Artur Bartoszewicz, Institute of Mathematics, Łódź Technical University, al. Politechniki 11, 1-2, 90-924 Łódź, Poland. email: arturbar@p.lodz.pl

MB-REPRESENTATIONS OF ALGEBRAS GENERATED BY INTERVALS

Abstract
We show various generalizations of the theorem from [3] concerning MB-representation of the interval algebra on $[0,1)$.

Let X be a nonempty set and let \mathcal{F} be a nonempty family of nonempty subsets of X. Following the idea of Burstin and Marczewski we define:

$$
S(\mathcal{F})=\{A \subset X:(\forall P \in \mathcal{F})(\exists Q \in \mathcal{F})(Q \subset A \cap P \text { or } Q \subset P \backslash A)\}
$$

and

$$
S_{0}(\mathcal{F})=\{A \subset X:(\forall P \in \mathcal{F})(\exists Q \in \mathcal{F})(Q \subset P \backslash A)\}
$$

Then $S(\mathcal{F})$ is an algebra (more precisely, a field) of subsets of X, and $S_{0}(\mathcal{F})$ is an ideal on X (See [3]).

We say that an algebra \mathcal{A} (a pair $\langle\mathcal{A}, \mathcal{I}\rangle$, where \mathcal{I} is an ideal contained in \mathcal{A}, respectively) of subsets of X has a Marczewski-Burstin representation if there exists a nonempty family \mathcal{F} of nonempty subsets of X, such that $\mathcal{A}=S(\mathcal{F})$ $\left(\langle\mathcal{A}, \mathcal{I}\rangle=\left\langle S(\mathcal{F}), S_{0}(\mathcal{F})\right\rangle\right.$, respectively). If in addition $\mathcal{F} \subset \mathcal{A}$ we say that $\langle\mathcal{A}, \mathcal{I}\rangle$ is inner MB-representable. MB-representations of algebras and ideals were recently considered in the papers [3], [1], [5], [6], [7].

In [3] it was proved (by the idea of S. Wroński) that the interval algebra \mathcal{A} generated by the intervals $[x, y)$ where $x, y \in[0,1)$ has outer MBrepresentation (i.e., $\mathcal{A}=S(\mathcal{F})$ and $\mathcal{F} \cap \mathcal{A}=\emptyset$). The construction used in the proof of this theorem was generalized in [4], [8], [2].

The aim of this paper is the modification of Wroński's construction which can be used to describe MB-representations of the following algebras on \mathbb{R} :

- the algebra generated by all intervals (or, what equivalent, by open intervals);

[^0]- the algebras generated by the intervals of some type (open or one-sideclosed) with the endpoints in the fixed set X_{0};
- the algebras generated by the intervals considered relative to a fixed set X dense in some interval in \mathbb{R}.

Fix an interval $[a, b]$ in the real line with $-\infty \leq a<b \leq+\infty$, and fix two sets X and X_{0} where $X_{0} \subset X$ and X is a dense subset of $[a, b]$. To simplify notation we write \bar{X} instead of $[a, b]$ and $[x, y),(x, y)$ instead of $[x, y) \cap X$, $(x, y) \cap X$, respectively. The algebras of sets considered in the paper will always constitute subfields of $\mathcal{P}(X)$.

Let \mathcal{D} be a fixed countable dense subset of X (consequently of \bar{X}).
Lemma 1. There exists a family of almost disjoint sets $\mathcal{D}_{\alpha} \subset \mathcal{D}, \alpha<2^{\omega}$, such that for any $\alpha, \mathcal{D}_{\alpha}$ is a dense subset of X.

Proof. We need a simple modification of the well known construction. Let $\mathcal{J}_{0}, \mathcal{J}_{1}, \mathcal{J}_{2}, \ldots$ be an enumeration of open intervals with endpoints in \mathcal{D}. For any $n<\omega$ choose inductively distinct points $d_{\xi} \in \mathcal{D} \cap \mathcal{J}_{n}, \xi \in\{0,1\}^{n}$. Then put

$$
\mathcal{D}_{\alpha}=\left\{d_{\xi}: \xi=\alpha \mid n, n<\omega\right\}, \alpha<2^{\omega}
$$

