Artur Bartoszewicz, Institute of Mathematics, Łódź Technical University, al. Politechniki 11, 1-2, 90-924 Łódź, Poland. email: arturbar@p.lodz.pl

MB-REPRESENTATIONS OF ALGEBRAS GENERATED BY INTERVALS

Abstract

We show various generalizations of the theorem from [3] concerning MB-representation of the interval algebra on [0, 1).

Let X be a nonempty set and let \mathcal{F} be a nonempty family of nonempty subsets of X. Following the idea of Burstin and Marczewski we define:

$$S(\mathcal{F}) = \{ A \subset X : (\forall P \in \mathcal{F}) (\exists Q \in \mathcal{F}) (Q \subset A \cap P \text{ or } Q \subset P \setminus A) \}$$

and

$$S_0(\mathcal{F}) = \{ A \subset X : (\forall P \in \mathcal{F}) (\exists Q \in \mathcal{F}) (Q \subset P \setminus A) \}$$

Then $S(\mathcal{F})$ is an algebra (more precisely, a field) of subsets of X, and $S_0(\mathcal{F})$ is an ideal on X (See [3]).

We say that an algebra \mathcal{A} (a pair $\langle \mathcal{A}, \mathcal{I} \rangle$, where \mathcal{I} is an ideal contained in \mathcal{A} , respectively) of subsets of X has a Marczewski-Burstin representation if there exists a nonempty family \mathcal{F} of nonempty subsets of X, such that $\mathcal{A} = S(\mathcal{F})$ $(\langle \mathcal{A}, \mathcal{I} \rangle = \langle S(\mathcal{F}), S_0(\mathcal{F}) \rangle$, respectively). If in addition $\mathcal{F} \subset \mathcal{A}$ we say that $\langle \mathcal{A}, \mathcal{I} \rangle$ is inner MB-representable. MB-representations of algebras and ideals were recently considered in the papers [3], [1], [5], [6], [7].

In [3] it was proved (by the idea of S. Wroński) that the interval algebra \mathcal{A} generated by the intervals [x, y) where $x, y \in [0, 1)$ has outer MB-representation (i.e., $\mathcal{A} = S(\mathcal{F})$ and $\mathcal{F} \cap \mathcal{A} = \emptyset$). The construction used in the proof of this theorem was generalized in [4], [8], [2].

The aim of this paper is the modification of Wroński's construction which can be used to describe MB-representations of the following algebras on \mathbb{R} :

the algebra generated by all intervals (or, what equivalent, by open intervals);

Key Words: MB-representation, interval algebra

Mathematical Reviews subject classification: Primary 28A05; Secondary 06E25. Received by the editors November 7, 2003

Communicated by: Jack B. Brown

⁹⁷³

- the algebras generated by the intervals of some type (open or one-sideclosed) with the endpoints in the fixed set X_0 ;
- the algebras generated by the intervals considered relative to a fixed set X dense in some interval in \mathbb{R} .

Fix an interval [a, b] in the real line with $-\infty \leq a < b \leq +\infty$, and fix two sets X and X_0 where $X_0 \subset X$ and X is a dense subset of [a, b]. To simplify notation we write \overline{X} instead of [a, b] and [x, y), (x, y) instead of $[x, y) \cap X$, $(x, y) \cap X$, respectively. The algebras of sets considered in the paper will always constitute subfields of $\mathcal{P}(X)$.

Let \mathcal{D} be a fixed countable dense subset of X (consequently of \overline{X}).

Lemma 1. There exists a family of almost disjoint sets $\mathcal{D}_{\alpha} \subset \mathcal{D}, \alpha < 2^{\omega}$, such that for any $\alpha, \mathcal{D}_{\alpha}$ is a dense subset of X.

PROOF. We need a simple modification of the well known construction. Let $\mathcal{J}_0, \mathcal{J}_1, \mathcal{J}_2, \ldots$ be an enumeration of open intervals with endpoints in \mathcal{D} . For any $n < \omega$ choose inductively distinct points $d_{\xi} \in \mathcal{D} \cap \mathcal{J}_n, \xi \in \{0,1\}^n$. Then put

$$\mathcal{D}_{\alpha} = \{ d_{\xi} : \xi = \alpha | n, n < \omega \}, \ \alpha < 2^{\omega} \qquad \Box$$

