Piotr Sworowski, Instytut Matematyki AB, Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. email: piotrus@ab-byd.edu.pl

# SOME COMMENTS ON THE $H_1$ -INTEGRAL

#### Abstract

In this note we consider two natural attempts to give a descriptive characterization for  $H_1$ -primitives, and discuss why these attempts fail. Meanwhile we get a new descriptive definition of the Henstock integral. Also, we prove that every Henstock integrable function can be written as a sum of a Lebesgue integrable and an  $H_1$ -integrable ones.

Let  $E \subset \mathbb{R}$ . By |E| we denote the Lebesgue outer measure of E. We denote by  $\mathcal{I}$  the  $\sigma$ -ideal of sets, the basis of which is the family of all  $\mathcal{F}_{\sigma}$  null sets. If  $F \colon E \to \mathbb{R}$  and  $A \subset E$  is nonvoid, then  $\omega_F(A) = \sup F(A) - \inf F(A)$ , i.e.,  $\omega_F(A)$  is the oscillation of F on A. We say that F is  $Baire^*1$  if for every set  $A \subset E$ , closed in E, there is a portion  $I \cap A \neq \emptyset$  of A such that  $F \upharpoonright (I \cap A)$  is continuous. (Recall that for  $E = \operatorname{cl} E$ , F is  $Baire^*1$  iff there exist a sequence  $\{E_n\}_n$  of closed sets, such that  $\bigcup_{n=1}^{\infty} E_n = E$  and for each n,  $F \upharpoonright E_n$  is continuous.)

By a division we mean a finite collection of tagged intervals  $(I, x), x \in I$ , in which intervals I are pairwise nonoverlapping. (In papers [4] and [6] we used the name partial tagged partition instead.) If for all (I, x) we have  $x \in E$ , then we say that the division is anchored in a set E. A division is called a partition of an interval (a, b) if the union of intervals I from this division gives the whole (a, b). For two divisions  $\mathcal{P}_1$  and  $\mathcal{P}_2$  we will write  $\mathcal{P}_1 \supseteq \mathcal{P}_2$  iff for every  $(I, x) \in \mathcal{P}_1$  there is a  $(J, y) \in \mathcal{P}_2$  with  $I \subset J$ . Any positive function  $\delta$  defined on  $\mathbb{R}$  we call a gauge. We say that a division  $\mathcal{P}$  is  $\delta$ -fine if for every  $(I, x) \in \mathcal{P}$  we have  $I \subset (x - \delta(x), x + \delta(x))$ .

Let  $F: \langle a,b \rangle \to \mathbb{R}$ . When  $I = \langle c,d \rangle \subset \langle a,b \rangle$ , by  $\Delta F(I)$  we mean the increment F(d) - F(c). For convenience, the character F will stand for two functions: the point one and the interval-point one, given by formula  $(I,x) \mapsto \Delta F(I)$ .

For classical notions of  $AC_*$ -,  $ACG_*$ -,  $VB_*$ -, and  $VBG_*$ -functions we refer the reader to [5].

Key Words: Henstock integral,  $H_1$ -integral, Baire\*1 function Mathematical Reviews subject classification: 26A39

Received by the editors September 8, 2003

Communicated by: Peter Bullen

# 1 On $H_1$ -Primitives

We have proved in [4], Example 4.2, that (contrary to the claim presented in the original paper [2]) the class of  $H_1$ -primitives is a proper subset of the class of Henstock primitives, i.e., of all  $ACG_*$ -functions. Thus, the problem of characterizing  $H_1$ -primitives, Problem 4.3 in [4], emerges. As the space of  $H_1$ -integrable functions is not closed under the uniform limit, see [3], it seems to be natural to look for a characterization of the wider class of primitives, namely the class of primitives of uniform limits of  $H_1$ -integrable functions. (We may refer to this wider class as to the class of functions  $H_1$ -integrable in the extended sense; we will use accordingly the name extended  $H_1$ -integral.)

