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Abstract

The purpose of this note is to show that if −∞ < α < β < ∞
and Eβ

α is the equivalence relation, which is defined on the Polish group
C([α, β), R∗+) by fEβ

αg ⇐⇒ limx→β−
f(x)
g(x)

= 1, where f , g are in

C([α, β), R∗+), then Eβ
α is induced by a turbulent Polish group action.

Hence if L is any countable language and A : C([α, β), R∗+)→ XL is any
Baire measurable function from the Polish group C([α, β), R∗+) to the
Polish space XL of countably infinite structures for L with the property
that fEβ

αg ⇒ A(f) ∼= A(g), whenever f , g are in C([α, β), R∗+), then
there exists a Eβ

α-invariant comeager subset S of C([α, β), R∗+) for which
all countable structures in A[S] are isomorphic.

1 Introduction

An equivalence relation which is introduced in elementary calculus (see, for
example, page 124 of Nikolsky [1977]) is the following. Given any real numbers
α and β such that α < β, two continuous functions f : [α, β) → R∗+ and g :
[α, β) → R∗+ are said to be equivalent or asymptotically equal as the argument
tends to β from the left, in symbols fEβ

αg, if

lim
x→β−

f(x)
g(x)

= 1.

Even though this equivalence relation seems to be very simple (for it is
introduced in elementary calculus!), our purpose in this paper is to show that
it is complicated.

A way to measure the complexity of an equivalence relation E defined on
some Polish space X is to determine whether there exists a countable language
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L and a non-trivial Baire measurable function f : X → XL with the property
that

(∀(x, y) ∈ X2)(xEy ⇒ f(x) ∼= f(y)) (?)

Here XL is the Polish space of countably infinite structures for L (see, for
example, 16.5 on page 96 of Kechris [1995]) and ∼= stands for isomorphism of
structures, while f : X → XL is said to be trivial if there exists a E-invariant
comeager subset A of X for which all countable structures in f [A] are isomor-
phic. When such a language L and such a non-trivial function f : X → XL

exist, we say that E is classifiable by countable structures and E is considered
to be “less complicated” than the equivalence relation of isomorphism between
countable structures. But if for any countable language L, every Baire mea-
surable function f : X → XL with property (?) is trivial, then we say that
E is not classifiable by countable structures and E is considered to be “more
complicated” than the equivalence relation of isomorphism between countable
structures.

A method to prove that an equivalence relation E defined on some Polish
space X is not classifiable by countable structures is to show that there exists
a Polish group G acting continuously on X with the following properties:

• E is induced by the action of G on X; that is, we have E = EX
G , where

EX
G is the corresponding orbit equivalence relation; namely,

xEX
G y ⇐⇒ (∃g ∈ G)(g · x = y),

whenever x, y are in X.

• The action of G on X is generically turbulent.

We explain what we mean below. (See, for example, Chapter 3 on pages 37-58
of Hjorth [2000] or pages 1461-1462 of Kechris-Sofronidis [2001].)

Definition. (Hjorth) Let G be any Polish group acting continuously on a
Polish space X and let x ∈ X. For any open neighborhood U of x in X and
for any symmetric open neighborhood V of 1G in G, the (U, V )-local orbit
O(x, U, V ) of x in X is defined as follows:

y ∈ O(x, U, V ) if there exist g0, . . . , gk in V (k ∈ N) such that if x0 = x
and xi+1 = gi · xi for every i ∈ {0, . . . , k}, then all the xi are in U and
xk+1 = y.

The action of G on X is said to be turbulent at the point x, in symbols x ∈ TX
G ,

if for any such U and V , there exists an open neighborhood U ′ of x in X such
that U ′ ⊆ U and O(x, U, V ) is dense in U ′.
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Theorem. (Hjorth) Let G be any Polish group acting continuously on a Polish
space X in such a way that the orbits of the action are meager and at least
one orbit is dense. Then the following are equivalent:

• The action of G on X is generically turbulent, in the sense that TX
G is

comeager in X.

• For any countable language L and for any Baire measurable function
f : X → XL with the property that

(∀(x, y) ∈ X2)(xEX
G y ⇒ f(x) ∼= f(y)),

there exists a EX
G -invariant comeager subset A of X for which all count-

able structures in f [A] are isomorphic.

We are finally in position to state our result.

Theorem. If −∞ < α < β < ∞, then the relation Eβ
α of asymptotic equality

of functions in the Polish group C([α, β), R∗+) as the argument tends to β from
the left is induced by a turbulent Polish group action.

Hence if L is any countable language and A : C([α, β), R∗+) → XL is any
Baire measurable function with the property that

(∀(f, g) ∈ C([α, β), R∗+)2)(fEβ
αg ⇒ A(f) ∼= A(g)),

then there is a Eβ
α-invariant comeager subset S of C([α, β), R∗+) for which all

countable structures in A[S] are isomorphic. In other words, the equivalence
relation of asymptotic equality of functions in the Polish group C([α, β), R∗+)
as the argument tends to β from the left is “more complicated” than the
equivalence relation of isomorphism between countable structures.

