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ON SOME POINTWISE DEFECTS OF
PROPERTIES IN REAL ANALYSIS

Abstract

In this paper we continue the research in Real Analysis, in the spirit
of the very recent book [1]. Firstly, as a refinement of the global defect
of integrability introduced in [1], § 5.1, we consider here a pointwise
defect of integrability and study its properties and connections with the
pointwise defect of continuity already introduced in [1], § 5.1. Secondly,
as refinements of the global defects of monotonicity and of convexity
introduced in the same book [1], § 5.2, we consider and study pointwise
variants.

1 Introduction

Let U be an abstract set and P a given property of some elements in U .
Evidently P divides U into two disjoint sets:

UP = {x ∈ U ;x has the property P}

and

UP = {x ∈ U ;x does not satisfy the property P} .

A tool of investigation of UP and UP might be the introduction (not nec-
essarily in an unique way) of a quantity E (x) ∈ R, defined for all x ∈ U , such
that

x ∈ UP if and only if E (x) = 0.

In this way, for x ∈ UP the quantity |E (x)| can be considered to measure
the “deviation” of x from the property P and can be called the defect of

Key Words: pointwise defects of continuity, of differentiability, of integrability, of mono-
tonicity, of convexity

Mathematical Reviews subject classification: 26A15, 26A24, 26A42, 26A48, 26A51
Received by the editors November 13, 2002
Communicated by: B. S. Thomson

175



176 Adrian I. Ban and Sorin G. Gal

property P , at x. Of course the notion of defect is of interest only when it has
appropriate analytic properties.

In the very recent book [1] we have studied this idea in Set Theory, Topol-
ogy, Measure Theory, Real Analysis, Functional Analysis, Complex Analysis,
Algebra, Geometry, Number Theory and Fuzzy Logic.

Concerning continuity, differentiability, integrability, monotonicity and con-
vexity of real functions of one real variable, the following concepts were studied.

Definition 1.1. (i) (see, for example [1], p. 185, Definitions 5.1, 5.2) Let
f : E → R and x0 ∈ E ⊂ R. The defect of continuity of f at x0 is the quantity

dcont (f) (x0) = inf {δ [f (V ∩ E)] ; V ∈ V (x0)} ,

where V (x0) denotes the class of all neighborhoods of x0 and

δ [A] = sup {|a1 − a2| ; a1, a2 ∈ A}

denotes the diameter of the set A ⊂ R.
Of course, dcont (f) (x0) is a very old concept in analysis, usually called mod-
ulus of oscillation of f at x0, which was introduced and studied by Bernhard
Riemann and Paul Dubois-Reymond. Here we call it defect of continuity only
for the homogeneity of language.

(ii) (see, for example [1], p. 189, Definition 5.4) Let f : [a, b] → R and
x0 ∈ [a, b]. The defect of differentiability of f at x0 is the quantity

ddif (f) (x0) = inf {δ [F (V ∩ [a, b] \ {x0})] ; V ∈ V (x0)} ,

where F : [a, b] \ {x0} → R is defined by F (x) = f(x)−f(x0)
x−x0

.
(iii) (see, for example [1], p. 190, Definition 5.6) Let f : [a, b] → R be

bounded. The defect of Riemann integrability of f on the interval [a, b] is the
quantity

dint (f) ([a, b]) =
∫ b

a

f (x) dx−
∫ b

a

f (x) dx,

where
∫ b

a
and

∫ b

a
denote the upper and lower Darboux integrals, respectively.

We note that dint (f) ([a, b]) is only a simple rewording of a nineteenth century
criterion of Darboux.

(iv) (see, for example [1], p. 194, Definition 5.7) Let f : E → R and E ⊂ R.
The defect of monotonicity of f on E is the quantity

dM (f) (E) = sup {|f (x1)− f (x)|+ |f (x2)− f (x)| − |f (x1)− f (x2)| ;
x1, x, x2 ∈ E, x1 ≤ x ≤ x2} .
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(v) (see, for example [1], p. 199) Let f : [a, b] → R. The defect of convexity
of f on [a, b] is the quantity

dconv(f)([a, b]) = sup{f(λx + (1− λ)y)− (λf(x) + (1− λ)f(y));
λ ∈ [0, 1], x, y ∈ [a, b]}.

Remark 1.1. It is easily seen that while the defects in Definition 1.1, (i) and
(ii) are pointwise ones, those in Definition 1.1, (iii) , (iv) and (v) are global
ones.

The main aim of this paper is to refine the above global defects by defining
and studying their pointwise variants.

Section 2 deals with the pointwise defect of integrability while in Section
3 we consider pointwise defects of monotonicity. Unlike the global defect
of monotonicity in Definition 1.1, (iv), one can use the pointwise defects to
characterize increasing and decreasing monotonicities. Section 4 deals with
pointwise defects of convexity and Section 5 contains two simple applications
to the best approximation problem. At the end some open questions are
presented in Section 6.

2 Pointwise Defect of Integrability

A pointwise version of the concept in Definition 1.1, (iii), can be defined as
follows.

Definition 2.1. Let f : [a, b] → R be bounded on [a, b]. The (pointwise)
defect of Riemann integrability of f at x0 ∈ (a, b), is the quantity

dint (f) (x0) = lim sup
h↘0

{
1
2h

(∫ x0+h

x0−h

f (x) dx−
∫ x0+h

x0−h

f (x) dx

)}
.

If x0 = a, then

dint (f) (x0) = lim sup
h↘0

{
1
h

(∫ a+h

a

f (x) dx−
∫ a+h

a

f (x) dx

)}

and if x0 = b, then

dint (f) (x0) = lim sup
h↘0

{
1
h

(∫ b

b−h

f (x) dx−
∫ b

b−h

f (x) dx

)}
.
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Remark 2.1. By the definition of lim suph↘0, we can write (if e.g. x0 ∈ (a, b))

dint (f) (x0) = inf
δ>0

{
sup

h∈(0,δ)

{
1
2h

(∫ x0+h

x0−h

f(x) dx−
∫ x0+h

x0−h

f(x) dx

)}}

= lim
δ↘0

{
sup

h∈(0,δ)

{
1
2h

(∫ x0+h

x0−h

f (x) dx−
∫ x0+h

x0−h

f (x) dx

)}}
.

The following properties hold.

Theorem 2.1. Let f, g : [a, b] → R be bounded on [a, b] and x0 ∈ [a, b] .