Denote by Σ the family of sets $\{\mathcal{D}_{\alpha} : \alpha < 2^{\omega}\}$ from Lemma 1. Let us divide Σ into two disjoint sets Σ_1 and Σ_2 with $|\Sigma_1| = |\Sigma_2| = 2^{\omega}$. Let F_i (i = 1, 2) be bijections from \overline{X} onto Σ_i such that $x \notin F_i(x)$ for any $x \in \overline{X}$. For any $x \in \overline{X} \setminus \{a, b\}$ we define the following families of sets:

$$\begin{aligned} \mathcal{F}_{ir}(x) &= \{ [x, y) \setminus F_i(x) : y > x; \ y \in X \} \ \text{ for } i = 1, 2 \\ \mathcal{F}_r(x) &= \mathcal{F}_{1r}(x) \cup \mathcal{F}_{2r}(x) \\ \mathcal{G}_{ir}(x) &= \{ (x, y) \setminus F_i(x) : y > x; \ y \in X \} \ \text{ for } i = 1, 2 \\ \mathcal{G}_r(x) &= \mathcal{G}_{1r}(x) \cup \mathcal{G}_{2r}(x) \\ \mathcal{G}_{il}(x) &= \{ (y, x) \setminus F_i(x) : y < x; \ y \in X \} \ \text{ for } i = 1, 2 \\ \mathcal{G}_l(x) &= \mathcal{G}_{1l}(x) \cup \mathcal{G}_{2l}(x) \\ \mathcal{K}_i(x) &= \{ (y, t) \setminus F_i(x) : y < x < t; \ y, t \in X \} \ \text{ for } i = 1, 2 \\ \mathcal{K}(x) &= \mathcal{K}_1(x) \cup \mathcal{K}_2(x). \end{aligned}$$

For x = a we define only the families of sets with the index "r", and for x = b, only with the index "l".

Consider a family $\mathcal{F} \subset \mathcal{P}(X)$ with the following properties:

(1) \mathcal{F} contains only sets of types $\mathcal{F}_r(x)$, $\mathcal{G}_r(x)$, $\mathcal{G}_l(x)$ and $\mathcal{K}(x)$ where $x \in \overline{X}$.

- (2) For any $x \in \overline{X} \setminus \{a, b\}$ exactly one of the following possibilities is satisfied:
 - (a) $\mathcal{G}_{l}(x) \cup \mathcal{G}_{r}(x) \subset \mathcal{F}, \ (\mathcal{F}_{r}(x) \cup \mathcal{K}(x)) \cap \mathcal{F} = \emptyset$ (b) $\mathcal{G}_{l}(x) \cup \mathcal{F}_{r}(x) \subset \mathcal{F}, \ (\mathcal{G}_{r}(x) \cup \mathcal{K}(x)) \cap \mathcal{F} = \emptyset$ (c) $\mathcal{K}(x) \subset \mathcal{F}, \ (\mathcal{G}_{l}(x) \cup \mathcal{G}_{r}(x) \cup \mathcal{F}_{r}(x)) \cap \mathcal{F} = \emptyset.$
- (3) For the point a we have

$$\mathcal{G}_r(a) \subset \mathcal{F} \text{ and } \mathcal{F}_r(a) \cap \mathcal{F} = \emptyset \text{ or}$$

 $\mathcal{F}_r(a) \subset \mathcal{F} \text{ and } \mathcal{G}_r(a) \cap \mathcal{F} = \emptyset,$

and for the point b, always $\mathcal{G}_l(b) \subset \mathcal{F}$.

Lemma 2. Assume that a family $\mathcal{F} \subset \mathcal{P}(X)$ has properties (1)–(3). Let $P, Q \in \mathcal{F}$ and $Q \subset P$. Then both the sets P and Q belong to the same of the classes $\mathcal{F}_{ir}(x), \mathcal{G}_{ir}(x), \mathcal{G}_{il}(x), \mathcal{K}_i(x)$ with the same parameters i, x.

PROOF. This follows immediately from (1)–(3) and from the fact that the sets $F_i(x)$ are almost disjoint.

We assume that a family \mathcal{F} considered in the next lemmas satisfies conditions (1)–(3), and consequently, it has the property described in the assertion of Lemma 2.

Lemma 3. Assume that for some $x \in \overline{X}$ we have $\mathcal{F}_r(x) \subset \mathcal{F}$. Let $x \in A \in S(\mathcal{F})$ for some set $A \in \mathcal{P}(X)$. Then there exists $y \in X$ such that y > x and $[x, y) \subset A$.