Denote by Σ the family of sets $\left\{\mathcal{D}_{\alpha}: \alpha<2^{\omega}\right\}$ from Lemma 1. Let us divide Σ into two disjoint sets Σ_{1} and Σ_{2} with $\left|\Sigma_{1}\right|=\left|\Sigma_{2}\right|=2^{\omega}$. Let $F_{i}(i=1,2)$ be bijections from \bar{X} onto Σ_{i} such that $x \notin F_{i}(x)$ for any $x \in \bar{X}$. For any $x \in \bar{X} \backslash\{a, b\}$ we define the following families of sets:

$$
\begin{aligned}
\mathcal{F}_{i r}(x) & =\left\{[x, y) \backslash F_{i}(x): y>x ; y \in X\right\} \text { for } i=1,2 \\
\mathcal{F}_{r}(x) & =\mathcal{F}_{1 r}(x) \cup \mathcal{F}_{2 r}(x) \\
\mathcal{G}_{i r}(x) & =\left\{(x, y) \backslash F_{i}(x): y>x ; y \in X\right\} \text { for } i=1,2 \\
\mathcal{G}_{r}(x) & =\mathcal{G}_{1 r}(x) \cup \mathcal{G}_{2 r}(x) \\
\mathcal{G}_{i l}(x) & =\left\{(y, x) \backslash F_{i}(x): y<x ; y \in X\right\} \text { for } i=1,2 \\
\mathcal{G}_{l}(x) & =\mathcal{G}_{1 l}(x) \cup \mathcal{G}_{2 l}(x) \\
\mathcal{K}_{i}(x) & =\left\{(y, t) \backslash F_{i}(x): y<x<t ; y, t \in X\right\} \text { for } i=1,2 \\
\mathcal{K}(x) & =\mathcal{K}_{1}(x) \cup \mathcal{K}_{2}(x) .
\end{aligned}
$$

For $x=a$ we define only the families of sets with the index " r ", and for $x=b$, only with the index " l ".

Consider a family $\mathcal{F} \subset \mathcal{P}(X)$ with the following properties:
(1) \mathcal{F} contains only sets of types $\mathcal{F}_{r}(x), \mathcal{G}_{r}(x), \mathcal{G}_{l}(x)$ and $\mathcal{K}(x)$ where $x \in \bar{X}$.
(2) For any $x \in \bar{X} \backslash\{a, b\}$ exactly one of the following possibilities is satisfied:
(a) $\mathcal{G}_{l}(x) \cup \mathcal{G}_{r}(x) \subset \mathcal{F},\left(\mathcal{F}_{r}(x) \cup \mathcal{K}(x)\right) \cap \mathcal{F}=\emptyset$
(b) $\mathcal{G}_{l}(x) \cup \mathcal{F}_{r}(x) \subset \mathcal{F},\left(\mathcal{G}_{r}(x) \cup \mathcal{K}(x)\right) \cap \mathcal{F}=\emptyset$
(c) $\mathcal{K}(x) \subset \mathcal{F},\left(\mathcal{G}_{l}(x) \cup \mathcal{G}_{r}(x) \cup \mathcal{F}_{r}(x)\right) \cap \mathcal{F}=\emptyset$.
(3) For the point a we have

$$
\begin{aligned}
& \mathcal{G}_{r}(a) \subset \mathcal{F} \text { and } \mathcal{F}_{r}(a) \cap \mathcal{F}=\emptyset \text { or } \\
& \mathcal{F}_{r}(a) \subset \mathcal{F} \text { and } \mathcal{G}_{r}(a) \cap \mathcal{F}=\emptyset,
\end{aligned}
$$

and for the point b, always $\mathcal{G}_{l}(b) \subset \mathcal{F}$.
Lemma 2. Assume that a family $\mathcal{F} \subset \mathcal{P}(X)$ has properties (1)-(3). Let $P, Q \in \mathcal{F}$ and $Q \subset P$. Then both the sets P and Q belong to the same of the classes $\mathcal{F}_{i r}(x), \mathcal{G}_{i r}(x), \mathcal{G}_{i l}(x), \mathcal{K}_{i}(x)$ with the same parameters i, x.

Proof. This follows immediately from (1)-(3) and from the fact that the sets $F_{i}(x)$ are almost disjoint.
We assume that a family \mathcal{F} considered in the next lemmas satisfies conditions (1)-(3), and consequently, it has the property described in the assertion of Lemma 2.

Lemma 3. Assume that for some $x \in \bar{X}$ we have $\mathcal{F}_{r}(x) \subset \mathcal{F}$. Let $x \in A \in$ $S(\mathcal{F})$ for some set $A \in \mathcal{P}(X)$. Then there exists $y \in X$ such that $y>x$ and $[x, y) \subset A$.

Proof. Consider $U_{1} \in \mathcal{F}_{1 r}(x)$. Since $A \in S(\mathcal{F})$, there is a $V_{1} \in \mathcal{F}$ such that either $V_{1} \subset A \cap U_{1}$ or $V_{1} \subset U_{1} \backslash A$. By Lemma 2 we have $V_{1} \in \mathcal{F}_{1 r}(x)$. Since $x \in A \cap V_{1}$, we have $V_{1} \subset U_{1} \cap A \subset A$. Let $V_{1}=\left[x, y_{1}\right) \backslash F_{1}(x)$. Taking $U_{2} \in \mathcal{F}_{2 r}$, in the same way we obtain a set $V_{2}=\left[x, y_{2}\right) \backslash F_{2}(x) \subset U_{2} \cap A \subset A$. Let $y_{0}=\min \left\{y_{1}, y_{2}\right\}$. Because $V_{1} \cup V_{2} \subset A$, we have $\left[x, y_{0}\right) \backslash\left(F_{1}(x) \cap F_{2}(x)\right) \subset A$. By the almost disjointedness of $F_{1}(x)$ and $F_{2}(x)$, there exists a $y \leq y_{0}$ for which $[x, y) \subset A$.

