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ON t-CONVEX FUNCTIONS
∗

Abstract

The main results of the paper, answering an open problem raised in
[3], show that t-convexity can also be characterized in terms of a lower
second-order generalized derivative. As a consequence, we obtain that
t-convexity is also a localizable convexity property.

1 Introduction

A real-valued function f : I → R de�ned on an interval I ⊆ R is called t-convex
if

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) for x, y ∈ I, (1)

where t is a �xed element of the open unit interval ]0, 1[. If (1) holds with
t = 1/2, then f is said to be Jensen-convex or midpoint convex (cf. [14]).
Obviously, any convex function is t-convex, however there are nonconvex but
t-convex functions. By a result of Kuhn [9], t-convexity always implies Jensen-
convexity (cf. also [2] for a more elementary proof) but, for every irrational t,
there exists a Jensen-convex but not t-convex function.

A related functional inequality is

f((1− t)x + ty) + f(tx + (1− t)y) ≤ f(x) + f(y) for x, y ∈ I.

Functions satisfying the above inequality are called t-Wright-convex (see [16]
for the origin of this notion). It is obvious that t-convex functions are also
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t-Wright-convex, however, depending on the algebraic character of t, t-Wright
convexity can be equivalent and also non-equivalent to t-convexity. (See the
paper [10] of Maksa, Nikodem, and Páles for further details.)

In a recent paper [3], Gilányi and Páles proved that t-Wright-convexity
can be characterized in terms of a properly chosen generalized second-order
derivative. Due to this characterization, it turns out that t-Wright-convexity
is also localizable; i.e., a function is t-Wright-convex on I if and only if each
point of I possesses a neighborhood such that the function restricted to this
neighborhood is t-Wright-convex.

The main results of the paper, answering an open problems raised in [3],
show that t-convexity can also be characterized in terms of a lower second-
order generalized derivative. As a consequence, we obtain that t-convexity is
also a localizable convexity property.

2 Second-Order Divided Di�erences

For an arbitrary function f : I → R de�ne the second-order divided di�erence
of f at three pairwise distinct points x, y, z of I by

f [x, y, z] :=
f(x)

(y − x)(z − x)
+

f(y)
(x− y)(z − y)

+
f(z)

(x− z)(y − z)
.

Obviously, the above expression is symmetric in x, y, z. The Mean Value
Theorem of divided di�erences is recalled in the following Lemma (cf. [5], [6]).

Lemma 1. Let f : I → R be a twice di�erentiable function on I. Then, for
all distinct elements x, y, z of I, there exists a point ξ ∈ co{x, y, z} such that

f [x, y, z] = f ′′(ξ)
2 .

It is an immediate consequence of the above Lemma that if f is a second-
degree polynomial of the form f(x) = a + bx + cx2, then f [x, y, z] = c for all
pairwise distinct x, y, z in I.

The next result o�ers an identity called the chain formula for chains of
divided di�erences of second-order. A generalization of this result for higher-
order divided di�erences can be found in [8, Lemma XV.2.2, pp. 376�377.].

Lemma 2. (Chain Formula) Let x0 < x1 < · · · < xn (n ≥ 2) be arbitrary
points in I. Then, for each �xed 0 < j < n, there exist positive constants
λ1, . . . , λn−1 with λ1 + · · ·+ λn−1 = 1 such that

n−1∑
i=1

λif [xi−1, xi, xi+1] = f [x0, xj , xn] (2)
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holds for all functions f : I → R. Moreover,

λi =



(xi+1 − xi−1)(xi − x0)
(xn − x0)(xj − x0)

if 1 ≤ i < j,

xi+1 − xi−1

xn − x0
if i = j,

(xi+1 − xi−1)(xn − xi)
(xn − x0)(xn − xj)

if j < i ≤ n− 1.

(3)

For the sake of completeness, we provide a simple proof for the above
lemma which uses a completely di�erent argument than that of [8, Lemma
XV.2.2].

