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ON A THEOREM OF VOLKMANN

Abstract

We generalize a theorem of Volkmann concerning the Hausdorff mea-
sures on subfields of R. Our short proof is based on a mensural tri-
chotomy law for invariant subsets of a locally compact group.

1 Introduction.

Let s ∈ (0, 1) and let Hs denote the s-dimensional Hausdorff outer measure
on R. A theorem of Volkmann [8] states that any s-dimensional subfield F of
R is “dimensionslos” in the sense that Hs(F ) = 0 or Hs(F ∩ O) = +∞ for
every nonvoid open subset O of R. Edgar and Miller [1] have recently shown
that there exists no s-dimensional subring of R that is an analytic set. In
contrast to this, according to Foran [2] there exist s-dimensional subgroups
G, H of R that are Fσ-sets with Hs(G) = 0 and Hs(H ∩ O) = +∞ for every
nonvoid open set O. In view of these results, it therefore becomes interesting
to know whether Volkmann’s theorem can be extended to the entire class of
subgroups of R, and whether it admits a natural analogue in other locally
compact groups.

In our note we address this problem. Precisely, in Section 3 we will see
that in any locally compact group whose Haar measure is a generalized Haus-
dorff measure every dense subgroup is dimensionslos (in a sense even stronger
than Volkmann’s). The key idea of the proof turns out to be the mensural
trichotomy law established in Lemma 1.

Throughout, (G, ·) stands for a locally compact Hausdorff topological group
with e as its identity element. By B and B0 we denote, respectively, the Borel
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σ-algebra of G and the Baire σ-algebra of G; i.e., the smallest σ-algebra with
respect to which every real valued continuous function on G is measurable.
Let S denote the σ-ideal generated by all compact subsets of G. Then B ∩ S
and B0 ∩ S coincide, respectively, with the σ-ring of Borel sets and the σ-ring
of Baire sets in the terminology of Halmos.

Let λ : B → [0,+∞] be a left Haar measure on G; i.e., a nonzero left
invariant σ-additive measure on G which is finite on compact sets and inner
regular with respect to the compact sets. Let λ∗ and λ∗ denote, respectively,
the outer and inner measures induced by λ on the power set P(G) of G. With
M we indicate the σ-algebra of λ∗-measurable subsets of G. We denote the
restriction of λ∗ to M by λ again.

If H is a subgroup of G, a set X ∈ P(G) is left H-invariant if hX ⊆ X for
every h ∈ H (equivalently, hX = X for every h ∈ H).

2 A Mensural Trichotomy Law.

The next lemma is the basic tool for proving Theorem 5.

Lemma 1. Let H be a dense subgroup of G and let X be a left H-invariant
subset of G. Suppose further that µ∗ : P(G) → [0,+∞] is an outer measure
such that every B ∈ B0 ∩ S is µ∗-measurable and µ∗(hA) = µ∗(A) for every
A ∈ P(G) and h ∈ H. Then precisely one of the following cases occurs:

i) µ∗(X ∩ S) = 0 for every S ∈ S;

ii) µ∗(X ∩O) = +∞ for every nonvoid open subset O of G;

iii) there exists c ∈ (0,+∞) such that, for every M ∈M∩ S,

µ∗(X ∩M) = cλ∗(X ∩M) = cλ(M). (∗)

Proof. Suppose µ∗(X ∩S) > 0 for a certain S ∈ S and µ∗(X ∩O) < +∞ for
a certain nonvoid open set O. We prove the existence of c ∈ (0,+∞) as stated
in iii). First observe that ν(B) := µ∗(X ∩ B) defines a nonzero σ-additive
measure on B0 ∩ S.

Let us show that ν(K) < +∞ for every compact Baire subset K of G.
Since H is dense in G, there are h1, h2, . . . , hn ∈ H such that K ⊆

⋃n
i=1 hiO.