Lemma 4. Assume that $\mathcal{G}_{r}(x) \subset \mathcal{F}$ and $A \in S(\mathcal{F})$. Then there exists a $y \in X$ such that $y>x$ and either $(x, y) \subset A$ or $(x, y) \subset A^{c}$.

Proof. Consider a $U_{1} \in \mathcal{G}_{1 r}(x)$. So, there exists $V_{1} \in \mathcal{F}$ such that either $V_{1} \subset A \cap U_{1}$ or $V_{1} \subset U_{1} \backslash A$. By Lemma 2 we have $V_{1} \in \mathcal{G}_{1 r}(x)$. Assume the first possibility, i.e. $V_{1} \subset A \cap U_{1} \subset A$. Put $V_{1}=\left(x, y_{1}\right) \backslash F_{1}(x)$ and let $U_{2} \in \mathcal{G}_{2 r}(x)$. By the same considerations, there exists $V_{2} \in \mathcal{G}_{2 r}(x)$ such that
either $V_{2} \subset A \cap U_{2}$ or $V_{2} \subset U_{2} \backslash A$. By our assumption $V_{1} \subset A \cap U_{1}$, only the first condition is possible (we have $V_{1} \cap V_{2} \neq \emptyset$). Hence there exists y_{2} such that $\left(x, y_{2}\right) \backslash F_{2}(x) \subset U_{2} \cap A \subset A$. As in the previous lemma we obtain that for some y we have $(x, y) \subset A$. By the same reasoning, if $V_{1} \subset U_{1} \backslash A$ we obtain $(x, y) \subset A^{c}$ for some $y \in X$.

Lemma 5. Assume that $\mathcal{G}_{l}(x) \subset \mathcal{F}$ and let $A \in S(\mathcal{F})$. Then there exists a $y \in X$ such that $y<x$ and either $(y, x) \subset A$ or $(y, x) \subset A^{c}$.

Proof. Similar as for Lemma 4.
Lemma 6. Assume that $\mathcal{K}(x) \subset \mathcal{F}$ and let $A \in S(\mathcal{F})$. Then there exist $y, t \in X$ such that $y<x<t$ and either $(y, t) \subset A$ or $(y, t) \subset A^{c}$.

Proof. Consider a $U_{1} \in \mathcal{K}_{1}(x)$. Then by Lemma 2 there exists a $V_{1} \in \mathcal{K}_{1}(x)$ such that either $V_{1} \subset U_{1} \cap A$ or $V_{1} \subset U_{1} \backslash A$. If the first possibility holds, then similarly as in the proof of the Lemma 4 we obtain, using $U_{2} \in \mathcal{K}_{2}(x)$ and $V_{2} \subset U_{2} \cap A$, that for some y, t we have $(y, t) \subset A$. In the second case we can construct an interval $(y, t) \subset A^{c}$.

Theorem 1. Let X be a dense subset of $\bar{X}=[a, b] \subset \bar{R}$ and X_{0} be an arbitrary fixed subset of X. Consider the following algebras $\mathcal{A}^{\prime}, \mathcal{A} " \subset \mathcal{P}(X)$:
(i) \mathcal{A}^{\prime} generated by all intervals $[x, y)$ in X, with $x, y \in X_{0}$, and
(ii) \mathcal{A} " generated by all intervals (x, y) in X, with $x, y \in X_{0}$.

Then \mathcal{A}^{\prime} and \mathcal{A} " are $M B$-representable.
Proof. Let \mathcal{F}^{\prime} consist of the sets belonging to $\mathcal{G}_{l}(x) \cup \mathcal{F}_{r}(x)$ for $x \in X_{0}$, and of the sets belonging to $\mathcal{K}(x)$ for $x \in \bar{X} \backslash X_{0}$ (for $x=a$, we take $\mathcal{G}_{r}(a)$ if $a \notin X_{0}$ and $\mathcal{F}_{r}(a)$ if $a \in X_{0}$; for $x=b$ we take $\left.\mathcal{G}_{l}(b)\right)$.

