Nikolaos Efstathiou Sofronidis, Department of Economics, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece. email: sofnik@otenet.gr

TURBULENCE PHENOMENA IN ELEMENTARY REAL ANALYSIS

Abstract

The purpose of this note is to show that if $-\infty < \alpha < \beta < \infty$ and E^{β}_{α} is the equivalence relation, which is defined on the Polish group $C([\alpha,\beta),\mathbb{R}^{*}_{+})$ by $fE^{\beta}_{\alpha}g \iff \lim_{x\to\beta^{-}}\frac{f(x)}{g(x)}=1$, where f, g are in $C([\alpha,\beta),\mathbb{R}^{*}_{+})$, then E^{β}_{α} is induced by a turbulent Polish group action. Hence if L is any countable language and $\mathcal{A}: C([\alpha,\beta),\mathbb{R}^{*}_{+}) \to X_{L}$ is any Baire measurable function from the Polish group $C([\alpha,\beta),\mathbb{R}^{*}_{+})$ to the Polish space X_{L} of countably infinite structures for L with the property that $fE^{\beta}_{\alpha}g \Rightarrow \mathcal{A}(f) \cong \mathcal{A}(g)$, whenever f, g are in $C([\alpha,\beta),\mathbb{R}^{*}_{+})$, then there exists a E^{β}_{α} -invariant comeager subset S of $C([\alpha,\beta),\mathbb{R}^{*}_{+})$ for which all countable structures in $\mathcal{A}[S]$ are isomorphic.

1 Introduction

An equivalence relation which is introduced in elementary calculus (see, for example, page 124 of Nikolsky [1977]) is the following. Given any real numbers α and β such that $\alpha < \beta$, two continuous functions $f : [\alpha, \beta) \to \mathbb{R}^*_+$ and g : $[\alpha, \beta) \to \mathbb{R}^*_+$ are said to be *equivalent* or *asymptotically equal* as the argument tends to β from the left, in symbols $f E^{\beta}_{\alpha} g$, if

$$\lim_{x \to \beta^-} \frac{f(x)}{g(x)} = 1$$

Even though this equivalence relation seems to be very simple (for it is introduced in elementary calculus!), our purpose in this paper is to show that it is complicated.

A way to measure the complexity of an equivalence relation E defined on some Polish space X is to determine whether there exists a countable language

Mathematical Reviews subject classification: Primary 03E15, 26A99

813

Key Words: Asymptotic Equality, Turbulence

Received by the editors September 25, 2003

Communicated by: R. Daniel Mauldin

L and a non-trivial Baire measurable function $f:X\to X_L$ with the property that

$$(\forall (x,y) \in X^2) (xEy \Rightarrow f(x) \cong f(y)) \tag{(\star)}$$

Here X_L is the Polish space of countably infinite structures for L (see, for example, 16.5 on page 96 of Kechris [1995]) and \cong stands for isomorphism of structures, while $f: X \to X_L$ is said to be trivial if there exists a E-invariant comeager subset A of X for which all countable structures in f[A] are isomorphic. When such a language L and such a non-trivial function $f: X \to X_L$ exist, we say that E is classifiable by countable structures and E is considered to be "less complicated" than the equivalence relation of isomorphism between countable structures. But if for any countable language L, every Baire measurable function $f: X \to X_L$ with property (\star) is trivial, then we say that E is not classifiable by countable structures and E is considered to be "more complicated" than the equivalence relation of isomorphism between structures.

A method to prove that an equivalence relation E defined on some Polish space X is not classifiable by countable structures is to show that there exists a Polish group G acting continuously on X with the following properties:

• E is induced by the action of G on X; that is, we have $E = E_G^X$, where E_G^X is the corresponding orbit equivalence relation; namely,

$$xE_G^X y \iff (\exists g \in G)(g \cdot x = y),$$

whenever x, y are in X.

• The action of G on X is generically turbulent.

We explain what we mean below. (See, for example, Chapter 3 on pages 37-58 of Hjorth [2000] or pages 1461-1462 of Kechris-Sofronidis [2001].)