Thus

ν(K) ≤
n∑

i=1

µ∗(X ∩ hiO) =
n∑

i=1

µ∗(hiX ∩ hiO) = nµ∗(X ∩O) < +∞.
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Moreover, it is immediately seen that ν(hB) = ν(B) for every h ∈ H and
B ∈ B0 ∩S. Hence, by Theorem 62.G in [4] and the density of H in G, we get
ν(gB) = ν(B) for every g ∈ G and B ∈ B0 ∩ S. Since both Iν(f) :=

∫
fdν

and Iλ(f) :=
∫

fdλ define left Haar integrals on the space of all real valued
continuous functions on G with compact support, by the uniqueness theorem
for the Haar integral there is a constant c ∈ (0,+∞) such that Iν = cIλ. Thus,
ν(B) = cλ(B) for every B ∈ B0 ∩ S.1

To conclude the proof, we appeal to Theorem 64.I in [4]. Given M ∈M∩S,
choose A,B ∈ B0 ∩ S such that

X ∩M ⊆ B and λ∗(X ∩M) = λ(B),
A ⊆ M and λ(A) = λ(M).

Then the following chain of inequalities gives (∗):

cλ(M) = cλ(A) = ν(A) = µ∗(X ∩A) ≤ µ∗(X ∩M)
≤ µ∗(X ∩B) = ν(B) = cλ(B) = cλ∗(X ∩M) ≤ cλ(M).

Remark 2. In the case G = (R,+) the nonelementary part of the proof
above (i.e., the existence of the constant c such that ν(B) = cλ(B) for every
B ∈ B0 (= B)) can be derived in a very basic way. To see this, define f :
[0,+∞) → [0,+∞) by f(x) := ν([0, x)). Of course f is increasing and satisfies
f(g +h) = f(g)+ f(h) for all nonnegative g, h ∈ H. Using the density of H in
R, it follows that f is continuous. Hence f(x) = cx for some constant c. One
then obtains ν([g, h)) = cλ([g, h)) for every g, h ∈ H. Since B is generated by
the semiring {[g, h) | g, h ∈ H}, we infer that ν and cλ coincide on B.

In generalizing Volkmann’s theorem we will apply Lemma 1 in the case
when µ∗ is a generalized Hausdorff outer measure; still, it is worth mentioning
that Lemma 1 is of interest also for µ∗ = λ∗. We recall that a set A ∈ P(G)
is completely nonmeasurable if A ∩M /∈ M whenever M ∈ M and λ(M) > 0
–equivalently, if λ∗(A) = λ∗(G \A) = 0. Completely nonmeasurable sets (also
called “saturated nonmeasurable” in the literature) have been studied since
the early works of Sierpiński. A detailed account on them can be found in [6]
(see also [9]).

Corollary 3. Let H be a dense subgroup of G and X a left H-invariant
subset of G such that λ∗(X) > 0 and λ∗(G \ X) > 0. Then X is completely
nonmeasurable.

1As an alternative argument, one can directly apply Exercise 60.7 in [4].
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Proof. For µ∗ = λ∗, condition ii) of Lemma 1 is never satisfied, while con-
dition i) does not hold since λ∗(X) > 0. From (∗) we then infer λ(M) = 0
for every compact set M disjoint from X, which means λ∗(G \X) = 0. The
same argument for G \ X yields λ∗(X) = 0. It follows that X is completely
nonmeasurable.

3 A Generalization of Volkmann’s Theorem.

In this section we present a generalization of Volkmann’s theorem quoted in
the introduction. It proves to be a consequence of the following proposition,
which in turn follows directly from Lemma 1.

Proposition 4. Besides the assumptions of Lemma 1 suppose that µ∗(S) <
+∞ implies λ∗(S) = 0 for every S ∈ S. Then:

i) µ∗(X ∩ S) = 0 for every S ∈ S or

ii) µ∗(X ∩O) = +∞ for every nonvoid open subset O of G.

Proof. The additional assumption on µ∗ and iii) of Lemma 1 are incompat-
ible, as can be seen by taking a compact neighborhood of e for M in (∗).