**Definition 1.1.** We call a function  $f: \langle a, b \rangle \to \mathbb{R}$ ,  $H_1$ -integrable to  $\mathbf{I} \in \mathbb{R}$  if there exists a gauge  $\delta$  defined on  $\langle a, b \rangle$ , such that for any  $\varepsilon > 0$  one can find a partition  $\pi_1$  of  $\langle a, b \rangle$ , such that for every  $\delta$ -fine partition  $\pi \supseteq \pi_1$ ,

$$\Big| \sum_{(I,x)\in\pi} f(x)|I| - \mathbf{I} \Big| < \varepsilon.$$

The following theorem was proved in [4], Corollary 3.5 and Theorem 3.7 there.

**Theorem 1.2.** The function  $f: \langle a, b \rangle \to \mathbb{R}$  is  $H_1$ -integrable if and only if it is Henstock integrable and there exists an  $E \in \mathcal{I}$ , such that  $f \upharpoonright (\langle a, b \rangle \setminus E)$  is Baire\*1 in its domain.

The function  $f: \langle a, b \rangle \to \mathbb{R}$  is  $H_1$ -integrable in the extended sense if and only if it is Henstock integrable and there exists an  $E \in \mathcal{I}$ , such that  $f \upharpoonright (\langle a, b \rangle \setminus E)$  is Baire 1 in its domain.

### 1.1 The Set of Nondifferentiability

Consider the following fact.

**Observation 1.3.** Suppose that F is an  $ACG_*$ -function differentiable outside an  $E \in \mathcal{I}$ . Then, F is Henstock primitive of a function f, which is  $H_1$ -integrable in the extended sense.

PROOF. F is a Henstock primitive of

$$f(x) = \begin{cases} F'(x) & \text{if } x \in \langle a, b \rangle \setminus E \\ 0 & \text{if } x \in E. \end{cases}$$

Of course, F' is Baire one in its domain. Thus, by Theorem 1.2, f is  $H_1$ -integrable in the extended sense.

The  $H_1$ -integral is in some sense close to the Riemann integral. Therefore, the following conjecture seems to be justified. Every  $H_1$ -primitive is differentiable outside an  $E \in \mathcal{I}$ , as all Riemann primitives are. If this were true, it would imply an interesting *characterization* of primitives of functions  $H_1$ -integrable in the extended sense. These are the  $ACG_*$ -functions differentiable outside an  $E \in \mathcal{I}$ . Moreover, since  $H_1$ -integrability of a function depends on its behavior outside an  $E \in \mathcal{I}$ , it would give us a descriptive *definition* of the extended  $H_1$ -integral. Alas, the claim is false.

It is well known that the set of nondifferentiability points of an absolutely continuous function (even a Lipschitz function) can be generic. (Nevertheless, it is always a null set.) But this is not the case for  $H_1$ -primitives. These are differentiable almost everywhere and outside a first category set. (This follows from Theorem 1.2.) However, there are sets of the first category and of measure zero which do not belong to  $\mathcal{I}$ . The simplest example of such a set is a dense null  $\mathcal{G}_{\delta}$  subset of nowhere dense perfect set of positive measure. The exceptional set we shall indicate below is of this kind. With the usual notation  $\overline{d}(A,x)$  and  $\underline{d}(A,x)$  for the upper and lower density of a measurable set  $A \subset \mathbb{R}$  at a point x, we have the following example.

**Example 1.4.** There exists a closed set  $D \subset \langle 0, 1 \rangle$  and a  $\mathcal{G}_{\delta}$  subset  $P \subset D$ , dense in D, such that for each  $x \in P$  one has  $\overline{d}(D, x) = 1$  and  $\underline{d}(D, x) = 0$ .

