Tamás Keleti, Department of Analysis, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary. email: elek@cs.elte.hu Tamás Mátrai, Department of Mathematics, Central European University, Budapest, Nádor utca 9., H-1051 Hungary. email: matrait@renyi.hu

A NOWHERE CONVERGENT SERIES OF FUNCTIONS WHICH IS SOMEWHERE CONVERGENT AFTER A TYPICAL CHANGE OF SIGNS

Abstract

On any uncountable Polish space we construct a sequence of continuous functions (f_n) such that $\sum f_n$ is divergent everywhere, but for a typical sign sequence $(\varepsilon_n) \in \{-1, +1\}^{\mathbb{N}}$, the series $\sum \varepsilon_n f_n$ is convergent in at least one point. This answers a question of S. Konyagin in the negative.

1 Introduction

Let X be a topological space, $f_n: X \to \mathbb{R}$, $n \in \mathbb{N}$ be a sequence of continuous functions. One can ask for a condition on the order of magnitude of the sequence (f_n) which guarantees that for a "typical" choice of signs $\varepsilon_n \in \{-1, +1\}$, the signed series $\sum \varepsilon_n f_n$ diverges everywhere on X. Such conditions are known for Fourier and Dirichlet series if "typical" means for almost every choice of signs in the product probability space $\Omega = \{-1, +1\}^{\mathbb{N}}$ (see [2], [1]). However, in this note we consider Ω as a product of discrete topological spaces and "typical" is understood in categorical sense.

In [1, Theorem 4.1] for $X = \mathbb{R}$ a condition on the divergence of the partial sums of $\sum f_n$ was given implying that $\sum \varepsilon_n f_n$ diverges everywhere for a dense G_{δ} set of sign sequences $(\varepsilon_n) \in \Omega$. Motivated by this result, S. Konyagin asked whether, in case of compact metric spaces X, the pure fact that $\sum f_n$ diverges everywhere could imply that $\sum \varepsilon_n f_n$ diverges everywhere for a dense

Key Words: everywhere divergent series of functions, Baire category, typical, change of signs, continuous function, Cantor set, Polish space

Mathematical Reviews subject classification: 40A30, 54E52

Received by the editors March 5, 2003 Communicated by: Alexander Olevskii G_{δ} , hence residual set of sign sequences. We give a negative answer by the following example, which is the main result of this note.

Theorem 1. Consider $C = \{-1,0,1\}^{\mathbb{N}}$ as the topological product of the discrete spaces (which is clearly homeomorphic to the Cantor set). There exists a sequence of continuous functions $f_n : C \to [-1,1]$ and a dense G_{δ} set $\Omega_0 \subset \Omega = \{-1,+1\}^{\mathbb{N}}$ such that the series $\sum f_n$ diverges everywhere on C, but for every $(\varepsilon_n) \in \Omega_0$, the series $\sum \varepsilon_n f_n$ converges in at least one point of C.

Then we can easily get examples on any uncountable Polish space (that is, on any uncountable complete separable metric space; so in particular on \mathbb{R}) as well.

Corollary 2. On any uncountable Polish space (X, d) there exist a sequence of continuous functions $g_n : X \to \mathbb{R}$ such that $\sum g_n$ diverges everywhere on X but the sign sequences $(\varepsilon_n) \in \Omega = \{-1, 1\}^{\mathbb{N}}$ for which $\sum \varepsilon_n g_n$ diverges everywhere on X form a set of first category in Ω .

PROOF. It is well known (see e.g. in [3, Corollary 6.5]) that any uncountable Polish space contains a homeomorphic copy C of a Cantor set. Let $f_n: C \to [-1,1]$ be the sequence of functions on C we get by Theorem 1, and for any $n \in \mathbb{N}$ let $\tilde{f}_n: X \to [-1,1]$ be a continuous extension of f_n to X. Then the sequence of functions $g_n(x) = \tilde{f}_n(x) + n \cdot d(x,C)$ on X (where d(x,C) denotes the distance of x from C) has all the required properties.

Notation. In this note G_{δ} stands for the class of those sets that can be obtained as countable intersection of open sets; \mathbb{N} and \mathbb{R}^+ stands for the set of nonnegative integers and nonnegative reals, respectively. On finite sets (e.g. $\{-1,1\}$ or $\{-1,0,1\}$) the topology we consider is always the discrete topology. By a Polish space we mean a complete, separable, metric space.

2 The Example

In this section we prove Theorem 1.