Proposition 4 immediately yields for G = (R,+) that any subgroup of the
reals of Hausdorff dimension s ∈ (0, 1) is dimensionslos in the sense of Volk-
mann, by taking for µ∗ the s-dimensional Hausdorff outer measure Hs. More
generally, one obtains such a result for subgroups of a locally compact group
G whose left Haar measure λ is the n-dimensional Hausdorff measure for some
n > 0. This leads in a natural way to the question when the left Haar measure
λ on G coincides with a Hausdorff measure. It is well known that this is the
case if G is a locally compact linear space over a locally compact field (i.e.,
a finite dimensional linear space over R or over a p-adic number field Qp or
over a field F ((X)) of formal power series in one indeterminate with coeffi-
cients in a finite field). As proved by Goetz [3], this is also the case when G
is an n-dimensional Lie group. Another result in this direction has been given
by Kahnert [5]. He proved that for a much larger class of locally compact
groups (namely for separable locally compact groups of finite topological di-
mension) any left Haar measure is a generalized Hausdorff measure (possibly
different from the Hausdorff measures in the usual sense). We will generalize
Volkmann’s theorem in this situation.

First we recall the notion of a generalized Hausdorff outer measure. Sup-
pose that G is metrizable and let d be a left invariant metric inducing the
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topology of G. Let F be the class of all continuous, increasing functions
f : [0,+∞) → [0,+∞) such that f(t) > 0 for every t > 0 and f(0) = 0. For
f ∈ F and A ∈ P(G) we define

µ∗f (A) := sup
t>0

inf

{
+∞∑
i=1

f(δ(Ai))
∣∣∣ A ⊆

+∞⋃
i=1

Ai, δ(Ai) ≤ t for each i ∈ N

}
,

where δ(Ai) denotes the diameter of Ai with respect to d. (If f(t) = ts for
some s > 0, then µ∗f is the usual s-dimensional Hausdorff outer measure.)

It is well known that µ∗f : P(G) → [0,+∞] is a left invariant outer measure
and that every Borel set of G is µ∗f -measurable (see [7], Theorem 27). There-
fore, if λ(K) = µ∗f (K) for some compact neighborhood of e, then µ∗f is a Haar
measure on B∩S and so coincides on B∩S with λ, by the uniqueness theorem
for Haar measures. (Recall that on B ∩ S the regularity condition required in
the definition of a Haar measure is automatically satisfied, by Halmos’s The-
orem 64.I [4].)2 It then follows that µ∗f (S) = λ∗(S) for all S ∈ S, as for every
A ∈ P(G) it holds µ∗f (A) = inf{µ∗f (B) : A ⊆ B, B ∈ B} ([7], Theorem 27).

For f, g ∈ F we write g ≺ f if limt→0+ f(t)/g(t) = 0. If g ≺ f , then
µ∗g(A) < +∞ implies µ∗f (A) = 0 for every A ∈ P(G) ([7], Theorem 40).

From these facts on Hausdorff measures and Proposition 4 we immediately
obtain the announced generalization of Volkmann’s theorem.

Theorem 5. Let H be a dense subgroup of G and X be a left H-invariant
subset of G. Suppose that the topology of G is induced by a left invariant
metric d and that, for some f ∈ F and some compact neighborhood K of e,
µ∗f (K) ∈ (0,+∞). Let g ∈ F with g ≺ f . Then:

i) µ∗g(X ∩ S) = 0 for every S ∈ S or

ii) µ∗g(X ∩O) = +∞ for every nonvoid open subset O of G.

(Of course, µ∗f and µ∗g are defined with respect to d.)

Remark 6. Even in the situation considered by Volkmann (where G = (R,+)
and g(t) = ts and thus µ∗g = Hs), Theorem 5 cannot be sharpened in the sense
that Hs(X ∩B) admits only the values 0 or +∞ for every Borel set B. To see
this, let H be a subgroup of R that is a Borel set with Hausdorff dimension
s ∈ (0, 1) and Hs(H) = +∞ (as mentioned in the introduction, such a group
does exist [2]). By Theorem 57 in [7], H contains a compact set K with
Hs(K) ∈ (0,+∞). Therefore, for X = H we have Hs(X ∩K) ∈ (0,+∞).

2Of course, this conclusion can also be drawn from Lemma 1 for µ∗ = µ∗f and X = G.
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