Proof. First of all observe that if (2) holds for some function f and f∗ :
I → R is a function satisfying f(xi) = f∗(xi) for i = 0, 1, . . . , n, then (2) is
also satis�ed by f∗ instead of f . To utilize this observation, we show that,
for every function f : I → R, there exist constants a, c0, c1, . . . , cn−1 such that
the function f∗ : I → R de�ned by

f∗(x) := a +
n−1∑
i=0

ci(x− xi)+ (4)

satis�es
f(xi) = f∗(xi) (i = 0, 1, . . . , n), (5)

where the positive part t+ of a real number t is de�ned by t+ := max(0, t).
Indeed, we can easily see that (5) is equivalent to the following system of linear
equations

f(x0) = a,

f(x1) = a + c0(x1 − x0),
f(x2) = a + c0(x2 − x0) + c1(x2 − x1),

...

f(xn) = a + c0(x2 − x0) + c1(x2 − x1) + · · ·+ cn−1(xn − xn−1),

which can be solved recursively for a, c0, c1, . . . , cn−1. Thus, due to the above
observation, (2) is satis�ed for all functions f if and only if it is valid for all
functions f∗ of the form (4). Since the identity (2) is linear in f , it is su�cient
to show that (2) is valid for the functions

f∗−1(x) := 1, f∗0 (x) := (x− x0)+, . . . , f∗n−1(x) := (x− xn−1)+.
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Clearly, (2) holds with f = f∗−1 and f = f∗0 identically (because these func-
tions are polynomials of degree at most one on the interval [x0, xn] and hence
their second-order divided di�erences equal 0). Observe also that f∗k is an at
most �rst degree polynomial on the interval [xi−1, xi+1] if k is di�erent from
i. Therefore, substituting f = f∗k into (2), we obtain λkf∗k [xk−1, xk, xk+1] =
f∗k [x0, xj , xn] for (k = 1, . . . , n−1). Hence, with the choice λk := f∗k [x0,xj ,xn]

f∗k [xk−1,xk,xk+1]

for (k = 1, . . . , n − 1), (2) holds for f = f∗k (k = 1, . . . , n − 1). Thus it
holds also for all functions of the form (4). Now a simple computation yields
that λ1, . . . , λk are of the form (3) and then the inequalities λk > 0 can be
checked directly. Finally, substituting f(x) = x2 into (2), it follows that
λ1 + · · ·+ λn−1 = 1 also holds.

An obvious consequence of the previous lemma is the following result which
we call the chain inequality in the sequel.

Corollary 1. (Chain Inequality) Let f : I → R and x0 < x1 < · · · < xn

(n ≥ 2) be arbitrary points in I. Then, for all �xed 0 < j < n,

min
1≤i≤n−1

f [xi−1, xi, xi+1] ≤ f [x0, xj , xn] ≤ max
1≤i≤n−1

f [xi−1, xi, xi+1].

3 Convexity Triplets

It is easy to check that a function f : I → R is convex if and only if f [x, y, z] ≥
0 for (x, y, z) ∈ I3 with x < y < z. Motivated by this characterization of
convexity, a triplet (x, y, z) in I3 with x < y < z is called a convexity triplet
for the function f : I → R if f [x, y, z] ≥ 0 and the set of all convexity triplets
of f is denoted by C(f). Using this terminology, f is t-convex if and only if(

x, tx + (1− t)y, y
)
,
(
x, (1− t)x + ty, y

)
∈ C(f) for x, y ∈ I with x < y.

Applying the chain inequality established in Corollary 1, we can deduce
the following chain rule for convexity triplets.

Corollary 2. (Chain Rule) Let f : I → R and x0 < x1 < · · · < xn (n ≥ 2) be
arbitrary points in I such that (xi−1, xi, xi+1) is in C(f) for all i = 1, . . . , n−1.
Then

(x0, xj , xn) ∈ C(f) (6)

for all 0 < j < n.