PROOF. Consider $U_1 \in \mathcal{F}_{1r}(x)$. Since $A \in S(\mathcal{F})$, there is a $V_1 \in \mathcal{F}$ such that either $V_1 \subset A \cap U_1$ or $V_1 \subset U_1 \setminus A$. By Lemma 2 we have $V_1 \in \mathcal{F}_{1r}(x)$. Since $x \in A \cap V_1$, we have $V_1 \subset U_1 \cap A \subset A$. Let $V_1 = [x, y_1) \setminus F_1(x)$. Taking $U_2 \in \mathcal{F}_{2r}$, in the same way we obtain a set $V_2 = [x, y_2) \setminus F_2(x) \subset U_2 \cap A \subset A$. Let $y_0 = \min\{y_1, y_2\}$. Because $V_1 \cup V_2 \subset A$, we have $[x, y_0) \setminus (F_1(x) \cap F_2(x)) \subset A$. By the almost disjointedness of $F_1(x)$ and $F_2(x)$, there exists a $y \leq y_0$ for which $[x, y) \subset A$.

Lemma 4. Assume that $\mathcal{G}_r(x) \subset \mathcal{F}$ and $A \in S(\mathcal{F})$. Then there exists a $y \in X$ such that y > x and either $(x, y) \subset A$ or $(x, y) \subset A^c$.

PROOF. Consider a $U_1 \in \mathcal{G}_{1r}(x)$. So, there exists $V_1 \in \mathcal{F}$ such that either $V_1 \subset A \cap U_1$ or $V_1 \subset U_1 \setminus A$. By Lemma 2 we have $V_1 \in \mathcal{G}_{1r}(x)$. Assume the first possibility, i.e. $V_1 \subset A \cap U_1 \subset A$. Put $V_1 = (x, y_1) \setminus F_1(x)$ and let $U_2 \in \mathcal{G}_{2r}(x)$. By the same considerations, there exists $V_2 \in \mathcal{G}_{2r}(x)$ such that

either $V_2 \subset A \cap U_2$ or $V_2 \subset U_2 \setminus A$. By our assumption $V_1 \subset A \cap U_1$, only the first condition is possible (we have $V_1 \cap V_2 \neq \emptyset$). Hence there exists y_2 such that $(x, y_2) \setminus F_2(x) \subset U_2 \cap A \subset A$. As in the previous lemma we obtain that for some y we have $(x, y) \subset A$. By the same reasoning, if $V_1 \subset U_1 \setminus A$ we obtain $(x, y) \subset A^c$ for some $y \in X$.

Lemma 5. Assume that $\mathcal{G}_l(x) \subset \mathcal{F}$ and let $A \in S(\mathcal{F})$. Then there exists a $y \in X$ such that y < x and either $(y, x) \subset A$ or $(y, x) \subset A^c$.

PROOF. Similar as for Lemma 4.

Lemma 6. Assume that $\mathcal{K}(x) \subset \mathcal{F}$ and let $A \in S(\mathcal{F})$. Then there exist $y, t \in X$ such that y < x < t and either $(y, t) \subset A$ or $(y, t) \subset A^c$.

PROOF. Consider a $U_1 \in \mathcal{K}_1(x)$. Then by Lemma 2 there exists a $V_1 \in \mathcal{K}_1(x)$ such that either $V_1 \subset U_1 \cap A$ or $V_1 \subset U_1 \setminus A$. If the first possibility holds, then similarly as in the proof of the Lemma 4 we obtain, using $U_2 \in \mathcal{K}_2(x)$ and $V_2 \subset U_2 \cap A$, that for some y, t we have $(y, t) \subset A$. In the second case we can construct an interval $(y, t) \subset A^c$.

Theorem 1. Let X be a dense subset of $\overline{X} = [a, b] \subset \overline{R}$ and X_0 be an arbitrary fixed subset of X. Consider the following algebras $\mathcal{A}', \mathcal{A}'' \subset \mathcal{P}(X)$:

- (i) \mathcal{A}' generated by all intervals [x, y) in X, with $x, y \in X_0$, and
- (ii) \mathcal{A} " generated by all intervals (x, y) in X, with $x, y \in X_0$.

Then \mathcal{A}' and \mathcal{A} " are MB-representable.

PROOF. Let \mathcal{F}' consist of the sets belonging to $\mathcal{G}_l(x) \cup \mathcal{F}_r(x)$ for $x \in X_0$, and of the sets belonging to $\mathcal{K}(x)$ for $x \in \overline{X} \setminus X_0$ (for x = a, we take $\mathcal{G}_r(a)$ if $a \notin X_0$ and $\mathcal{F}_r(a)$ if $a \in X_0$; for x = b we take $\mathcal{G}_l(b)$).