Definition. (Hjorth) Let G be any Polish group acting continuously on a Polish space X and let $x \in X$. For any open neighborhood U of x in X and for any symmetric open neighborhood V of 1^G in G, the (U, V)-local orbit O(x, U, V) of x in X is defined as follows:

 $y \in O(x, U, V)$ if there exist g_0, \ldots, g_k in V $(k \in \mathbb{N})$ such that if $x_0 = x$ and $x_{i+1} = g_i \cdot x_i$ for every $i \in \{0, \ldots, k\}$, then all the x_i are in U and $x_{k+1} = y$.

The action of G on X is said to be turbulent at the point x, in symbols $x \in T_G^X$, if for any such U and V, there exists an open neighborhood U' of x in X such that $U' \subseteq U$ and O(x, U, V) is dense in U'.

814

Theorem. (Hjorth) Let G be any Polish group acting continuously on a Polish space X in such a way that the orbits of the action are meager and at least one orbit is dense. Then the following are equivalent:

- The action of G on X is generically turbulent, in the sense that T_G^X is comeager in X.
- For any countable language L and for any Baire measurable function
 f: X → X_L with the property that

$$(\forall (x,y) \in X^2)(xE_G^X y \Rightarrow f(x) \cong f(y)),$$

there exists a E_G^X -invariant comeager subset A of X for which all countable structures in f[A] are isomorphic.

We are finally in position to state our result.

Theorem. If $-\infty < \alpha < \beta < \infty$, then the relation E_{α}^{β} of asymptotic equality of functions in the Polish group $C([\alpha, \beta), \mathbb{R}^*_+)$ as the argument tends to β from the left is induced by a turbulent Polish group action.

Hence if L is any countable language and $\mathcal{A} : C([\alpha, \beta), \mathbb{R}^*_+) \to X_L$ is any Baire measurable function with the property that

$$(\forall (f,g) \in C([\alpha,\beta), \mathbb{R}^*_+)^2)(fE^\beta_\alpha g \Rightarrow \mathcal{A}(f) \cong \mathcal{A}(g)),$$

then there is a E^{β}_{α} -invariant comeager subset S of $C([\alpha, \beta), \mathbb{R}^{*}_{+})$ for which all countable structures in $\mathcal{A}[S]$ are isomorphic. In other words, the equivalence relation of asymptotic equality of functions in the Polish group $C([\alpha, \beta), \mathbb{R}^{*}_{+})$ as the argument tends to β from the left is "more complicated" than the equivalence relation of isomorphism between countable structures.

2 The Proof of the Theorem

In what follows let α and β be two arbitrary but fixed real numbers such that $\alpha < \beta$.

Proposition 1. $C([\alpha, \beta), \mathbb{R}^*_+)$ equipped with the compact-open topology constitutes a commutative Polish group under the operation of point-wise multiplication.

PROOF. Since obviously $[\alpha, \beta) = \bigcap_{n \in \mathbb{N}} \left(\alpha - \frac{1}{n+1}, \beta \right)$ constitutes a G_{δ} subset of \mathbb{R} and $\mathbb{R}^*_+ = (0, \infty)$ is open and therefore G_{δ} in \mathbb{R} , by virtue of 3.11 on page

17 of Kechris [1995], we deduce that $[\alpha, \beta)$ and \mathbb{R}^*_+ are Polish in the relative topology. Moreover $[\alpha, \beta)$ is easily seen to be locally compact. Therefore, Theorem 1 on page 93 and Theorem 3 on page 94 of Kuratowski [1968] imply that the compact-open topology on $C([\alpha, \beta), \mathbb{R}^*_+)$ is Polish. The commutative group operation on $C([\alpha, \beta), \mathbb{R}^*_+)$ is point-wise multiplication. Thus, in order to prove that $C([\alpha, \beta), \mathbb{R}^*_+)$ is a commutative Polish group, by virtue of 9.15 on page 62 of Kechris [1995], it is enough to show that the mapping

$$\Phi: C([\alpha,\beta),\mathbb{R}^*_+) \ni f \mapsto \frac{1}{f} \in C([\alpha,\beta),\mathbb{R}^*_+)$$

is continuous and given any $g \in C([\alpha, \beta), \mathbb{R}^*_+)$, the mapping

$$\Psi_g: C([\alpha,\beta),\mathbb{R}^*_+) \ni f \mapsto fg \in C([\alpha,\beta),\mathbb{R}^*_+)$$