(i) 0 ≤ dint (f) (x0) ≤ M − m, where M = sup {f (x) ;x ∈ [a, b]} and m =
inf {f (x) ;x ∈ [a, b]}.

(ii) If f is locally Riemann integrable on x0 (i.e., integrable on a subinterval
containing x0), then dint (f) (x0) = 0. If f is Riemann integrable on
[a, b], then dint (f) (x0) = 0, for all x0 ∈ [a, b] .

(iii) dint (f + g) (x0) ≤ dint (f) (x0) + dint (g) (x0) .

(iv) dint (λf) (x0) = |λ| dint (f) (x0) ,∀λ ∈ R.

Proof. (i) It is immediate.
(ii) It is also immediate because the Riemann integrability implies the

equality between the lower and upper Darboux integrals.
(iii) The properties of subadditivity of upper Darboux integral, superad-

ditivity of lower Darboux integral and subadditivity of upper limit prove (iii).
(iv) The properties∫ d

c

λf (x) dx = λ

∫ d

c

f (x) dx,

∫ d

c

λf (x) dx = λ

∫ d

c

f (x) dx,∀λ > 0,

∫ d

c

λf (x) dx = λ

∫ d

c

f (x) dx,

∫ d

c

λf (x) dx = λ

∫ d

c

f (x) dx,∀λ < 0,

hold for every c, d ∈ R, c < d, and the positive homogeneity of upper limits
imply the equality.

Example 2.1. For the Dirichlet function f : [0, 1] → R, defined by f (x) =
0 if x is a rational number and f (x) = 1, otherwise, it easily follows that
dint (f) (x0) = 1, for all x0 ∈ [0, 1] .
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In what follows, consider the well-known Baire functions

M (x) = lim
δ↘0

Mδ (x) and m (x) = lim
δ↘0

mδ (x) ,

where

Mδ (x) = sup {f (t) ; t ∈ [a, b] ∩ (x− δ, x + δ)} ,

mδ (x) = inf {f (t) ; t ∈ [a, b] ∩ (x− δ, x + δ)} .

Theorem 2.2. Let f : [a, b] → R be bounded on [a, b]. Then, for all x0 ∈ (a, b),
we have

dint (f) (x0) = lim
δ↘0

{
sup

h∈(0,δ)

{
1
2h

(L)
∫ x0+h

x0−h

dcont (f) (x) dx

}}
, (1)

where (L)
∫

denotes the Lebesgue integral (if x0 = a and x0 = b in (1) appear
(L)

∫ a+h

a
and (L)

∫ b

b−h
, respectively).

Proof. By e.g. [5], p. 175–176, it follows that the Baire functions M (x) ,m (x)
are Lebesgue measurable and that∫ x0+h

x0−h

f (x) dx = (L)
∫ x0+h

x0−h

M (x) dx,∫ x0+h

x0−h

f (x) dx = (L)
∫ x0+h

x0−h

m (x) dx.

Consequently, by the above Remark 2.1 we get

dint (f) (x0) = lim
δ↘0

{
sup

h∈(0,δ)

{
1
2h

(L)
∫ x0+h

x0−h

(M (x)−m (x)) dx

}}
.

But by e.g. [7], p. 165 we have

dcont (f) (x0) = lim
δ↘0

{sup (f ([a, b] ∩ (x0 − δ, x0 + δ)))

− inf (f ([a, b] ∩ (x0 − δ, x0 + δ)))}
= lim

δ↘0
{Mδ (x0)−mδ (x0)}

= lim
δ↘0

Mδ (x0)− lim
δ↘0

mδ (x0)

=M (x0)−m (x0) ,

for all x0 ∈ [a, b], which immediately proves the theorem.
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Corollary 2.3. Let f : [a, b] → R be bounded on [a, b]. Then f is Riemann
integrable on [a, b] if and only if dint (f) (x0) = 0, for all x0 ∈ [a, b].

Proof. If f is Riemann integrable on [a, b], then by Theorem 2.1, (ii) we get
dint (f) (x0) = 0, for all x0 ∈ [a, b].

Now, suppose that dint (f) (x0) = 0, for all x0 ∈ [a, b]. By (1) we get

dint (f) (x0) ≥ lim
δ↘0

1
2δ

(L)
∫ x0+δ

x0−δ

dcont (f) (x) dx,

which implies limδ↘0
1
2δ (L)

∫ x0+δ

x0−δ
dcont (f) (x) dx = 0, for all x0 ∈ [a, b]. Since

the integrand dcont (f) (x) = M(x)−m(x) is nonnegative, we can deduce that
∀x0 ∈ [a, b], ∀ε > 0, ∃δx0,ε such that for all a ≤ x0 ≤ b and 0 < t < δx0,ε, if
[x0, x0 + t] ⊂ [a, b], then

(L)
∫ x0+t

x0

(M (x)−m (x)) dx < εt

while if [x0 − t, x0] ⊂ [a, b], then

(L)
∫ x0

x0−t

(M (x)−m (x)) dx < εt.

For every ε > 0, define Fε to be the collection of all intervals [x0, x0+t] ⊂ [a, b]
and [x0 − t, x0] ⊂ [a, b] for 0 < t < δx0,ε. Applying Cousin’s Lemma (see e.g.
[2], p. 9) there exists a partition of [a, b],

[a, b] = [a0, a1] ∪ [a1, a2] ∪ · · · ∪ [an−2, an−1] ∪ [an−1, an],

a0 = a, an = b, where each [ai, ai+1] ∈ Fε, i = 0, n− 1. Adding term by term
the inequalities for the subintervals of the partition, we obtain

(L)
∫ b

a

(M (x)−m (x)) dx < ε(b− a),∀ε > 0.

We get (L)
∫ b

a
(M (x)−m (x)) dx = 0 and because 0 ≤ M(x)−m(x), it follows

M(x) −m(x) = 0, a.e. x ∈ [a, b]. Consequently by e.g. [5], p. 172, Theorem
1, it follows that f is almost everywhere continuous on [a, b] and therefore it
is Riemann integrable on [a, b].

Remark 2.2. By Theorem 2.2 and Corollary 2.3, it follows that formula (1)
can be considered in fact a generalization of the well-known result which states
that a bounded function f is Riemann integrable on [a, b], if and only if it is
almost everywhere continuous on [a, b]. Indeed, this immediately follows from
[1], p. 186, Theorem 5.1, (i), which states that f is continuous on x0 if and
only if dcont (f) (x0) = 0.
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3 Pointwise Defects of Monotonicity

The pointwise variant of above Definition 1.1, (iv), is the following.