2 The Proof of the Theorem

In what follows let α and β be two arbitrary but fixed real numbers such that
α < β.

Proposition 1. C([α, β), R∗+) equipped with the compact-open topology con-
stitutes a commutative Polish group under the operation of point-wise multi-
plication.

Proof. Since obviously [α, β) =
⋂

n∈N

(
α− 1

n+1 , β
)

constitutes a Gδ subset of

R and R∗+ = (0,∞) is open and therefore Gδ in R, by virtue of 3.11 on page
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17 of Kechris [1995], we deduce that [α, β) and R∗+ are Polish in the relative
topology. Moreover [α, β) is easily seen to be locally compact. Therefore,
Theorem 1 on page 93 and Theorem 3 on page 94 of Kuratowski [1968] imply
that the compact-open topology on C([α, β), R∗+) is Polish. The commutative
group operation on C([α, β), R∗+) is point-wise multiplication. Thus, in order
to prove that C([α, β), R∗+) is a commutative Polish group, by virtue of 9.15
on page 62 of Kechris [1995], it is enough to show that the mapping

Φ : C([α, β), R∗+) 3 f 7→ 1
f
∈ C([α, β), R∗+)

is continuous and given any g ∈ C([α, β), R∗+), the mapping

Ψg : C([α, β), R∗+) 3 f 7→ fg ∈ C([α, β), R∗+)

is also continuous. So let f ∈ C([α, β), R∗+), ε > 0 and 0 < η < β − α. If
M = max

α≤x≤α+η
g(x) > 0 and h ∈ C([α, β), R∗+) is such that max

α≤x≤α+η
|f(x) −

h(x)| < ε
M , then given α ≤ x ≤ α + η, we have

|f(x)g(x)− h(x)g(x)| ≤ M |f(x)− h(x)|.

Hence max
α≤x≤α+η

|f(x)g(x)−h(x)g(x)| ≤ M · max
α≤x≤α+η

|f(x)−h(x)| < ε. There-

fore Ψg is continuous at f . The proof that Φ is also continuous at f is left as
an exercise.

The following proposition constitutes an immediate consequence of Propo-
sition 5.6 (ii) on pages 1470-1471 of Kechris-Sofronidis [2001].

Proposition 2. C([α, β], R∗+) equipped with the topology of uniform conver-
gence constitutes a Polish group under the operation of point-wise multiplica-
tion.

A corollary of Proposition 2 is the following.

Proposition 3. G = {f ∈ C([α, β], R∗+) : f(β) = 1} constitutes a closed
subgroup of C([α, β], R∗+) and consequently it constitutes a Polish group with
respect to the operation of point-wise multiplication and the topology of uniform
convergence.

Proposition 4. For any f ∈ C([α, β), R∗+), the equivalence class [f ]Eβ
α

of f

is dense in C([α, β), R∗+).
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Proof. Let g ∈ C([α, β), R∗+) and let 0 < η < β−α. It is enough to construct
h ∈ [f ]Eβ

α
such that h = g on [α, α+η]. So let θ > 0 be such that α+η+θ < β.

We set

h(x) =


g(x) if x ∈ [α, α + η)
g(α + η) + f(α+η+θ)−g(α+η)

θ (x− α− η) if x ∈ [α + η, α + η + θ)
f(x) if x ∈ [α + η + θ, β)

It is not difficult to verify that h ∈ C([α, β), R∗+) and h ∈ [f ]Eβ
α
, while by

definition h = g on [α, α + η].

Proposition 5. For any f ∈ C([α, β), R∗+), the equivalence class [f ]Eβ
α

of f

is meager in C([α, β), R∗+).

Proof. If g ∈ [f ]Eβ
α
, then lim

x→β−

g(x)
f(x) = 1. Hence there exists r ∈ Q ∩ (α, β)

such that for any x ∈ [r, β), we have
∣∣∣ g(x)
f(x) − 1

∣∣∣ < 1
2 ⇒ g(x) < 3

2f(x). There-
fore, we have [f ]Eβ

α
⊆ M , where

M =
⋃

r∈Q∩(α,β)

⋂
x∈[r,β)

{
g ∈ C([α, β), R∗+) : g(x) ≤ 3

2
f(x)

}
is easily seen to be Fσ in C([α, β), R∗+). Hence it is enough to show that M is
meager or (equivalently) that G = C([α, β), R∗+)\M is dense in C([α, β), R∗+).
But this can be shown by similar methods as the ones employed in the proof
of Proposition 4.

Proposition 6. The mapping

A : G × C([α, β), R∗+) 3 (g, f) 7→ g · f = (g|[α, β))f ∈ C([α, β), R∗+)

constitutes a continuous action of G on C([α, β), R∗+).