Proof. We have that f [xi−1, xi, xi+1] ≥ 0 for all i = 1, . . . , n− 1. Therefore,
by the chain inequality, f [x0, xj , xn] ≥ 0; i.e., (6) holds for all j = 1, . . . , n −
1.
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As applications of the above Corollary, we derive two well known results on
the connection of t- and Jensen-convexity. The second statement of the next
Corollary was proved by Kuhn [9] by using Rodé's theorem. An elementary
proof for this fact was �rst found by Daróczy and Páles [2].

Corollary 3. Let f : I → R. If f is Jensen-convex, then it is t-convex for all
rational t in ]0, 1[. Conversely, if f is t-convex for some t ∈]0, 1[, then it is
also Jensen-convex.

Proof. For the �rst statement, assume f is Jensen-convex and let t = j/n
where 0 < j < n are integers. Let x, y be �xed and assume that y < x.
(The case x < y can be treated similarly.) De�ne xi by xi := i

nx + n−i
n y for

(i = 0, . . . , n). Then x0 = y < x1 < · · · < xn = x, furthermore, xi−1+xi+1
2 = xi

for all i = 1, . . . , n− 1. Therefore, by the Jensen-convexity of f , we have that
(xi−1, xi, xi+1) belongs to C(f). Hence, by the chain rule for convexity triplets,
we get that (6) holds. Thus f [x0, xj , xn] ≥ 0; i.e., f [y, tx + (1 − t)y, x] ≥ 0,
which shows that f is t-convex, indeed.

To prove the converse, assume that f is t-convex for some t ∈]0, 1[. To
prove the Jensen-convexity of f , let x, y ∈ I with x < y be arbitrary. De�ne
the points x0, x1, x2, x3, x4 by

x0 := x, x1 := tx+(1−t)
x + y

2
, x2 :=

x + y

2
, x3 := t

x + y

2
+(1−t)y, x4 := y.

Then, for i = 1 and for i = 3, we obviously have xi = txi−1 + (1 − t)xi+1.
Furthermore x2 = (1 − t)x1 + tx3. Hence, due to the t-convexity of f ,
(xi−1, xi, xi+1) ∈ C(f) for i = 1, 2, 3. Thus, by the chain rule, we get that
(x0, x2, x4) ∈ C(f); i.e., f is Jensen-convex.

4 Main Results

Our main results o�er mean value theorems in terms of the lower 2nd-order
generalized derivatives de�ned by

δ2f(ξ) := lim inf
(x,y)→(ξ,ξ)
ξ,u∈co{x,y}

2f [x, u, y] for ξ ∈ I, (7)

δ2
t f(ξ) := lim inf

(x,y)→(ξ,ξ)
ξ∈co{x,y}

2f [x, tx + (1− t)y, y] for ξ ∈ I, (8)

where, in the second de�nition, t ∈]0, 1[ is a �xed parameter. Clearly,

δ2
t f(ξ) ≥ δ2f(ξ) (9)
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for all ξ ∈ I and t ∈]0, 1[. One can also easily show that if f is twice continu-
ously di�erentiable at ξ, then δ2

t f(ξ) = δ2f(ξ) = f ′′(ξ).

Theorem 1. (Mean Value Inequality for t-convexity) Let I ⊆ R be an interval,
f : I → R, t ∈]0, 1[, and let x, y ∈ I with x 6= y. Then there exists a point
ξ ∈ co{x, y} such that

tf(x) + (1− t)f(y)− f(tx + (1− t)y)
t(1− t)(x− y)2

= f [x, tx+(1− t)y, y] ≥ δ2
t f(ξ)
2

. (10)

Proof. In the sequel, a triplet (x, u, z) ∈ I3 will be called a t-triplet if either
u = tx + (1 − t)y or u = (1 − t)x + ty. Let x and y be distinct elements of
I. Without loss of generality, we may assume that x < y. In what follows, we
intend to construct a sequence of t-triplets (xn, un, yn) such that

x = x0 ≤ x1 ≤ x2 ≤ . . . , y = y0 ≥ y1 ≥ y2 ≥ . . . , xn < un < yn (n ∈ N),
(11)

|yn − xn| ≤
(
max(t, 1− t)