Definition 3.1. Let f : (a, b) → R be a non-constant function and x0 ∈ (a, b).
The defect of monotonicity of f on x0 is the quantity

dM (f) (x0) = lim sup
εi↘0,i∈{1,2}

Ef,x0 (ε1, ε2) ,

where Ef,x0 (ε1, ε2) is the fraction

|f (x0 − ε1)− f (x0)|+ |f (x0 + ε2)− f (x0)| − |f (x0 − ε1)− f (x0 + ε2)|
|f (x0 − ε1)− f (x0 + ε2)|

.

If f is constant, then by definition we take dM (f) (x0) = 0,∀x0 ∈ (a, b).

Remark 3.1. If f is a non-constant function, then obviously we can write

dM (f) (x0) = lim
δi↘0

{
sup

εi∈(0,δi),i∈{1,2}
Ef,x0 (ε1, ε2)

}
.

The following properties can easily be proved.

Theorem 3.1. Let f : (a, b) → R and x0 ∈ (a, b).

(i) dM (f) (x0) ≥ 0.

(ii) If f is monotonous in a neighborhood of x0, then dM (f) (x0) = 0.

(iii) dM (λf) (x0) = dM (f) (x0) ,∀λ ∈ R \ {0} .

(iv) If a = −b, b > 0 and f (−x) = f (x) ,∀x ∈ (a, b) or f (−x) = −f (x) ,
∀x ∈ (a, b), then dM (f) (−x0) = dM (f) (x0) .

(v) dM (1− f) (x0) = dM (f) (x0) .

Lemma 3.2. Let f : (a, b) → R be locally continuous at x0 ∈ (a, b) (i.e.,
∃ ε1, ε2 > 0, I = (x0 − ε1, x0 + ε2) ⊂ (a, b) such that f is continuous on I). If
x0 is a locally strict extremum point of f , then dM (f) (x0) = +∞.

Proof. From the continuity of f on I = (x0 − ε1, x0 + ε2), there exist ε
(n)
1 ↘

0, ε
(n)
2 ↘ 0, such that f

(
x0 − ε

(n)
1

)
= f

(
x0 − ε

(n)
2

)
6= f (x0) ,∀n ∈ N. It

follows that for all δ1, δ2 > 0, sufficiently small, we have

sup
εi∈(0,δi),i∈{1,2}

{
|f (x0 − ε1)− f (x0)|+ |f (x0 + ε2)− f (x0)|

|f (x0 − ε1)− f (x0 + ε2)|
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−|f (x0 − ε1)− f (x0 + ε2)|
|f (x0 − ε1)− f (x0 + ε2)|

}
= +∞,

which implies dM (f) (x0) = +∞.

Theorem 3.3. Let f : (a, b) → R be continuous on (a, b), such that f is not
constant on some subintervals of (a, b). Then f is monotonic on (a, b) if and
only if dM (f) (x0) = 0, for all x0 ∈ (a, b).

Proof. If f is monotonic on (a, b), then it is immediate that dM (f) (x0) =
0,∀x0 ∈ (a, b). Conversely, suppose that dM (f) (x0) = 0,∀x0 ∈ (a, b), but f
would be not monotonic on (a, b). Then there exist x1, x2, x3, a < x1 < x2 <
x3 < b , satisfying:

(i) f (x2) < f (x1) , f (x2) < f (x3)
or

(ii) f (x2) > f (x1) , f (x2) > f (x3) .
Case (i). Suppose, for example, f (x1) ≤ f (x3) (the subcase f (x1) >

f (x3) is similar). It follows that f has in (x1, x3) a (locally) strict minimum
point x∗, which by Lemma 3.2 implies dM (f) (x∗) = +∞, a contradiction.

Case (ii). Similarly, it follows that f has in (x1, x3) a strict maximum
point x∗; i.e., we again get the contradiction dM (f) (x∗) = +∞.

Remark 3.2. The condition that f cannot be constant on some subintervals
of (a, b) is necessary. Indeed, if we define f : (0, 1) → R as the continuous
polygonal line passing through the points (0, 1) ,

(
1
3 , 1

2

)
,
(

2
3 , 1

2

)
and (1, 1), a

simple calculation show us that dM (f) (x0) = 0,∀x0 ∈ (0, 1), while f is not
monotonic on (0, 1).

Example 3.1. In [3], p. 66, the following example of nowhere monotone
function on (0, 1) is given. Let f (x) = x if x is rational and f (x) = 1− x if x

is irrational. Let x0 ∈
(
0, 1

2

)
∩Q and

(
ε
(n)
1

)
n∈N

,
(
ε
(n)
2

)
n∈N

be two sequences

such that x0 − ε
(n)
1 ∈ (0, 1) ∩ R\Q, x0 + ε

(n)
2 ∈ (0, 1) ∩ R\Q,∀n ∈ N, ε

(n)
i ↘

0, n →∞, i ∈ {1, 2} and ε
(n)
2 < 1− 2x0,∀n ∈ N. We get that Ef,x0

(
ε
(n)
1 , ε

(n)
2

)
is the expression∣∣∣1− x0 + ε

(n)
1 − x0

∣∣∣+ ∣∣∣1− x0 − ε
(n)
2 − x0

∣∣∣− ∣∣∣1− x0 + ε
(n)
1 − 1 + x0 + ε

(n)
2

∣∣∣∣∣∣1− x0 + ε
(n)
1 − 1 + x0 + ε

(n)
2

∣∣∣
=

1− 2x0 + ε
(n)
1 + 1− 2x0 − ε

(n)
2 − ε

(n)
1 − ε

(n)
2

ε
(n)
1 + ε

(n)
2

=
2 (1− 2x0)− 2ε

(n)
2

ε
(n)
1 + ε

(n)
2

.
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Passing to limit with n →∞ and taking into account Definition 3.1 we obtain
dM (f) (x0) = +∞.