Construction. Take any open set  $O_1 \subset \langle 0, 1 \rangle$ , dense in  $\langle 0, 1 \rangle$ , with  $\langle 0, 1 \rangle \setminus O_1$  perfect. Let  $\{I_i^{(1)}\}_i$  be the family of components of  $O_1$ . For each i, let  $J_i^{(1)}$  be a closed interval concentric with  $I_i^{(1)}$ , with  $0 < |J_i^{(1)}| < \frac{1}{2}|I_i^{(1)}|$ . Let  $D_1 = \langle 0, 1 \rangle \setminus \bigcup_i (I_i^{(1)} \setminus J_i^{(1)})$ .

We proceed by induction. Having defined  $O_{n-1}$ ,  $D_{n-1}$ ,  $I_i^{(n-1)}$ 's, and  $J_i^{(n-1)}$ 's, we take an open set  $O_n$ , dense in  $D_{n-1}$ , with  $D_{n-1} \setminus O_n$  perfect, satisfying the following three conditions:

- (a)  $O_n \subset O_{n-1}$ .
- (b)  $O_n$  does not intersect the union  $\bigcup_i (I_i^{(n-1)} \setminus J_i^{(n-1)})$ .
- (c) For each i, letting  $\langle x,y\rangle=J_i^{(n-1)},$  for each  $z\in J_i^{(n-1)}$

$$|O_n \cap \langle x, z \rangle| \le \frac{1}{2^n} (z - x), \quad |O_n \cap \langle z, y \rangle| \le \frac{1}{2^n} (y - z).$$

Let  $\{I_i^{(n)}\}_i$  be the family of components of  $O_n$ . For each i, let  $J_i^{(n)}$  be a closed interval concentric with  $I_i^{(n)}$ , with

$$0 < |J_i^{(n)}| < \frac{1}{2^n} |I_i^{(n)}|. \tag{1}$$

Put 
$$D_n = D_{n-1} \setminus \bigcup_i (I_i^{(n)} \setminus J_i^{(n)}).$$

We put  $D = \bigcap_{n=1}^{\infty} D_n$  and  $P = \bigcap_{n=1}^{\infty} \bigcup_i J_i^{(n)}$ . It is clear that  $P \subset D$ , P is dense in D, and it is of  $\mathcal{G}_{\delta}$  type. Fix an  $x \in P$  and take arbitrary h > 0 and n. There exist an  $m \geq n$  and an i such that  $(x - h, x + h) \supset I_i^{(m)}$ ,  $x \in \text{int } J_i^{(m)}$ . Denote by y and z those endpoints of  $I_i^{(m)}$  and  $J_i^{(m)}$  respectively, which are closer to x. In view of (c) we get

$$|\langle z, 2x - z \rangle \cap D| \ge |\langle z, 2x - z \rangle \setminus O_{m+1}| \ge 2\left(1 - \frac{1}{2^{m+1}}\right)(x - z) \text{ if } x > z,$$
$$|\langle 2x - z, z \rangle \cap D| \ge |\langle 2x - z, z \rangle \setminus O_{m+1}| \ge 2\left(1 - \frac{1}{2^{m+1}}\right)(z - x) \text{ if } x < z.$$

Hence  $\overline{d}(D, x) = 1$ . On the other hand, by (1),

$$|\langle y, 2x - y \rangle \cap D| \le |J_i^{(m)}| < \frac{1}{2^m} |I_i^{(m)}| \text{ if } x > y,$$
$$|\langle 2x - y, y \rangle \cap D| \le |J_i^{(m)}| < \frac{1}{2^m} |I_i^{(m)}| \text{ if } x < y.$$

Since 
$$(1-\frac{1}{2^m})|I_i^{(m)}|<|I_i^{(m)}|-|J_i^{(m)}|<2|x-y|$$
, we have 
$$\frac{1}{2^m}|I_i^{(m)}|<\frac{2}{2^m-1}|x-y|.$$

That means d(D, x) = 0. We are done.

**Corollary 1.5.** There exists an  $H_1$ -integrable function f whose primitive is symmetrically nondifferentiable on a set which does not belong to  $\mathcal{I}$ .