is also continuous. So let $f \in C([\alpha, \beta), \mathbb{R}^*_+)$, $\epsilon > 0$ and $0 < \eta < \beta - \alpha$. If $M = \max_{\alpha \le x \le \alpha + \eta} g(x) > 0$ and $h \in C([\alpha, \beta), \mathbb{R}^*_+)$ is such that $\max_{\alpha \le x \le \alpha + \eta} |f(x) - h(x)| < \frac{\epsilon}{M}$, then given $\alpha \le x \le \alpha + \eta$, we have

$$|f(x)g(x) - h(x)g(x)| \le M|f(x) - h(x)|.$$

Hence $\max_{\alpha \leq x \leq \alpha+\eta} |f(x)g(x) - h(x)g(x)| \leq M \cdot \max_{\alpha \leq x \leq \alpha+\eta} |f(x) - h(x)| < \epsilon.$ Therefore Ψ_g is continuous at f. The proof that Φ is also continuous at f is left as an exercise.

The following proposition constitutes an immediate consequence of Proposition 5.6 (ii) on pages 1470-1471 of Kechris-Sofronidis [2001].

Proposition 2. $C([\alpha, \beta], \mathbb{R}^*_+)$ equipped with the topology of uniform convergence constitutes a Polish group under the operation of point-wise multiplication.

A corollary of Proposition 2 is the following.

Proposition 3. $\mathcal{G} = \{f \in C([\alpha, \beta], \mathbb{R}^*_+) : f(\beta) = 1\}$ constitutes a closed subgroup of $C([\alpha, \beta], \mathbb{R}^*_+)$ and consequently it constitutes a Polish group with respect to the operation of point-wise multiplication and the topology of uniform convergence.

Proposition 4. For any $f \in C([\alpha, \beta), \mathbb{R}^*_+)$, the equivalence class $[f]_{E^{\beta}_{\alpha}}$ of f is dense in $C([\alpha, \beta), \mathbb{R}^*_+)$.

PROOF. Let $g \in C([\alpha, \beta), \mathbb{R}^*_+)$ and let $0 < \eta < \beta - \alpha$. It is enough to construct $h \in [f]_{E^{\beta}_{\alpha}}$ such that h = g on $[\alpha, \alpha + \eta]$. So let $\theta > 0$ be such that $\alpha + \eta + \theta < \beta$. We set

$$h(x) = \begin{cases} g(x) & \text{if } x \in [\alpha, \alpha + \eta) \\ g(\alpha + \eta) + \frac{f(\alpha + \eta + \theta) - g(\alpha + \eta)}{\theta} (x - \alpha - \eta) & \text{if } x \in [\alpha + \eta, \alpha + \eta + \theta) \\ f(x) & \text{if } x \in [\alpha + \eta + \theta, \beta) \end{cases}$$

It is not difficult to verify that $h \in C([\alpha, \beta), \mathbb{R}^*_+)$ and $h \in [f]_{E_{\alpha}^{\beta}}$, while by definition h = g on $[\alpha, \alpha + \eta]$.

Proposition 5. For any $f \in C([\alpha, \beta), \mathbb{R}^*_+)$, the equivalence class $[f]_{E^{\beta}_{\alpha}}$ of f is meager in $C([\alpha, \beta), \mathbb{R}^*_+)$.

PROOF. If $g \in [f]_{E_{\alpha}^{\beta}}$, then $\lim_{x \to \beta^{-}} \frac{g(x)}{f(x)} = 1$. Hence there exists $r \in \mathbb{Q} \cap (\alpha, \beta)$ such that for any $x \in [r, \beta)$, we have $\left| \frac{g(x)}{f(x)} - 1 \right| < \frac{1}{2} \Rightarrow g(x) < \frac{3}{2}f(x)$. Therefore, we have $[f]_{E_{\alpha}^{\beta}} \subseteq M$, where

$$M = \bigcup_{r \in \mathbb{Q} \cap (\alpha, \beta)} \bigcap_{x \in [r, \beta)} \left\{ g \in C([\alpha, \beta), \mathbb{R}^*_+) : g(x) \le \frac{3}{2} f(x) \right\}$$

is easily seen to be F_{σ} in $C([\alpha, \beta), \mathbb{R}^*_+)$. Hence it is enough to show that M is meager or (equivalently) that $G = C([\alpha, \beta), \mathbb{R}^*_+) \setminus M$ is dense in $C([\alpha, \beta), \mathbb{R}^*_+)$. But this can be shown by similar methods as the ones employed in the proof of Proposition 4.