Let x0 ∈
(

1
2 , 1
)
∩Q and

(
ε
(n)
1

)
n∈N

,
(
ε
(n)
2

)
n∈N

two sequences as above, but

ε
(n)
1 < 2x0 − 1,∀n ∈ N. We get

Ef,x0

(
ε
(n)
1 , ε

(n)
2

)
=

∣∣∣1− x0 + ε
(n)
1 − x0

∣∣∣+ ∣∣∣1− x0 − ε
(n)
2 − x0

∣∣∣− ∣∣∣1− x0 + ε
(n)
1 − 1 + x0 + ε

(n)
2

∣∣∣∣∣∣1− x0 + ε
(n)
1 − 1 + x0 + ε

(n)
2

∣∣∣
=

2x0 − 1− ε
(n)
1 + 2x0 − 1 + ε

(n)
2 − ε

(n)
1 − ε

(n)
2

ε
(n)
1 + ε

(n)
2

=
2 (2x0 − 1)− 2ε

(n)
1

ε
(n)
1 + ε

(n)
2

.

As above we obtain dM (f) (x0) = +∞.

If x0 = 1
2 and

(
ε
(n)
1

)
n∈N

,
(
ε
(n)
2

)
n∈N

are two sequences such that x0−ε
(n)
1 ∈

(0, 1)∩Q, x0 + ε
(n)
2 ∈ (0, 1)∩R\Q,∀n ∈ N, ε

(n)
i ↘ 0, n →∞, i ∈ {1, 2}, we get

Ef,x0

(
ε
(n)
1 , ε

(n)
2

)
=

ε
(n)
1 + ε

(n)
2 −

∣∣∣ε(n)
1 − ε

(n)
2

∣∣∣∣∣∣ε(n)
1 − ε

(n)
2

∣∣∣ .

Therefore dM (f) (x0) = +∞ (for example, if ε
(n)
1 = 1

n , ε
(n)
2 = 1√

n2+1
, then

limn→∞Ef,x0

(
ε
(n)
1 , ε

(n)
2

)
= limn→∞

2n√
n2+1−n

= +∞ ).

Similarly, if x0 ∈ (0, 1) ∩ R\Q, then dM (f) (x0) = +∞.

More refined pointwise defects of monotonicities than those in Definition
3.1, can be introduced in such a way that can characterize the sense of mono-
tonicity. We begin with this definition.

Definition 3.2. ([7], p. 119) Let f : (a, b) → R and x0 ∈ (a, b). We say
that f is (pointwise) increasing at x0 if ∃ δ > 0 (sufficiently small) such that
f(x)−f(x0)

x−x0
≥ 0,∀x 6= x0, |x− x0| < δ. Analogously, f is called decreasing on

x0 if ∃ δ > 0 such that f(x)−f(x0)
x−x0

≤ 0,∀x 6= x0, |x− x0| < δ.

Theorem 3.4. ([7], p. 120) f : (a, b) → R is increasing (decreasing) on (a, b)
if and only if f is increasing (decreasing) at each x0 ∈ (a, b) (in the sense of
Definition 3.2).
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The pointwise deviations from the monotonicities in Definition 3.2 can be
measured by the following.

Definition 3.3. Let f : (a, b) → R and x0 ∈ (a, b). The defect of increasing
monotonicity of f on x0 is defined by

dIM (f) (x0) = max
{
0,−D (f) (x0)

}
,

where D (f) (x0) = lim supx→x0

f(x)−f(x0)
x−x0

.
Analogously, the defect of decreasing monotonicity of f on x0 is defined by

dDM (f) (x0) = max {0, D (f) (x0)} ,

where D (f) (x0) = lim infx→x0
f(x)−f(x0)

x−x0
.

Theorem 3.5. Let f : (a, b) → R.

(i) f continuous on (a, b) is increasing on (a, b) if and only if dIM (f) (x0) =
0, for all x0 ∈ (a, b). f continuous on (a, b) is decreasing on (a, b) if and
only if dDM (f) (x0) = 0, for all x0 ∈ (a, b).

(ii) If f ∈ C1 (a, b), then dIM (f) (x0) = max {0,−f ′ (x0)} and
dDM (f) (x0) = max {0, f ′ (x0)}, for all x0 ∈ (a, b).

(iii) If f is increasing on (a, b), then dDM (f) (x0) = D (f) (x0), for all x0 ∈
(a, b). If f is decreasing on (a, b), then dIM (f) (x0) = −D (f) (x0), for
all x0 ∈ (a, b).

(iv) If g ∈ C1 (a, b) , f ∈ C1 (g (a, b)), then

dIM (f ◦ g) (x0) = |f ′ (g (x0))| dIM (g) (x0) + g′ (x0) dIM (f) (g (x0))
= |f ′ (g (x0))| dDM (g) (x0)− g′ (x0) dDM (f) (g (x0))

and

dDM (f ◦ g) (x0) = |f ′ (g (x0))| dIM (g) (x0) + g′ (x0) dDM (f) (g (x0))
= |f ′ (g (x0))| dDM (g) (x0)− g′ (x0) dIM (f) (g (x0)) ,

for all x0 ∈ (a, b).

(v) If f ∈ C1 (a, b) , f is invertible and f ′ (x) 6= 0,∀x ∈ (a, b), then

dIM

(
f−1

)
(y0) = − dIM (f) (x0)

f ′ (x0) |f ′ (x0)|
=

f ′ (x0)− dDM (f) (x0)
f ′ (x0) |f ′ (x0)|
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and

dDM

(
f−1

)
(y0) =

dDM (f) (x0)
f ′ (x0) |f ′ (x0)|

=
f ′ (x0) + dIM (f) (x0)

f ′ (x0) |f ′ (x0)|
,

for every y0 = f (x0).

(vi) If f ∈ C1 (A,B), then for all a, b ∈ (A,B) , a < b, there exist α, β ∈ (a, b)
such that

−dIM (f) (α) ≤ f (b)− f (a)
b− a

≤ dDM (f) (β) .

Proof. (i) If f is increasing on (a, b), then by Theorem 3.4 it follows that for
every x0 ∈ (a, b) , f(x)−f(x0)

x−x0
≥ 0, for all x 6= x0, x sufficiently close to x0. This

implies D (f) (x0) ≥ 0 and therefore dIM (f) (x0) = max
{
0,−D (f) (x0)

}
= 0,

for all x0 ∈ (a, b). Conversely, by dIM (f) (x0) = 0 we get −D (f) (x0) ≤ 0;
i.e., D (f) (x0) ≥ 0,∀x0 ∈ (a, b), which by a well-known result (see e.g. [4], p.
222) implies that f is increasing on (a, b). The proof of the second statement
is similar.