PROOF. Take the set D constructed in Example 1.4 and put  $f = \chi_D$ . Since f is Baire\*1, it is  $H_1$ -integrable (Theorem 1.2). The primitive of f is symmetrically differentiable exactly at points at which the density of D exists, so we apply the fact that  $P \notin \mathcal{I}$ .

In a descriptive definition of an integral, a derivative of a primitive must be integrable for an arbitrary extension to the set where it does not exist. But, by Theorem 1.2 the  $H_1$ -integrability of a function depends on its values outside an  $E \in \mathcal{I}$ . Hence, Corollary 1.5 shows that for the  $H_1$ -integral the exceptional set can be too large, if we consider the ordinary derivative (even the symmetric one). Since the primitive of  $f = \chi_D$  is monotone, it seems natural to suppose there is no generalized derivative for which the exceptional set of nondifferentiability would always belong to  $\mathcal{I}$ . Having this in mind we can make the following assertion.

**Statement 1.6.** Descriptive definitions of the  $H_1$ -integral and of the extended  $H_1$ -integral are unavailable.

### 1.2 A Variational Equivalence

In the second attempt we take into consideration the variational equivalence which is used to define an integral in the  $H_1$  sense.

In the sequel let  $\theta$  and  $\gamma$  be interval-point functions; i.e., functions defined on family of tagged subintervals of  $\langle a, b \rangle$ .

**Definition 1.7.** We say that  $\theta$  and  $\gamma$  are strongly equivalent on a set  $E \subset \langle a, b \rangle$  if there exists a gauge  $\delta$  on E such that for each  $\varepsilon > 0$  one can find a partition  $\pi_{\varepsilon}$  of  $\langle a, b \rangle$ , such that for all  $\delta$ -fine divisions  $\mathcal{P} \supseteq \pi_{\varepsilon}$ , anchored in E, we have  $\sum_{(I,x)\in\mathcal{P}} |\theta(I,x) - \gamma(I,x)| < \varepsilon$ .

We say that  $F: \langle a, b \rangle \to \mathbb{R}$  is  $\mathcal{I}$ -null if F is strongly equivalent to zero on each  $A \in \mathcal{I}$ .

Note that f is  $H_1$ -integrable to primitive F iff the functions  $(I, x) \mapsto f(x)|I|$  and F are strongly equivalent on  $\langle a, b \rangle$ . This follows from the Saks-Henstock lemma for the  $H_1$ -integral.

 $\mathcal{I}$ -nullity is a substitute for the condition of absolute continuity of variational measure, which is considered in the theory of the Henstock integral.

**Definition 1.8.** Let  $\delta$  be a gauge on  $E \subset \langle a,b \rangle$ . By  $\delta$ -variation of  $\theta$  on E, denoted by  $V^{\theta}_{\delta}(E)$ , we mean the supremum of values

$$|\Delta|\theta(\mathcal{P}) = \sum_{(I,x)\in\mathcal{P}} |\theta(I,x)|,\tag{2}$$

taken over all  $\delta$ -fine divisions  $\mathcal{P}$  anchored in E. The infimum of  $V_{\delta}^{\theta}(E)$ , taken over all gauges  $\delta$ , we name the variational measure of E induced by  $\theta$ . We denote it by  $\mu_{\theta}(E)$ . We say that  $\mu_{\theta}$  is absolutely continuous if  $\mu_{\theta}(N) = 0$  for all null sets  $N \subset \langle a, b \rangle$ .

The following theorem was proved in [1], Theorem 1.

**Theorem 1.9.** Let  $F: \langle a, b \rangle \to \mathbb{R}$ . Then,  $\mu_F$  is absolutely continuous iff F is an  $ACG_*$ -function.

Let  $\theta$  be additive; i.e.,  $\theta(I \cup J, x) = \theta(I, x) + \theta(J, x)$  for any two nonoverlapping intervals I and J, with a common endpoint x. Then, comparing two conditions: the  $\mathcal{I}$ -nullity of  $\theta$  and the absolute continuity of  $\mu_{\theta}$ , we see that in the first one the equivalence to zero is understood in a strengthened sense, but on a smaller class of sets.