Proof. It is not difficult to verify that the mapping in question constitutes
an action of G on C([α, β), R∗+). Since

C([α, β], R∗+) 3 g 7→ g|[α, β) ∈ C([α, β), R∗+)

is easily seen to be continuous, it follows that so is

G 3 g 7→ g|[α, β) ∈ C([α, β), R∗+)

and by virtue of Proposition 1 we deduce that A is continuous because so is

C([α, β), R∗+)2 3 (f, g) 7→ fg ∈ C([α, β), R∗+).
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Proposition 7. Eβ
α is induced by the action of G on C([α, β), R∗+).

Proof. What we need to show is that given any u, v in C([α, β), R∗+), we
have

uEβ
αv ⇐⇒ (∃g ∈ G)(v = g · u).

Indeed, if there exists g ∈ G such that v = g · u, then

lim
x→β−

v(x)
u(x)

= lim
x→β−

g(x) = 1,

which implies that vEβ
αu. Conversely, if vEβ

αu, then lim
x→β−

v(x)
u(x) = 1. Hence

it is not difficult to verify that the function g : [α, β] → R∗+ defined by the
relation

g(x) =

{
v(x)
u(x) if x ∈ [α, β)
1 if x = β

is in G and moreover v = g · u.

In what follows let

U(f ; ε, η) =
{

g ∈ C([α, β), R∗+) : max
α≤x≤α+η

|f(x)− g(x)| < ε

}
,

whenever f ∈ C([α, β), R∗+), ε > 0 and 0 < η < β −α. It is not difficult to see
that the U(f ; ε, η) form a base of open neighborhoods of f in C([α, β), R∗+).

Proposition 8. If f ∈ C([α, β), R∗+), ε > 0, 0 < η < β − α and g ∈ G are
such that g · f ∈ U(f ; ε, η), then there exists a continuous path

[0, 1] 3 t 7→ ht ∈ G

such that h0 = 1G, h1 = g and ht · f ∈ U(f ; ε, η) for every t ∈ [0, 1].

Proof. Given t ∈ [0, 1], we set ht = 1− t + tg and it is not difficult to verify
that ht ∈ G, while obviously h0 = 1G and h1 = g. Moreover, if s, t are in [0, 1],
then for any x ∈ [α, β], we have

|hs(x)− ht(x)| = |g(x)− 1| · |s− t|.

Hence
max

α≤x≤β
|hs(x)− ht(x)| ≤ C|s− t|,

where
C = max

α≤x≤β
|g(x)− 1| ∈ R+.
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Therefore, we deduce that the path

[0, 1] 3 t 7→ ht ∈ G

is continuous. What is left to show is that ht ·f ∈ U(f ; ε, η) for every t ∈ [0, 1].
So let t ∈ [0, 1] and let x ∈ [α, α + η]. Then

|(ht ·f)(x)−f(x)| = t|g(x)f(x)−f(x)| ≤ |g(x)f(x)−f(x)| = |(g ·f)(x)−f(x)|,

hence

max
α≤x≤α+η

|(ht · f)(x)− f(x)| ≤ max
α≤x≤α+η

|(g · f)(x)− f(x)| < ε,

since g · f ∈ U(f ; ε, η), and consequently ht · f ∈ U(f ; ε, η).

The following proposition is Lemma 5.7 on page 1472 of Kechris-Sofronidis
[2001].

Proposition 9. Let G be any Polish group acting continuously on a Polish
space X and let x ∈ X. Suppose G · x is dense in X and there exists a basis
of open neighborhoods U of x in X with the property that for any g ∈ G for
which g · x ∈ U , there exists h ∈ G and a continuous path

[0, 1] 3 t 7→ ht ∈ G

such that g · x = h · x, h0 = 1G, h1 = h and ht · x ∈ U , whenever t ∈ [0, 1].
Then the action of G on X is turbulent at the point x.

Proof. Let V be any open neighborhood of x in X and let W be any sym-
metric open neighborhood of the identity in G. Then there exists an open
neighborhood U of x in X which is contained in V and satisfies the condition
stated in the formulation of Proposition 9. We need only prove that

O(x, U,W ) = U ∩ (G · x).

So let g ∈ G be such that g · x ∈ U ∩ (G · x) and let h ∈ G and

[0, 1] 3 t 7→ ht ∈ G

be as in the statement of Proposition 9. Then there exists a positive integer
N such that for any s, t in [0, 1], we have

|s− t| ≤ N−1 ⇒ hs · h−1
t ∈ W.
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Hence, setting t0 = 0, tk = tk−1 + N−1 and gk = htk
· h−1

tk−1
, whenever

k ∈ {1, . . . , N}, it follows immediately that gk ∈ W and

gk . . . g1 · x = htk
· x ∈ U,

whenever k ∈ {1, . . . , N} , while

gN . . . g1 · x = g · x.

We have thus proved that O(x,U,W ) = U ∩ (G · x).

Thus, Propositions 4–9 imply that Eβ
α is induced by a turbulent Polish

group action and the proof of the Theorem is complete.
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