(ii) It is immediate.
(iii) f(x)−f(x0)

x−x0
≥ 0,∀x, x0 ∈ (a, b) , x 6= x0 implies D (f) (x0) ≥ 0,∀x0 ∈

(a, b). Therefore dDM (f) (x0) = D (f) (x0) ,∀x0 ∈ (a, b). If f is decreasing,
then the proof is similar.

(iv) Because the above property (ii) implies dIM (h) (x0) = |h′(x0)|−h′(x0)

2

and dDM (h) (x0) = |h′(x0)|+h′(x0)

2 , for every function h ∈ C1 (a, b) and x0 ∈
(a, b), we have

dIM (f ◦ g) (x0) =
|f ′ (g (x0))| |g′ (x0)| − f ′ (g (x0)) g′ (x0)

2

=
|f ′ (g (x0))| (|g′ (x0)| − g′ (x0)) + g′ (x0) (|f ′ (g (x0))| − f ′ (g (x0)))

2
= |f ′ (g (x0))| dIM (g) (x0) + g′ (x0) dIM (f) (g (x0)) .

or

dIM (f ◦ g) (x0) =
|f ′ (g (x0))| |g′ (x0)| − f ′ (g (x0)) g′ (x0)

2

=
|f ′ (g (x0))| (|g′ (x0)|+ g′ (x0))− g′ (x0) (|f ′ (g (x0))|+ f ′ (g (x0)))

2
= |f ′ (g (x0))| dDM (g) (x0)− g′ (x0) dDM (f) (g (x0)) .



186 Adrian I. Ban and Sorin G. Gal

The proof of the second part is analogous.
(v) Replacing g with f−1 in the first property (iv) we obtain

0 =dIM

(
1(a,b)

)
(y0) =

∣∣f ′ (f−1 (y0)
)∣∣ dIM

(
f−1

)
(y0)

+
(
f−1

)′
(y0) dIM (f)

(
f−1 (y0)

)
and

0 =dIM

(
1(a,b)

)
(y0) =

∣∣f ′ (f−1 (y0)
)∣∣ dDM

(
f−1

)
(y0)

−
(
f−1

)′
(y0) dDM (f)

(
f−1 (y0)

)
,

where 1(a,b)(x) = x, for all x ∈ (a, b). Denoting y0 = f (x0) the first equality

implies dIM

(
f−1

)
(y0) = − dIM (f) (x0)

f ′ (x0) |f ′ (x0)|
and the second equality implies

dDM

(
f−1

)
(y0) =

dDM (f) (x0)
f ′ (x0) |f ′ (x0)|

. The proof of the others equalities is similar

starting from the property dDM

(
1(a,b)

)
(y0) = 1,∀y0 ∈ (a, b) .

(vi) Because |f ′(x)|+f ′(x)

2 ≥ f ′ (x) ,∀x ∈ (a, b), we get
∫ b

a
dDM (f) (x) dx

≥ f (b)− f (a) . On the other hand, there exists β ∈ (a, b) such that∫ b

a
dDM (f) (x) dx = (b− a) dDM (f) (β). These imply the desired inequality.

The proof of the other inequality is similar.

Example 3.2. If f is not continuous on (a, b), then Theorem 3.5, (i), fails to
be valid. Indeed, let f : (0, 1) → R be defined by f (x) = 0 if x is rational and
f (x) = 1 if x is irrational. If x0 ∈ Q ∩ (0, 1), then

sup
{

f (x)− f (x0)
x− x0

;x ∈ (x0 − δ, x0 + δ) ∩ (0, 1) , x 6= x0

}
≥ sup

{
f (x)

x− x0
;x ∈ (R \Q) ∩ (x0 − δ, x0 + δ) ∩ (0, 1)

}
= +∞,∀δ > 0.

Therefore

D (f) (x0) = lim sup
x→x0

f (x)− f (x0)
x− x0

= +∞.

We get dIM (f) (x0) = 0.
If x0 ∈ (R \Q) ∩ (0, 1) , then

sup
{

f (x)− f (x0)
x− x0

;x ∈ (x0 − δ, x0 + δ) ∩ (0, 1) , x 6= x0

}
≥ sup

{
f (x)− 1
x− x0

;x ∈ Q ∩ (x0 − δ, x0 + δ) ∩ (0, 1)
}

= +∞,∀δ > 0.
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Therefore

D (f) (x0) = lim sup
x→x0

f (x)− f (x0)
x− x0

= +∞.

We get dIM (f) (x0) = 0.
As above we obtain D (f) (x0) = −∞ and dDM (f) (x0) = 0.

Remark 3.3. The properties in Theorem 3.5, (iv) , (v), can be considered
generalizations of the well-known results which state that the composition of
two increasing (decreasing) functions is also increasing, the composition of an
increasing function with a decreasing function is a decreasing function, the
inverse of an increasing function is increasing and the inverse of a decreasing
function is decreasing.

4 Pointwise Defect of Convexity

A pointwise analogue of the global defect of convexity in Definition 1.1, (v),
might be the following.

Definition 4.1. Let f : (a, b) → R and x0 ∈ (a, b). The pointwise defect of
convexity of f at x0 is the quantity

dconv (f) (x0) =

lim sup
x1,x2→x0

{
sup

λ∈[0,1]

f (λx1 + (1− λ) x2)− λf (x1)− (1− λ) f (x2)
(x1 − x2)

2

}
.

Analogously, the pointwise defect of concavity of f on x0 is the quantity

dconc (f) (x0) =

lim sup
x1,x2→x0

{
sup

λ∈[0,1]

λf (x1) + (1− λ) f (x2)− f (λx1 + (1− λ) x2)
(x1 − x2)

2

}
.

We present properties of these defects.

Theorem 4.1. Let f : (a, b) → R and x0 ∈ (a, b).

(i) dconv (f) (x0) ≥ 0 and dconc (f) (x0) ≥ 0.

(ii) If f is convex on (a, b), then dconv (f) (x0) = 0. If f is concave on (a, b),
then dconc (f) (x0) = 0.
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(iii) If f is strongly concave on (a, b); i.e., there exists M > 0 such that

Mλ (1− λ) (x1 − x2)
2 ≤ f (λx1 + (1− λ) x2)− λf (x1)− (1− λ) f (x2) ,

(2)
for all λ ∈ [0, 1] , x1, x2 ∈ [a, b], then dconv (f) (x0) ≥ M

4 , where
M = sup {M ;M verifies (2)}.