Proposition 6. The mapping

$$\mathcal{A}: \mathcal{G} \times C([\alpha, \beta), \mathbb{R}^*_+) \ni (g, f) \mapsto g \cdot f = (g|[\alpha, \beta))f \in C([\alpha, \beta), \mathbb{R}^*_+)$$

constitutes a continuous action of \mathcal{G} on $C([\alpha, \beta), \mathbb{R}^*_+)$.

PROOF. It is not difficult to verify that the mapping in question constitutes an action of \mathcal{G} on $C([\alpha, \beta), \mathbb{R}^*_+)$. Since

$$C([\alpha,\beta],\mathbb{R}^*_+) \ni g \mapsto g | [\alpha,\beta) \in C([\alpha,\beta),\mathbb{R}^*_+)$$

is easily seen to be continuous, it follows that so is

$$\mathcal{G} \ni g \mapsto g | [\alpha, \beta) \in C([\alpha, \beta), \mathbb{R}^*_+)$$

and by virtue of Proposition 1 we deduce that \mathcal{A} is continuous because so is

$$C([\alpha,\beta),\mathbb{R}^*_+)^2 \ni (f,g) \mapsto fg \in C([\alpha,\beta),\mathbb{R}^*_+).$$

Proposition 7. E_{α}^{β} is induced by the action of \mathcal{G} on $C([\alpha, \beta), \mathbb{R}^*_+)$.

PROOF. What we need to show is that given any u, v in $C([\alpha, \beta), \mathbb{R}^*_+)$, we have

$$uE_{\alpha}^{\beta}v \iff (\exists g \in \mathcal{G})(v = g \cdot u)$$

Indeed, if there exists $g \in \mathcal{G}$ such that $v = g \cdot u$, then

$$\lim_{x \to \beta^-} \frac{v(x)}{u(x)} = \lim_{x \to \beta^-} g(x) = 1,$$

which implies that $vE_{\alpha}^{\beta}u$. Conversely, if $vE_{\alpha}^{\beta}u$, then $\lim_{x\to\beta^{-}}\frac{v(x)}{u(x)}=1$. Hence it is not difficult to verify that the function $g:[\alpha,\beta]\to\mathbb{R}^{*}_{+}$ defined by the relation

$$g(x) = \begin{cases} \frac{v(x)}{u(x)} & \text{if } x \in [\alpha, \beta) \\ 1 & \text{if } x = \beta \end{cases}$$

is in \mathcal{G} and moreover $v = g \cdot u$.

In what follows let

$$U(f;\epsilon,\eta) = \left\{ g \in C([\alpha,\beta),\mathbb{R}^*_+) : \max_{\alpha \le x \le \alpha + \eta} |f(x) - g(x)| < \epsilon \right\},\$$

whenever $f \in C([\alpha, \beta), \mathbb{R}^*_+)$, $\epsilon > 0$ and $0 < \eta < \beta - \alpha$. It is not difficult to see that the $U(f; \epsilon, \eta)$ form a base of open neighborhoods of f in $C([\alpha, \beta), \mathbb{R}^*_+)$.

Proposition 8. If $f \in C([\alpha, \beta), \mathbb{R}^*_+)$, $\epsilon > 0$, $0 < \eta < \beta - \alpha$ and $g \in \mathcal{G}$ are such that $g \cdot f \in U(f; \epsilon, \eta)$, then there exists a continuous path

$$[0,1] \ni t \mapsto h_t \in \mathcal{G}$$

such that $h_0 = 1^{\mathcal{G}}$, $h_1 = g$ and $h_t \cdot f \in U(f; \epsilon, \eta)$ for every $t \in [0, 1]$.