We claim that $\mathcal{A}^{\prime}=S\left(\mathcal{F}^{\prime}\right)$. Indeed, any interval $[x, y)$, for $x, y \in X_{0}$, belongs to $S\left(\mathcal{F}^{\prime}\right)$. By the component of a set $A \in \mathcal{P}(X)$ we understand any maximal interval (maybe degenerated to one point) contained in A. From Lemmas 3 and 6 it follows that each component of a set $A \in S\left(\mathcal{F}^{\prime}\right)$ is of the form $[x, y)$ or $[x, b]$ where $x \in\{a\} \cup X_{0}, y \in X_{0}$. So we only need to show that if $A \in S\left(\mathcal{F}^{\prime}\right)$, then A is a union of at most a finite family of disjoint intervals. Suppose that $\bigcup_{n=1}^{\infty}\left[x_{n}, y_{n}\right) \subset A$ where $\left[x_{n}, y_{n}\right)$ are pairwise disjoint. Let us consider a sequence $\left\{z_{n}\right\}$ such that $z_{n} \in\left[x_{n}, y_{n}\right)$. Pick a strictly monotonic subsequence $\left\{z_{n_{k}}\right\}$ of $\left\{z_{n}\right\}$. Let $z \in \bar{X}$ be the supremum (in the case of increasing subsequence) or the infimum (in the opposite case) of $\left\{z_{n_{k}}\right\}$. Using Lemma 3, Lemma 5 or Lemma 6 (the last one in the case $z \notin X_{0}$) we obtain a contradiction. So, the case (i) of our theorem has been proved. Let now
$\mathcal{F}^{\prime \prime}$ consist of the sets belonging to $\mathcal{G}_{l}(x) \cup \mathcal{G}_{r}(x)$ for $x \in X_{0}$ and to $\mathcal{K}(x)$ for $x \in \bar{X} \backslash X_{0}$. For $x=a$ we take $\mathcal{G}_{r}(a)$, and for $x=b$ we take $\mathcal{G}_{l}(b)$. We claim that \mathcal{A} " $=S\left(\mathcal{F}^{\prime \prime}\right)$. By similar reasoning as previously, we verify that $(x, y) \in S\left(\mathcal{F}^{\prime \prime}\right)$ for each $x, y \in X_{0}, x<y$, and that each component of $A \in S\left(\mathcal{F}^{\prime \prime}\right)$ is an interval (maybe degenerated) with endpoints in $\{a\} \cup\{b\} \cup X_{0}$. In a similar way we obtain that A is a union of at most a finite family of disjoint components. So we have (ii).

Corollary 1. The algebra generated by intervals $[x, y)$ and the algebra generated by intervals (x, y) with rational endpoints, considered in the space of the real numbers or of the rational numbers in some interval $[a, b]$, are $M B$ representable.

Proof. In our Theorem we put $X_{0}=Q \cap[a, b], X=[a, b]$ or $X_{0}=X=$ $Q \cap[a, b]$, respectively.

Remark 1. New ideas that appeared in our paper, in comparison with [3, Theorem 2.1], are the following:
(1) consideration of the family Σ of almost disjoint dense sets contained in some dense countable subset of X, instead of the family of disjoint dense subsets of $[0,1)$;
(2) division of Σ into two disjoint subfamilies Σ_{1}, Σ_{2}.

References

[1] M. Balcerzak, A. Bartoszewicz, K. Ciesielski, On Marczewski-Burstin representations of certain algebras, Real Anal. Exchange, 26(2) (2000-2001), 581-591.
[2] M. Balcerzak, A. Bartoszewicz, P. Koszmider, On Marczewski-Burstin representable algebras, preprint.
[3] M. Balcerzak, A. Bartoszewicz, J. Rzepecka, S. Wroński, Marczewski fields and ideals, Real Anal. Exchange, 26(2) (2000-2001), 703-715.
[4] M. Balcerzak, J. Rzepecka, On Marczewski-Burstin representations of algebras and ideals, J. Appl. Anal., 9(2) (2003), 273-286.
[5] J. B. Brown, H. Elalaoui-Talibi, Marczewski-Burstin like characterizations of σ-algebras, ideals, and measurable functions, Colloq. Math., 82 (1999), 227-286.
[6] H. Elalaoui-Talibi, On Marczewski-Burstin like characterizations of certain σ-algebras and σ-ideals, Real Anal. Exchange, 26(1) (2000-2001), 413415.
[7] P. Reardon, Ramsey, Lebesgue and Marczewski sets and the Baire property, Fund. Math., 149 (1996), 191-203.
[8] J. Rzepecka, On Marczewski-Burstin representations of some algebras and ideals of sets, Ph.D. thesis (in Polish), Łódź Technical University, Łódź 2003.

[^0]: Key Words: MB-representation, interval algebra
 Mathematical Reviews subject classification: Primary 28A05; Secondary 06E25.
 Received by the editors November 7, 2003
 Communicated by: Jack B. Brown