(iv) If f is locally convex on x0 (i.e., convex in a neighborhood of x0), then
dconv (f) (x0) = 0.

(v) If [x1, λx1 + (1− λ) x2, x2; f ] denotes the divided difference, then

dconv (f) (x0) = lim sup
x1,x2→x0

{
sup

λ∈[0,1]

−λ (1− λ) [x1, λx1 + (1− λ) x2, x2; f ]

}

dconc (f) (x0) = lim sup
x1,x2→x0

{
sup

λ∈[0,1]

λ (1− λ) [x1, λx1 + (1− λ) x2, x2; f ]

}
.

(vi) dconv (Ax + B) (x0) = dconc (Ax + B) (x0) = 0,∀A,B ∈ R,∀x0 ∈ R.

(vii) dconv (−f) (x0) = dconc (f) (x0) .

(viii) If a = −b, b > 0 and f (−x) = f (x) ,∀x ∈ (a, b), then dconv (f) (−x0)
= dconv (f) (x0) and dconc (f) (−x0) = dconc (f) (x0) .

(ix) If a = −b, b > 0 and f (−x) = −f (x) ,∀x ∈ (a, b), then dconv (f) (−x0)
= dconc (f) (x0) and dconc (f) (−x0) = dconv (f) (x0) .

Proof. (i) They are immediate because for x1 6= x2 and λ = 0 or λ = 1, we
get f (λx1 + (1− λ) x2)− λf (x1)− (1− λ) f (x2) = 0.

(ii) f (λx1 + (1− λ) x2)−λf (x1)−(1− λ) f (x2) ≤ 0,∀λ ∈ [0, 1] ,∀x1, x2 ∈
[a, b] immediately implies dconv (f) (x0) = 0,∀x0 ∈ (a, b). Similarly if f is
concave.

(iii) , (iv) Are immediate.
(v) Simple calculations show that for x1 6= x2,

λf (x1) + (1− λ) f (x2)− f (λx1 + (1− λ)x2)
(x1 − x2)

2 =

λ (1− λ) [x1, λx1 + (1− λ) x2, x2; f ] .

(vi) , (vii) Are obvious.
(viii)

dconv (f) (−x0) =
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lim sup
x1,x2→−x0

{
sup

λ∈[0,1]

f (λx1 + (1− λ) x2)− λf (x1)− (1− λ) f (x2)
(x1 − x2)

2

}

= lim sup
y1,y2→x0

{
sup

λ∈[0,1]

f (−λy1 − (1− λ) y2)− λf (−y1)− (1− λ) f (−y2)
(−y1 + y2)

2

}

= lim sup
y1,y2→x0

{
sup

λ∈[0,1]

f (λy1 + (1− λ) y2)− λf (y1)− (1− λ) f (y2)
(−y1 + y2)

2

}
= dconv (f) (x0) .

The proof of the second equality is similar.
(ix) It is similar to (viii).

Example 4.1. The function f (x) = −x2 is strongly concave on (a, b) , a, b ∈
R, with M ∈ (0, 1]. We obtain dconv (f) (x0) = 1

4 ,∀x0 ∈ (a, b) that is the
equality in Theorem 4.1, property (iii).

Example 4.2. For f : [−1, 1] → R, f (x) = |x|, we easily get
dconv (f) (x0) = 0,∀x0 ∈ (−1, 1) , dconc (f) (x0) = 0,∀x0 ∈ (−1, 0) ∪ (0, 1) and
dconc (f) (0) = +∞.

Corollary 4.2. If f ∈ C2 (a, b), then for all x0 ∈ (a, b) we have

dconv (f) (x0) = max
{

0,−f ′′ (x0)
8

}
,

dconc (f) (x0) = max
{

0,
f ′′ (x0)

8

}
.

Proof. We have

sup
λ∈[0,1]

{−λ (1− λ) [x1, λx1 + (1− λ) x2, x2; f ]}

= max

{
0, sup

λ∈(0,1)

λ (1− λ) (− [x1, λx1 + (1− λ) x2, x2; f ])

}
.

Without loss of generality, we can suppose x1 < x2. By the mean value theo-
rem, there exists ξλ ∈ (x1, x2) with − [x1, λx1 + (1− λ)x2, x2; f ] = − f ′′(ξλ)

2 ,
∀λ ∈ (0, 1), which implies

dconv (f) (x0) = max

{
0, lim sup

x1,x2→x0

{
sup

λ∈(0,1)

λ (1− λ)
2

(−f ′′ (ξλ))

}}
.
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But
inf

x∈(x1,x2)
(−f ′′ (x)) ≤ −f ′′ (ξλ) ≤ sup

x∈(x1,x2)

(−f ′′ (x)) , (3)

which implies

inf
x∈(x1,x2)

(−f ′′ (x)) sup
λ∈(0,1)

λ (1− λ)
2

≤ sup
λ∈(0,1)

{
λ (1− λ)

2
(−f ′′ (ξλ))

}
.

From supλ∈(0,1)
λ(1−λ)

2 = 1
8 , by passing above to lim supx1,x2→x0

and taking
into account the continuity of f ′′ on (a, b), we get

−f ′′ (x0)
8

≤ lim sup
x1,x2→x0

{
sup

λ∈(0,1)

λ (1− λ)
2

(−f ′′ (ξλ))

}
. (4)

Concerning f ′′ (x0) we have three possibilities: (i) f ′′ (x0) < 0; (ii) f ′′ (x0) >
0; (iii) f ′′ (x0) = 0.

Case (i). There exists a neighborhood V0 of x0 such that f ′′ (x) < 0,∀x ∈
V0, which implies supx∈(x1,x2) (−f ′′ (x)) > 0, for all x1, x2 ∈ V0. By (3) we
obtain

sup
λ∈(0,1)

{
λ (1− λ)

2
(−f ′′ (ξλ))

}
≤ sup

x∈(x1,x2)

(−f ′′ (x)) sup
λ∈(0,1)

{
λ (1− λ)

2

}
,

for all x1, x2 ∈ V0, x1 < x2, wherefrom passing to lim supx1,x2→x0
, we get

lim sup
x1,x2→x0

{
sup

λ∈(0,1)

λ (1− λ)
2

(−f ′′ (ξλ))

}
≤ −f ′′ (x0)

8
.