PROOF. Given $t \in [0, 1]$, we set $h_t = 1 - t + tg$ and it is not difficult to verify that $h_t \in \mathcal{G}$, while obviously $h_0 = 1^{\mathcal{G}}$ and $h_1 = g$. Moreover, if s, t are in [0, 1], then for any $x \in [\alpha, \beta]$, we have

$$h_s(x) - h_t(x) = |g(x) - 1| \cdot |s - t|.$$

Hence

$$\max_{\alpha \le x \le \beta} |h_s(x) - h_t(x)| \le C|s - t|,$$

where

$$C = \max_{\alpha \le x \le \beta} |g(x) - 1| \in \mathbb{R}_+.$$

Therefore, we deduce that the path

$$[0,1] \ni t \mapsto h_t \in \mathcal{G}$$

is continuous. What is left to show is that $h_t \cdot f \in U(f; \epsilon, \eta)$ for every $t \in [0, 1]$. So let $t \in [0, 1]$ and let $x \in [\alpha, \alpha + \eta]$. Then

$$|(h_t \cdot f)(x) - f(x)| = t|g(x)f(x) - f(x)| \le |g(x)f(x) - f(x)| = |(g \cdot f)(x) - f(x)|,$$

hence

$$\max_{\alpha \le x \le \alpha + \eta} |(h_t \cdot f)(x) - f(x)| \le \max_{\alpha \le x \le \alpha + \eta} |(g \cdot f)(x) - f(x)| < \epsilon,$$

since $g \cdot f \in U(f; \epsilon, \eta)$, and consequently $h_t \cdot f \in U(f; \epsilon, \eta)$.

The following proposition is Lemma 5.7 on page 1472 of Kechris-Sofronidis [2001].

Proposition 9. Let G be any Polish group acting continuously on a Polish space X and let $x \in X$. Suppose $G \cdot x$ is dense in X and there exists a basis of open neighborhoods U of x in X with the property that for any $g \in G$ for which $g \cdot x \in U$, there exists $h \in G$ and a continuous path

$$[0,1] \ni t \mapsto h_t \in G$$

such that $g \cdot x = h \cdot x$, $h_0 = 1^G$, $h_1 = h$ and $h_t \cdot x \in U$, whenever $t \in [0, 1]$. Then the action of G on X is turbulent at the point x.

PROOF. Let V be any open neighborhood of x in X and let W be any symmetric open neighborhood of the identity in G. Then there exists an open neighborhood U of x in X which is contained in V and satisfies the condition stated in the formulation of Proposition 9. We need only prove that

$$O(x, U, W) = U \cap (G \cdot x).$$

So let $g \in G$ be such that $g \cdot x \in U \cap (G \cdot x)$ and let $h \in G$ and

$$[0,1] \ni t \mapsto h_t \in G$$

be as in the statement of Proposition 9. Then there exists a positive integer N such that for any s, t in [0, 1], we have

$$|s-t| \le N^{-1} \Rightarrow h_s \cdot h_t^{-1} \in W.$$

Hence, setting $t_0 = 0$, $t_k = t_{k-1} + N^{-1}$ and $g_k = h_{t_k} \cdot h_{t_{k-1}}^{-1}$, whenever $k \in \{1, \ldots, N\}$, it follows immediately that $g_k \in W$ and

$$g_k \dots g_1 \cdot x = h_{t_k} \cdot x \in U_t$$

whenever $k \in \{1, \ldots, N\}$, while

$$g_N \dots g_1 \cdot x = g \cdot x.$$

We have thus proved that $O(x, U, W) = U \cap (G \cdot x)$.

Thus, Propositions 4–9 imply that E_{α}^{β} is induced by a turbulent Polish group action and the proof of the Theorem is complete.

References

- G. Hjorth, Classification and Orbit Equivalence Relations, Mathematical Surveys and Monographs, 75, American Mathematical Society, 2000.
- [2] A. S. Kechris, *Classical Descriptive Set Theory*, Springer-Verlag, New York, 1995.
- [3] A. S. Kechris and N. E. Sofronidis, A strong generic ergodicity property of unitary and self-adjoint operators, Ergodic Theory and Dynamical Systems 21 (2001), 1459–1479.
- [4] K. Kuratowski, Topology, Volume II, Academic Press, New York, 1968.
- [5] S. M. Nikolsky, A Course in Mathematical Analysis, Volume 1, Mir Publishers, Moscow, 1977.