)n|y − x| (n ∈ N), (12)

and
f [x, u, y] = f [x0, u0, y0] ≥ f [x1, u1, y1] ≥ f [x2, u2, y2] ≥ . . . . (13)

De�ne (x0, u0, y0) = (x, tx + (1− t)y, y) and assume that we have constructed
(xn, un, yn). Now set

zn,0 := xn, zn,1 := (1−t)xn+tun, zn,2 := un, zn,3 := tun+(1−t)yn, zn,4 := yn.

Then, clearly, (zn,0, zn,1, zn,2) and (zn,2, zn,3, zn,4) are t-triplets. On the other
hand, we have that un = snxn +(1− sn)yn, where either sn = t or sn = 1− t.
Thus,

snzn,1 + (1− sn)zn,3 = sn

(
(1− t)xn + t(snxn + (1− sn)yn)

)
+ (1− sn)

(
t(snxn + (1− sn)yn) + (1− t)yn

)
= un;

that is, (zn,1, zn,2, zn,3) is also a t-triplet.
Using the Chain Inequality, we get that there exists an index i ∈ {1, 2, 3}

such that f [xn, un, yn] ≥ f [zn,i−1, zn,i, zn,i+1]. Finally, let

(xn+1, un+1, yn+1) := (zn,i−1, zn,i, zn,i+1).

The sequence so constructed clearly satis�es (11) and (13). We prove (12) by
induction. It is obvious for n = 0. Assume that it holds for n. Then

|yn+1 − xn+1| ≤ max
1≤i≤3

|zn,i+1 − zn,i−1| = max(1− sn, 1− t, sn)|yn − xn|

= max(t, 1− t)|yn − xn| ≤
(
max(t, 1− t)

)n+1|y − x|.
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Thus (12) is also veri�ed.
Due to the monotonicity properties of the sequences (xn), (yn) and also

(12), there exists a unique element ξ ∈ [x, y] such that
⋂∞

i=0[xn, yn] = {ξ}.
Then, by (13), we get that

f [x, u, y] ≥ lim inf
n→∞

f [xn, un, yn] ≥ lim inf
(v,w)→(ξ,ξ)
ξ∈co{v,w}

f [v, tv + (1− t)w,w] =
δ2

t f(ξ)
2

,

which completes the proof of the theorem.

Corollary 4. (Mean Value Inequality for convexity) Let I ⊆ R be an interval,
f : I → R, and let x, u, y ∈ I with x < u < y. Then there exists a point

ξ ∈ [x, y] such that f [x, u, y] ≥ δ2f(ξ)
2 .

Proof. Choose t ∈]0, 1[ so that u = tx+(1− t)y. Then, by Theorem 1, there
exists ξ ∈ [x, y] such that (10) holds. Therefore, by (9),

f [x, u, y] = f [x, tx + (1− t)y, y] ≥ δ2
t f(ξ)
2

≥ δ2f(ξ)
2

.

If one replaces f by −f in the above results, then mean value inequality for
the upper 2nd-order generalized derivatives can be deduced that are de�ned
via (7) and (8) with �limsup� instead of �liminf�.

As an immediate consequence of the above theorem, we get the following
characterization of convexity and t-convexity.

Corollary 5. Let t ∈]0, 1[. A function f : I → R is t-convex (resp. convex)
on I if and only if δ2

t f(ξ) ≥ 0 (resp. δ2f(ξ) ≥ 0) for ξ ∈ I.

Proof. If f is t-convex, then, clearly δ2
t f ≥ 0. Conversely, if δ2

t f is nonneg-
ative on I, then, by the previous Theorem f [x, tx + (1 − t)y, y] ≥ 0 for all
x, y ∈ I; i.e., f is t-convex. A similar argument shows that the convexity of f
is characterized by the nonnegativity of δ2f .