Combined with (4) it follows that

dconv (f) (x0) = −f ′′ (x0)
8

= max
{

0,−f ′′ (x0)
8

}
.

Case (ii). There exists a neighborhood V0 of x0 such that f ′′ (x) > 0,∀x ∈
V0, which by (3) implies −f ′′ (ξλ) < 0, for all x1, x2 ∈ V0, and therefore

lim sup
x1,x2→x0

{
sup

λ∈(0,1)

λ (1− λ)
2

(−f ′′ (ξλ))

}
≤ 0.

As a consequence,

dconv (f) (x0) = 0 = max
{

0,−f ′′ (x0)
8

}
.
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Case (iii). By hypothesis we have f ′′ (x0) = 0. By (4) it follows

0 ≤ lim sup
x1,x2→x0

{
sup

λ∈(0,1)

λ (1− λ)
2

(−f ′′ (ξλ))

}
.

Suppose that

0 < l = lim sup
x1,x2→x0

{
sup

λ∈(0,1)

λ (1− λ)
2

(−f ′′ (ξλ))

}
.

Then, for 0 < l1 < l, there exists a neighborhood V0 of x0 such that we have

0 < l1 < sup
λ∈(0,1)

{λ (1− λ) (− [x1, λx1 + (1− λ) x2, x2; f ])} ,

for all x1, x2 ∈ V0. It follows that there exists λ0 ∈ (0, 1) (depending on x1, x2

too) such that

0 < l1 < λ0 (1− λ0) (− [x1, λ0x1 + (1− λ0) x2, x2; f ]) ;

i.e.,

0 <
l1

λ0 (1− λ0)
< − [x1, λ0x1 + (1− λ0) x2, x2; f ] ,∀x1, x2 ∈ V0.

But
l1

λ0 (1− λ0)
≥ 4l1 > 0. Passing here to limit with x1, x2 → x0, it follows

0 < 4l1 ≤
l1

λ0 (1− λ0)
≤ −f ′′ (x0)

2
;

that is, f ′′ (x0) < 0, a contradiction. As a conclusion,

lim sup
x1,x2→x0

{
sup

λ∈(0,1)

λ (1− λ)
2

(−f ′′ (ξλ))

}
= 0,

which implies

dconv (f) (x0) = max {0, 0} = 0 = max
{

0,−f ′′ (x0)
8

}
.

The proof of the second formula in statement is similar, which proves the
theorem.
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As an immediate consequence we obtain the next assertion.

Corollary 4.3. Let f ∈ C2 (a, b) .

(i) f is convex on (a, b) if and only if dconv (f) (x0) = 0, for all x0 ∈ (a, b) .

(ii) f is concave on (a, b) if and only if dconc (f) (x0) = 0, for all x0 ∈ (a, b) .

(iii) dIM (f ′) (x0) = 8dconv (f) (x0) and dDM (f ′) (x0) = 8dconc (f) (x0), for
all x0 ∈ (a, b) .

The results proved in Corollary 4.2 are also used in the proof of following
result.

Corollary 4.4. (i) If g ∈ C2 (a, b) , f ∈ C2 (g (a, b)), then

dconv (f ◦ g) (x0) ≤ (g′ (x0))
2
dconv (f) (g (x0)) + |f ′ (g (x0))| dconv (g) (x0)

+
1
8
g′′ (x0) dIM (f) (g (x0))

and

dconc (f ◦ g) (x0) ≤ (g′ (x0))
2
dconc (f) (g (x0)) + |f ′ (g (x0))| dconc (g) (x0)

− 1
8
g′′ (x0) dIM (f) (g (x0)) ,

for every x0 ∈ (a, b) .
(ii) If f ∈ C2 (a, b) , f is invertible and f ′ (x) 6= 0,∀x ∈ (a, b), then

dconv

(
f−1

)
(y0) ≥

f ′′ (x0) dIM (f) (x0)− 8dconv (f) (x0)
8 |f ′ (x0)|3

and

dconc

(
f−1

)
(y0) ≥ −f ′′ (x0) dIM (f) (x0) + 8dconc (f) (x0)

8 |f ′ (x0)|3
,

for every y0 = f(x0), x0 ∈ (a, b) .

Proof. (i) Because the property in Corollary 4.2 implies dconv (h) (x)

= |h′′(x)|−h′′(x)

16 ,∀x ∈ (a, b), for every function h ∈ C2 (a, b), we get

dconv (f ◦ g) (x0) =

∣∣∣f ′′ (g (x0)) (g′ (x0))
2 + f ′ (g (x0)) g′′ (x0)

∣∣∣
16
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−

(
f ′′ (g (x0)) (g′ (x0))

2 + f ′ (g (x0)) g′′ (x0)
)

16

≤ |f ′′ (g (x0))| (g′ (x0))
2 + |f ′ (g (x0))| |g′′ (x0)|
16

−f ′′ (g (x0)) (g′ (x0))
2 − f ′ (g (x0)) g′′ (x0)
16

= (g′ (x0))
2 |f ′′ (g (x0))| − f ′′ (g (x0))

16
+ |f ′ (g (x0))|

|g′′ (x0)| − g′′ (x0)
16

+
1
8
g′′ (x0)

|f ′ (g (x0))| − f ′ (g (x0))
2

= (g′ (x0))
2
dconv (f) (g (x0)) + |f ′ (g (x0))| dconv (g) (x0)

+
1
8
g′′ (x0) dIM (f) (g (x0)) ,∀x0 ∈ (a, b) .

The proof of the second inequality is similar.
(ii) Because dconv

(
1(a,b)

)
(x) = 0,∀x ∈ (a, b), where 1(a,b) is the identical

function on (a, b), taking g = f−1 in (i) we obtain((
f−1 (y0)

)′)2

dconv (f)
(
f−1 (y0)

)
+
∣∣f ′ (f−1 (y0)

)∣∣ dconv

(
f−1

)
(y0)

+
1
8
(
f−1

)′′
(y0) dIM (f)

(
f−1 (y0)

)
≥ 0,∀y0 ∈ f((a, b));

that is,

dconv

(
f−1

)
(y0) ≥

f ′′ (x0) dIM (f) (x0)− 8dconv (f) (x0)
8 |f ′ (x0)|3

for every y0 = f (x0) , x0 ∈ (a, b) . The proof of the second inequality is similar.

