convex function, power mean, quasi-arithmetic mean, differential equation, iteration group

 Mathematical Reviews subject classification: Primary 26A51, 26E60, 39B22, Secondary 39B12

 Received by the editors December 16, 2002
 Communicated by: B. S. Thomson