We will show that for  $F: \langle a, b \rangle \to \mathbb{R}$ , the  $\mathcal{I}$ -nullity is equivalent to the  $ACG_*$  property and so it cannot characterize  $H_1$ -primitives.

**Lemma 1.10.** Let F be strongly equivalent to zero on sets  $E_1, E_2, E_3, \ldots$ . Then, it is strongly equivalent to zero on  $\bigcup_{n=1}^{\infty} E_n$ .

PROOF. Let F be strongly equivalent to zero on  $E_1, E_2, E_3, \ldots$  using gauges  $\delta_1, \delta_2, \delta_3, \ldots$  respectively. Since  $\mu_F(E_n) = 0$ , we can assume that  $V_{\delta_n}^F(E_n) < \frac{1}{2^n}$  and that  $E_n$ 's are pairwise disjoint. We define  $\delta(x) = \delta_n(x)$  when  $x \in E_n$ . Consider arbitrary  $\varepsilon > 0$ . For each n, there are partitions  $\pi_n$  of  $\langle a, b \rangle$  such that for all  $\delta_n$ -fine divisions  $\mathcal{P} \supseteq \pi_n$ , anchored in  $E_n$ , we have  $|\Delta|F(\mathcal{P}) < \frac{\varepsilon}{2^{n+1}}$ . We may assume that  $\ldots \supseteq \pi_3 \supseteq \pi_2 \supseteq \pi_1$ . There is an N so that  $\frac{1}{2^{N-1}} < \varepsilon$ . Take a  $\delta$ -fine division  $\mathcal{P} \supseteq \pi_N$ , anchored in  $\bigcup_{n=1}^{\infty} E_n$ . Let  $\mathcal{P}_n = \{(I, x) \in \mathcal{P} : x \in E_n\}$ . Since  $\mathcal{P}_n$  is  $\delta_n$ -fine and  $\mathcal{P}_n \supseteq \pi_N \supseteq \pi_n$ ,  $n = 1, 2, \ldots, N$ , we have

$$|\Delta|F(\mathcal{P}) < \sum_{n=1}^{N} |\Delta|F(\mathcal{P}_n) + \sum_{n=N+1}^{\infty} |\Delta|F(\mathcal{P}_n) <$$

$$< \sum_{n=1}^{N} \frac{\varepsilon}{2^{n+1}} + \sum_{n=N+1}^{\infty} V_{\delta_n}^F(E_n) < \frac{\varepsilon}{2} + \frac{1}{2^N} < \varepsilon. \qquad \Box$$

**Theorem 1.11.** Suppose that  $F: \langle a, b \rangle \to \mathbb{R}$  is an  $ACG_*$ -function. Then, it is  $\mathcal{I}$ -null.

PROOF. Take an  $A \in \mathcal{I}$  and let  $A \subset \bigcup_{n=1}^{\infty} A_n$  where all  $A_n = \operatorname{cl} A_n$  are null sets and F is  $AC_*$  on each  $A_n$ . Fix an n. We will show that F is strongly equivalent to zero on  $A_n$ , using any gauge  $\delta$ . We may assume that  $a, b \in A_n$ . Let  $(a_i, b_i), i = 1, 2, 3, \ldots$ , be intervals contiguous to  $A_n$  in  $\langle a, b \rangle$ . Take an  $\varepsilon > 0$ . There are intervals  $\langle c_i, d_i \rangle \subset (a_i, b_i)$  such that

$$\sum_{i=1}^{\infty} \left( \omega_F(\langle a_i, c_i \rangle) + \omega_F(\langle d_i, b_i \rangle) \right) < \varepsilon. \tag{3}$$

Also, there is an  $\eta > 0$  such that

$$\sum_{k} |I_{k}| < \eta \quad \Rightarrow \quad \sum_{k} \omega_{F}(I_{k}) < \varepsilon \tag{4}$$

for each family  $\{I_k\}_k$  of nonoverlapping intervals with endpoints in  $A_n$ . One can find an N so that

$$\left| \langle a, b \rangle \setminus \bigcup_{i=1}^{N} (a_i, b_i) \right| < \eta. \tag{5}$$