Remark 4.1. For example, the first formula in Corollary 4.3 (iii) above can be
viewed as a generalization of the following well-known result in Real Analysis.
f is convex on (a, b) if and only if f ′ is increasing on (a, b).

The above considerations and the concept of convex (concave) function of
order n ∈ {−1, 0, 1, 2, . . . } on (a, b) in [6], allow us to introduce the following.
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Definition 4.2. Let f : (a, b) → R and x0 ∈ (a, b). The pointwise defect of
convexity of order n of f at x0 is the quantity

d(n)
conv (f) (x0) = max

0,− lim sup
xi→x0,i∈{1,...,n+2}

xi 6=xj ,i 6=j

[x1, . . . , xn+2; f ]

 .

Analogously, the pointwise defect of concavity of order n of f at x0 is the
quantity

d(n)
conc (f) (x0) = max

0, lim sup
xi→x0,i∈{1,...,n+2}

xi 6=xj ,i 6=j

[x1, . . . , xn+2; f ]

 .

Here [x1, . . . , xn+2; f ] denotes the divided difference.

Remark 4.2. If f ∈ Cn+1 (a, b), then by the mean value for [x1, . . . , xn+2; f ]
in [6], we immediately get

d(n)
conv (f) (x0) = max

{
0,−f (n+1) (x0)

(n + 1)!

}
,

d(n)
conc (f) (x0) = max

{
0,

f (n+1) (x0)
(n + 1)!

}
,

for every x0 ∈ (a, b), such that for n = 0 and n = 1 we essentially recapture
the pointwise defects in Definitions 3.3 and 4.1.

5 Applications

In what follows we present some simple applications. Let

IM(x0) = {g : (a, b) → R; g is differentiable and increasing on x0} ,

where x0 ∈ (a, b) and the pointwise increasing monotonicity is defined as in
Definition 3.2, let

IM(a, b) = {g : (a, b) → R; g is differentiable and increasing on (a, b)} ,

for f differentiable on x0 ∈ (a, b), let

EIM (f) (x0) = inf {dIM (f − g) (x0) ; g ∈ IM (x0)} ,
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for f differentiable on (a, b), let

‖f‖IM = sup {dIM (f) (x) ;x ∈ (a, b)} and let

EIM (f) (a, b) = inf {‖f − g‖IM ; g is differentiable and increasing on (a, b)} .

Remark 5.1. ‖·‖IM is a special kind of norm, because ‖f‖IM = 0 if and
only if f is monotonically increasing on (a, b) , ‖λf‖IM = λ ‖f‖IM only for
λ ≥ 0, ‖f + g‖IM ≤ ‖f‖IM + ‖g‖IM .

Theorem 5.1. Let f : (a, b) → R.

(i) If f is differentiable on x0 ∈ (a, b), then EIM (f) (x0) ≥ dIM (f) (x0) .

(ii) If f is differentiable on (a, b), then EIM (f) (a, b) ≥ ‖f‖IM .

Proof. (i) For any g ∈ IM (x) we have

dIM (f) (x0) =
|f ′ (x0)| − f ′ (x0)

2

=
|f ′ (x0)| − |g′ (x0)|

2
+
|g′ (x0)| − g′ (x0)

2
+

g′ (x0)− f ′ (x0)
2

=
|f ′ (x0)| − |g′ (x0)|

2
+

g′ (x0)− f ′ (x0)
2

≤ |f ′ (x0)− g′ (x0)|
2

− f ′ (x0)− g′ (x0)
2

= dIM (f − g) (x0) .

Passing to infimum with g ∈ IM(x0) we get (i).
(ii) Passing to supremum with x ∈ (a, b) in (i) we get

‖f‖IM ≤ sup
x∈(a,b)

{inf {dIM (f − g) (x) ; g ∈ IM (x)}}

≤ inf
g∈IM(a,b)

{sup {dIM (f − g) (x) ;x ∈ (a, b)}} = EIM (f) (a, b) ,

which proves the theorem.

Let

CONV (x0) =
{
g : (a, b) → R; g ∈ C2 (a, b) and g is convex on x0

}
,

where x0 ∈ X and the pointwise convexity in x0 is as in Theorem 4.1, (iv),
for g ∈ C2 (a, b),

ECONV (f) (x0) = inf {dconv (f − g) (x0) ; g ∈ CONV (x0)} ,

‖f‖CONV = sup {dconv (f) (x) ; x ∈ (a, b)} ,
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(‖·‖CONV is a special kind of norm, because ‖f‖CONV = 0 if and only if f
is convex on (a, b) , ‖λf‖CONV = λ ‖f‖CONV only for λ ≥ 0, ‖f + g‖CONV ≤
‖f‖CONV + ‖g‖CONV ),

ECONV (f) (a, b) = inf
{
‖f − g‖CONV ; g ∈ C2 (a, b) , g is convex on (a, b)

}
.

As was done above, we can prove the following.

Theorem 5.2. Let f ∈ C2 (a, b). We have:

(i) ECONV (f) (x) ≥ dconv (f) (x) ,∀x ∈ (a, b) .

(ii) ECONV (f) (a, b) ≥ ‖f‖CONV .

Proof. From Corollary 4.2, we have

dconv (f) (x0) = max
{

0,−f ′′ (x0)
8

}
=
|f ′′ (x0)| − f ′′ (x0)

16
.

Reasoning as in the proof of the theorem above, we get the desired conclusion.

6 Open Problems

Concerning the above results, the study of the following questions would be
of interest.

Question 1. What connections exist between dIM (f ′) (x0) and dconv (f) (x0)
in Corollary 4.3, (iii) when f is only in C1 (a, b) or only differentiable on (a, b)
(and it is not in C2 (a, b))? We conjecture something of the form

M1dIM (f ′) (x0) ≤ dconv (f) (x0) ≤ M2dIM (f ′) (x0) ,

where M1,M2 are independent of x0 ∈ (a, b).

Question 2. Do Theorems 5.1 and 5.2 remain valid in the case when the func-
tions f and g in the definitions of EIM (f) (x0) , EIM (f) (a, b) , ECONV (f) (x0) ,
ECONV (f) (a, b) are supposed to be non- smooth; i.e., are only continuous?

Question 3. Are Theorem 3.5, (vi) valid in the case when f is only continu-
ous, and Corollary 4.4, in the case when f and g are only of C1-class or only
differentiable?
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ables réeles, Mathematica (Cluj), 8 (1933), 1–85.
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