We claim that $\mathcal{A}' = S(\mathcal{F}')$. Indeed, any interval [x, y), for $x, y \in X_0$, belongs to $S(\mathcal{F}')$. By the component of a set $A \in \mathcal{P}(X)$ we understand any maximal interval (maybe degenerated to one point) contained in A. From Lemmas 3 and 6 it follows that each component of a set $A \in S(\mathcal{F}')$ is of the form [x, y) or [x, b] where $x \in \{a\} \cup X_0, y \in X_0$. So we only need to show that if $A \in S(\mathcal{F}')$, then A is a union of at most a finite family of disjoint intervals. Suppose that $\bigcup_{n=1}^{\infty} [x_n, y_n) \subset A$ where $[x_n, y_n)$ are pairwise disjoint. Let us consider a sequence $\{z_n\}$ such that $z_n \in [x_n, y_n)$. Pick a strictly monotonic subsequence $\{z_{n_k}\}$ of $\{z_n\}$. Let $z \in \overline{X}$ be the supremum (in the case of increasing subsequence) or the infimum (in the opposite case) of $\{z_{n_k}\}$. Using Lemma 3, Lemma 5 or Lemma 6 (the last one in the case $z \notin X_0$) we obtain a contradiction. So, the case (i) of our theorem has been proved. Let now \mathcal{F} " consist of the sets belonging to $\mathcal{G}_l(x) \cup \mathcal{G}_r(x)$ for $x \in X_0$ and to $\mathcal{K}(x)$ for $x \in \overline{X} \setminus X_0$. For x = a we take $\mathcal{G}_r(a)$, and for x = b we take $\mathcal{G}_l(b)$. We claim that \mathcal{A} " = $S(\mathcal{F}$ "). By similar reasoning as previously, we verify that $(x, y) \in S(\mathcal{F}$ ") for each $x, y \in X_0$, x < y, and that each component of $A \in S(\mathcal{F}$ ") is an interval (maybe degenerated) with endpoints in $\{a\} \cup \{b\} \cup X_0$. In a similar way we obtain that A is a union of at most a finite family of disjoint components. So we have (ii).

Corollary 1. The algebra generated by intervals [x, y) and the algebra generated by intervals (x, y) with rational endpoints, considered in the space of the real numbers or of the rational numbers in some interval [a, b], are MB-representable.

PROOF. In our Theorem we put $X_0 = Q \cap [a, b], X = [a, b]$ or $X_0 = X = Q \cap [a, b]$, respectively.

Remark 1. New ideas that appeared in our paper, in comparison with [3, Theorem 2.1], are the following:

- (1) consideration of the family Σ of almost disjoint dense sets contained in some dense countable subset of X, instead of the family of disjoint dense subsets of [0, 1);
- (2) division of Σ into two disjoint subfamilies Σ_1, Σ_2 .

References

- M. Balcerzak, A. Bartoszewicz, K. Ciesielski, On Marczewski-Burstin representations of certain algebras, Real Anal. Exchange, 26(2) (2000–2001), 581–591.
- [2] M. Balcerzak, A. Bartoszewicz, P. Koszmider, On Marczewski-Burstin representable algebras, preprint.
- [3] M. Balcerzak, A. Bartoszewicz, J. Rzepecka, S. Wroński, *Marczewski fields and ideals*, Real Anal. Exchange, 26(2) (2000–2001), 703–715.
- [4] M. Balcerzak, J. Rzepecka, On Marczewski-Burstin representations of algebras and ideals, J. Appl. Anal., 9(2) (2003), 273–286.
- [5] J. B. Brown, H. Elalaoui-Talibi, Marczewski-Burstin like characterizations of σ-algebras, ideals, and measurable functions, Colloq. Math., 82 (1999), 227–286.

- [6] H. Elalaoui-Talibi, On Marczewski-Burstin like characterizations of certain σ-algebras and σ-ideals, Real Anal. Exchange, 26(1) (2000–2001), 413– 415.
- [7] P. Reardon, Ramsey, Lebesgue and Marczewski sets and the Baire property, Fund. Math., 149 (1996), 191–203.
- [8] J. Rzepecka, On Marczewski-Burstin representations of some algebras and ideals of sets, Ph.D. thesis (in Polish), Łódź Technical University, Łódź 2003.