Set  $\mathcal{R} = \{(\langle a_i, c_i \rangle, a_i), (\langle d_i, b_i \rangle, b_i)\}_{i=1}^N$ . Complete  $\mathcal{R}$  to any partition  $\pi_{\varepsilon}$  of  $\langle a, b \rangle$ . Consider a  $\delta$ -fine division  $\mathcal{P} \supseteq \pi_{\varepsilon}$ , anchored in  $A_n$ . Let

$$\mathcal{P}' = \{(I, x) \in \mathcal{P} : I \subset \langle a_i, c_i \rangle \cup \langle d_i, b_i \rangle, \ i = 1, 2, \dots, N\}.$$

By (3)  $|\Delta|F(\mathcal{P}') < \varepsilon$ , by (4) and (5)  $|\Delta|F(\mathcal{P} \setminus \mathcal{P}') < \varepsilon$ . Thus  $|\Delta|F(\mathcal{P}) < 2\varepsilon$ . By Lemma 1.10, F is strongly equivalent to zero on A.

**Theorem 1.12.** Suppose that  $F: \langle a, b \rangle \to \mathbb{R}$  is  $\mathcal{I}$ -null. Then, it is an  $ACG_*$ -function.

PROOF. Suppose first that F is not a  $VBG_*$ -function. Then, by the proof of Theorem 1 in [1], we get that there exists a closed null set  $N \subset \langle a, b \rangle$  with  $\mu_F(N) \geq 1$ . Hence F is not strongly equivalent to zero on N, a contradiction.

Now, we will prove that  $\mu_F$  is absolutely continuous. Take any null set  $D \subset \langle a,b \rangle$ . We may assume that D is Borel. Let  $\bigcup_n E_n = \langle a,b \rangle$ , where for each n the set  $E_n$  is closed and F is  $VB_*$  on  $E_n$ . Fix an n and consider the value  $\mu_F(D \cap E_n)$ . Let G be the piecewise linear extension of  $F \upharpoonright E_n$ , G is of bounded variation. The variational measure  $\mu_F$  defined on subsets of  $E_n$  is the regular Borel measure defined by variation of G,  $|.|_G$ . So, the value  $\mu_F(D \cap E_n) = |D \cap E_n|_G$  can be approximated by values  $|P|_G$ , where the P's are closed subsets of  $D \cap E_n$ . Since F is  $\mathcal{I}$ -null, all these imply that  $|P|_G = \mu_F(P) = 0$ . Thus, there must be  $\mu_F(D \cap E_n) = |D \cap E_n|_G = 0$ . So,  $\mu_F(D) = 0$ . By Theorem 1.9, F is an  $ACG_*$ -function.

In fact, we proved above that for the absolute continuity of  $\mu_F$  it is enough to assume that  $\mu_F$  is zero only on  $\mathcal{F}_{\sigma}$  null sets. But then, this value may be approximated by sums of the kind (2), in a strengthened way.

The equivalence of  $\mathcal{I}$ -nullity and the property  $ACG_*$  allows another descriptive definition of the Henstock integral.

**Corollary 1.13.** An  $f: \langle a, b \rangle \to \mathbb{R}$  is Henstock integrable iff there exists an  $\mathcal{I}$ -null function F such that F'(x) = f(x) for almost all  $x \in \langle a, b \rangle$ .

### 1.3 Riemann Primitives

We end this section with an observation related to the still open problem of characterizing the class of Riemann primitives.

**Observation 1.14.** There exists a bounded  $H_1$ -integrable function f, which is a derivative, but whose primitive is a primitive of no Riemann integrable function.

PROOF. One can easily construct a bounded Baire\*1 approximately continuous function f, discontinuous exactly at points of some nowhere dense perfect set of positive measure. Such a function f is  $H_1$ -integrable and it differs from every Riemann integrand on a set of positive measure.