Another obvious but interesting consequence of Corollary 5 is that the
t-convexity property (and also convexity) is localizable in the following sense.

Corollary 6. Let t ∈]0, 1[. A function f : I → R is t-convex (resp. convex)
on I if and only if, for each point ξ ∈ I, there exists a neighborhood U of ξ
such that f is t-convex (resp. convex) on I ∩ U .

The localizability of convexity for upper semicontinuous functions was also
proved in [11]. In the literature, there are some other de�nitions for local
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convexity and local Jensen-convexity. For instance, following Cardinali and
Papalini [1], we call a function f : I → R J∗-convex at a point p ∈ I if there

is a neighborhood U of p such that f
(

x+p
2

)
≤ f(x)+f(p)

2 for x ∈ U. Another

de�nition is motivated by Kostyrko [7]. We say that a function f : I → R is
locally Jensen-convex at a point p ∈ I if there exists a positive number δ such
that

f(p) ≤ f(p− h) + f(p + h)
2

for 0 < h < δ.

Note, however, that neither J∗-convex functions, nor locally Jensen-convex
functions in the sense of Kostyrko need not be Jensen-convex. For instance, the
function g : R → R de�ned by g(x) := |x| for −1 ≤ x < 1 and then extended
periodically to R is J∗-convex but not Jensen-convex. The function h : R → R
de�ned as h(x) := x − [x] for noninteger x and h(x) := 1/2 for integer x is
locally Jensen-convex in the sense of Kostyrko but it is not Jensen-convex (cf.
[7]).

The following corollary derives t-convexity from a formally weaker prop-
erty, namely from the local γ-th order approximate t-convexity. A function
f : I → R is called approximately t-convex of order γ on I (where γ ≥ 0) if
there exists a nonnegative constant c such that

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + ct(1− t)|x− y|γ (14)

for all x, y ∈ I. If the above inequality holds for all t ∈ [0, 1] with a constant
c independent of t, then we say that f is an approximately convex function of
order γ. If each point of I has a neighborhood such that f restricted to this
neighborhood is approximately t-convex (resp. convex) of order γ, then we say
that f is locally approximately t-convex (resp. convex) of order γ.

Approximately convex functions of �rst-order were introduced by Páles in
[12]. First-order approximately Jensen-convex functions were investigated by
Házy and Páles [4].

The next result shows that local approximate t-convexity (resp. local ap-
proximate convexity) of order higher than 2 is equivalent to t-convexity (resp.
convexity). It is also related to a result of Rolewicz [15], stating that if a
function f is γ-paraconvex; that is,

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + c|x− y|γ

for x, y ∈ I, t ∈ [0, 1] and γ > 2, then it is convex.

Corollary 7. Let t ∈]0, 1[. Assume that, for some γ > 2, f : I → R is a
locally approximately t-convex (resp. convex) function of order γ. Then f is
t-convex (resp. convex).
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Proof. We prove the statement concerning t-convexity. Let ξ ∈ I be arbi-
trary. By the assumption, there exists a neighborhood U of ξ and c ≥ 0 such
that (14) holds for all x, y ∈ U ∩ I. Then

f [x, tx + (1− t)y, y] =
tf(x) + (1− t)f(y)− f(tx + (1− t)y)

t(1− t)(x− y)2
≥ −c|x− y|γ−2

for x, y ∈ I with x 6= y. Thus, upon taking the liminf as (x, y) → (ξ, ξ), we
get that

δ2
t f(ξ) = lim inf

(x,y)→(ξ,ξ)
ξ∈co{x,y}

2f [x, tx + (1− t)y, y] ≥ lim inf
(x,y)→(ξ,ξ)
ξ∈co{x,y}

−2c|x− y|γ−2 = 0.

Therefore, by Corollary 5, f is t-convex.

We note that, in Corollary 7, the lower bound 2 for γ cannot be improved,
because the function f(x) = −x2 is obviously approximately convex of order
2 and not t-convex for any t ∈]0, 1[.
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