For each fixed $a = (a_j) \in \mathcal{C} = \{-1,0,1\}^{\mathbb{N}}$ we define the sequence $(f_n(a))$ together with a sequence $(m_k(a))$ by induction. Let $m_0(a) = 0$. Suppose that $k \in \mathbb{N}$ and the numbers $m_0(a) < \ldots < m_k(a)$ and $f_0(a), \ldots, f_{m_k(a)-1}(a)$ are already defined. Then let

$$f_{m_k(a)}(a) = f_{m_k(a)+1}(a) = \dots = f_{m_k(a)+2^k-1}(a) = \frac{1}{2^k},$$
 (1)

$$m_{k+1}(a) = \min\{j \ge m_k(a) + 2^k : a_j = 0\},$$
 (2)

$$f_n(a) = \frac{a_n}{2^k} \text{ for } m_k(a) + 2^k \le n < m_{k+1}(a).$$
 (3)

(If $\{j \ge m_k(a) + 2^k : a_j = 0\}$ is empty, then $m_{k+1}(a) = \infty$ and after defining $f_n(a) = \frac{a_n}{2^k}$ for every $n \ge m_k(a) + 2^k$ the procedure terminates.)

Claim 1. Every function f_n $(n \in \mathbb{N})$ is continuous on C.

PROOF. This is clear since $f_n(a)$ depends only on a_1, \ldots, a_n .

Claim 2. The series $\sum f_n(a)$ diverges for every $a \in \mathcal{C}$

PROOF. If $m_{k+1}(a) = \infty$ for some $k \in \mathbb{N}$, then $|f_n(a)| = 2^{-k}$ for every $n \ge m_k + 2^k$, so $f_n(a)$ does not even converge to zero. Otherwise - by (1) - infinitely many blocks of sum 1 appears in $\sum f_n(a)$, so it cannot be convergent.

Put

$$\Omega_0 = \bigcap_{k \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcap_{j=m}^{m+k} \{ (\varepsilon_n) \in \{-1, +1\}^{\mathbb{N}} : \varepsilon_j = (-1)^j \}.$$

Claim 3. The set Ω_0 is a dense G_{δ} in the product space $\{-1,+1\}^{\mathbb{N}}$.

PROOF. This is clear since $\{(\varepsilon_n) \in \{-1, +1\}^{\mathbb{N}} : \varepsilon_j = (-1)^j\}$ is open for any j and $\bigcup_{m \in \mathbb{N}} \bigcap_{j=m}^{m+k} \{(\varepsilon_n) \in \{-1, +1\}^{\mathbb{N}} : \varepsilon_j = (-1)^j\}$ is dense for any k.

Claim 4. For every $(\varepsilon_n) \in \Omega_0$ there exist an $a \in \mathcal{C}$ such that $\sum \varepsilon_n f_n(a)$ converges.

PROOF. For a fixed $(\varepsilon_n) \in \Omega_0$ let

$$J = \{ j \in \mathbb{N} : \varepsilon_j = (-1)^j \}. \tag{4}$$

Since $(\varepsilon_n) \in \Omega_0$, the set J contains arbitrarily long finite sequences of consecutive integers. Thus there exists a sequence $0 = m_0 < m_1 < \dots$ such that $m_{k+1} \ge m_k + 2^k$ and

$$m_k, m_k + 1, \dots, m_k + 2^k - 1 \in J \quad (\forall k \in \mathbb{N}).$$
 (5)

Let

$$a_j = \begin{cases} 0 & \text{if } j = m_k \text{ for some } k \in \mathbb{N} \\ (-1)^j / \varepsilon_j & \text{otherwise} \end{cases}$$
 (6)

We have $m_k(a) = m_k$ $(k \in \mathbb{N})$ since $m_0 = 0$ and the sequence (m_k) satisfies (2). For every $k \in \mathbb{N}$ and $m_k \leq j < m_k + 2^k$ by (1) we have that $f_j(a) = 1/2^k$ and by (5) and (4) that $\varepsilon_j = (-1)^j$. Thus $\varepsilon_j f_j(a) = (-1)^j/2^k$. For every $k \in \mathbb{N}$ and $m_k + 2^k \leq j < m_{k+1}$ by (3) we have that $f_j(a) = a_j/2^k$ and by (6) that $a_j = (-1)^j/\varepsilon_j$. Thus again $\varepsilon_j f_j(a) = (-1)^j/2^k$. Therefore $\sum \varepsilon_n f_n(a)$ is a Leibniz series, so it is convergent.

The four Claims above (together with the clear fact that, by definition, every f_n maps into [-1,1]) complete the proof of Theorem 1.

References

- [1] F. Bayart, S. V. Konyagin, H. Queffélec, Convergence almost everywhere and divergence everywhere of Taylor and Dirichlet series, Real Analysis Exchange, 29 (2003/4), this issue.
- [2] J-P. Kahane, Some random series of functions, Cambridge University Press, 1985
- [3] A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.