Every Riemann primitive is Lipschitz and differentiable outside an  $E \in \mathcal{I}$ . However, these two properties do not characterize Riemann primitives.

## 2 Main Result: Henstock=Lebesgue+H<sub>1</sub>

In view of Example 4.2 in [4], another problem arises. Can every Henstock integrable function be written as the sum of a Lebesgue integrable function and an  $H_1$ -integrable one (Problem 4.5 in [4])? We will answer this question in affirmative. We say that f is integrable on a set E in the improper sense if  $f\chi_E$  is integrable on every subinterval  $\langle c, d \rangle \subset (\inf E, \sup E)$  and if a finite double limit of  $\int_c^d f\chi_E$  exists when  $c \to \inf E$ ,  $d \to \sup E$ .

**Lemma 2.1.** Let a set  $E \subset \langle a,b \rangle$  be closed,  $I \subset \langle a,b \rangle$  be an open interval. Suppose that  $f : \langle a,b \rangle \to \mathbb{R}$  is Lebesgue integrable in the improper sense on the set  $E \cap I$ . Then,  $f = f_1 + f_2$  on  $E \cap I$ , where  $f_1$  is Lebesgue integrable on  $E \cap I$  and  $f_2$  is Baire\*1 on  $E \cap I$ . Moreover, for each  $\eta > 0$  the function  $f_1$  can be chosen so that  $\int_{E \cap I} |f_1| < \eta$ .

PROOF. We may assume that  $a = \inf E$ ,  $b = \sup E$ , I = (a, b), and that f = 0 outside of E. By assumption, f is Lebesgue integrable on every interval  $\langle c, d \rangle \subset (a, b)$ . Pick two monotone sequences in (a, b):  $a_n \to a$ ,  $b_n \to b$ ,  $a_1 = b_1$ . Since the integral of f is absolutely continuous on each interval  $\langle a_{n+1}, a_n \rangle$ , by Lusin's theorem on C-property one can find a closed subset  $P_n \subset E \cap (a_{n+1}, a_n)$  such that

- (a)  $f \upharpoonright P_n$  is continuous,
- (b)  $\int_{\langle a_{n+1}, a_n \rangle \backslash P_n} |f| < \frac{\eta}{2^{n+1}}$

In the same way we find closed subsets  $R_n \subset E \cap (b_n, b_{n+1})$ . Put  $f_2 = f$  on  $\bigcup_{n=1}^{\infty} (P_n \cup R_n)$ , 0 otherwise,  $f_1 = f - f_2$ . By (a), it is clear that the function  $f_2$  is Baire\*1 on  $E \cap I$ . By (b), we have  $\int_{E \cap I} |f_1| < 2 \sum_{n=1}^{\infty} \frac{\eta}{2^{n+1}} = \eta$ .

**Theorem 2.2.** Every Henstock integrable function  $f: \langle a, b \rangle \to \mathbb{R}$  can be written as a sum  $f = f_1 + f_2$ , where  $f_1$  is Lebesgue integrable,  $f_2$  is  $H_1$ -integrable. Moreover, for each  $\varepsilon > 0$  the function  $f_1$  can be chosen so that  $\int_a^b |f_1| < \varepsilon$ .

PROOF. We use transfinite induction. We define transfinite sequences:

- 1.  $\{U_{\alpha}\}_{{\alpha}<\Omega}$  of open sets in  $\langle a,b\rangle$  (ascending),
- 2.  $\{\mathcal{J}_{\alpha}\}_{{\alpha}<\Omega}$  of families of open subintervals of  $\langle a,b\rangle$ .

Put  $U_1 = \emptyset$ , denote  $E_1 = \langle a, b \rangle \setminus U_1 = \langle a, b \rangle$ .

Let  $\mathcal{J}_{\alpha}$  be the family of all open intervals I such that f is Lebesgue integrable on  $E_{\alpha} \cap I$  in the improper sense,  $E_{\alpha} = \langle a,b \rangle \setminus U_{\alpha}$ . Put  $U_{\alpha+1} = U_{\alpha} \cup (E_{\alpha} \cap \bigcup \mathcal{J}_{\alpha})$ . For a limit ordinal  $\beta$  put  $U_{\beta} = \bigcup_{\alpha < \beta} U_{\alpha}$ ,  $\mathcal{J}_{\beta} = \emptyset$ . For all  $\alpha$ 's let  $\mathcal{J}_{\alpha}$  denote the family of all compound intervals of  $\bigcup \mathcal{J}_{\alpha}$ . (Then  $\mathcal{J}_{\alpha}$  is countable and  $\bigcup \mathcal{J}_{\alpha} = \bigcup \mathcal{J}_{\alpha}$ .) Because every closed set contains a portion on which f is Lebesgue integrable, if  $U_{\alpha} \neq \langle a,b \rangle$ , then  $U_{\alpha} \subsetneq U_{\alpha+1}$ . Since  $\{U_{\alpha}\}_{\alpha}$  is ascending, by the Cantor–Baire principle there exists an  $\alpha < \Omega$  such that  $U_{\alpha} = \langle a,b \rangle$ . Denote  $\{P_{n}\}_{n=1}^{\infty} = \{I \cap E_{\beta}\}_{I \in \mathcal{I}_{\beta}, \beta \leq \alpha}$ . For each n, apply Lemma 2.1 for  $E = E_{\beta}$  and  $\eta = \frac{\varepsilon}{2^{n}}$  to find an appropriate sum  $f = f_{1}^{(n)} + f_{2}^{(n)}$  on  $P_{n} = E_{\beta} \cap I$ . Note that the  $P_{n}$ 's are pairwise disjoint and  $\bigcup_{n=1}^{\infty} P_{n} = \langle a,b \rangle$ . Put  $f_{i}(x) = f_{i}^{(n)}(x)$  if  $x \in P_{n}$ , i = 1, 2. One has

$$\int_{a}^{b} |f_{1}| < \sum_{n=1}^{\infty} \int_{P_{n}} |f_{1}^{(n)}| < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n}} = \varepsilon,$$

so  $f_1$  is Lebesgue integrable. As  $f_2 = f - f_1$ ,  $f_2$  is Henstock integrable. Each function  $f_2^{(n)}$  is Baire\*1 on an  $\mathcal{F}_{\sigma}$  set  $P_n$ . Hence, the so-defined function  $f_2 \colon \langle a, b \rangle \to \mathbb{R}$  is Baire\*1. In view of Theorem 1.2,  $f_2$  is  $H_1$ -integrable.  $\square$ 

Let us conclude this note with the following query.

**Question 2.3.** Does there exist a function,  $H_1$ -integrable in the extended sense, which cannot be written as the sum of an  $H_1$ -integrable one and a derivative?

**Acknowledgment.** The author wishes to thank the referee for his useful comments.

### References

- [1] B. Bongiorno, L. Di Piazza, V. Skvortsov, A new full descriptive characterization of Denjoy-Perron integral, Real Analysis Exchange, **21**(2) (1995/96), 656–663.
- [2] I. J. L. Garces, P. Y. Lee, D. Zhao, Moore–Smith limits and the Henstock integral, Real Analysis Exchange, 24(1) (1998/99), 447–456.

[3] A. Maliszewski, P. Sworowski, Uniform convergence theorem for the  $H_1$ -integral revisited, Taiwanese Journal of Mathematics, 7(3) (2003), 503–505.

- [4] A. Maliszewski, P. Sworowski, A characterization of  $H_1$ -integrable functions, Real Analysis Exchange, 28(1) (2002/03), 93–104.
- [5] S. Saks, Theory of the integral, New York, 1937.
- [6] P. Sworowski, On  $H_1$ -integrable functions, Real Analysis Exchange, 27(1) (2001/02), 275–286.