RESEARCH

Hans Weber, Dipartimento di Matematica ed Informatica, Università degli Studi di Udine, via delle Scienze 206, 33100 Udine, Italy. email: weber@dimi.uniud.it

Enrico Zoli, via Ballanti Graziani 33, 48018 Faenza (RA), Italy. email: zoli@math.unifi.it

ON A THEOREM OF VOLKMANN

Abstract

We generalize a theorem of Volkmann concerning the Hausdorff measures on subfields of \mathbb{R} . Our short proof is based on a mensural trichotomy law for invariant subsets of a locally compact group.

1 Introduction.

Let $s \in (0, 1)$ and let \mathcal{H}^s denote the s-dimensional Hausdorff outer measure on \mathbb{R} . A theorem of Volkmann [8] states that any s-dimensional subfield F of \mathbb{R} is "dimensionslos" in the sense that $\mathcal{H}^s(F) = 0$ or $\mathcal{H}^s(F \cap O) = +\infty$ for every nonvoid open subset O of \mathbb{R} . Edgar and Miller [1] have recently shown that there exists no s-dimensional subring of \mathbb{R} that is an analytic set. In contrast to this, according to Foran [2] there exist s-dimensional subgroups G, H of \mathbb{R} that are F_{σ} -sets with $\mathcal{H}^s(G) = 0$ and $\mathcal{H}^s(H \cap O) = +\infty$ for every nonvoid open set O. In view of these results, it therefore becomes interesting to know whether Volkmann's theorem can be extended to the *entire* class of subgroups of \mathbb{R} , and whether it admits a natural analogue in other locally compact groups.

In our note we address this problem. Precisely, in Section 3 we will see that in any locally compact group whose Haar measure is a generalized Hausdorff measure every dense subgroup is dimensionalos (in a sense even stronger than Volkmann's). The key idea of the proof turns out to be the mensural trichotomy law established in Lemma 1.

Throughout, (G, \cdot) stands for a locally compact Hausdorff topological group with e as its identity element. By \mathcal{B} and \mathcal{B}_0 we denote, respectively, the Borel

Key Words: Hausdorff measures, Haar measures, locally compact groups, invariant sets Mathematical Reviews subject classification: 28A12, 28A78, 43A05 Received by the editors February 28, 2004

Communicated by: Udayan B. Darji

¹

 σ -algebra of G and the Baire σ -algebra of G; i.e., the smallest σ -algebra with respect to which every real valued continuous function on G is measurable. Let S denote the σ -ideal generated by all compact subsets of G. Then $\mathcal{B} \cap S$ and $\mathcal{B}_0 \cap S$ coincide, respectively, with the σ -ring of Borel sets and the σ -ring of Baire sets in the terminology of Halmos.

Let $\lambda : \mathcal{B} \to [0, +\infty]$ be a left Haar measure on G; i.e., a nonzero left invariant σ -additive measure on G which is finite on compact sets and inner regular with respect to the compact sets. Let λ^* and λ_* denote, respectively, the outer and inner measures induced by λ on the power set $\mathcal{P}(G)$ of G. With \mathcal{M} we indicate the σ -algebra of λ^* -measurable subsets of G. We denote the restriction of λ^* to \mathcal{M} by λ again.

If H is a subgroup of G, a set $X \in \mathcal{P}(G)$ is left H-invariant if $hX \subseteq X$ for every $h \in H$ (equivalently, hX = X for every $h \in H$).

2 A Mensural Trichotomy Law.

The next lemma is the basic tool for proving Theorem 5.

Lemma 1. Let H be a dense subgroup of G and let X be a left H-invariant subset of G. Suppose further that $\mu^* : \mathcal{P}(G) \to [0, +\infty]$ is an outer measure such that every $B \in \mathcal{B}_0 \cap \mathcal{S}$ is μ^* -measurable and $\mu^*(hA) = \mu^*(A)$ for every $A \in \mathcal{P}(G)$ and $h \in H$. Then precisely one of the following cases occurs:

- i) $\mu^*(X \cap S) = 0$ for every $S \in S$;
- ii) $\mu^*(X \cap O) = +\infty$ for every nonvoid open subset O of G;
- iii) there exists $c \in (0, +\infty)$ such that, for every $M \in \mathcal{M} \cap \mathcal{S}$,

$$\mu^*(X \cap M) = c\lambda^*(X \cap M) = c\lambda(M). \tag{(*)}$$

PROOF. Suppose $\mu^*(X \cap S) > 0$ for a certain $S \in S$ and $\mu^*(X \cap O) < +\infty$ for a certain nonvoid open set O. We prove the existence of $c \in (0, +\infty)$ as stated in *iii*). First observe that $\nu(B) := \mu^*(X \cap B)$ defines a nonzero σ -additive measure on $\mathcal{B}_0 \cap S$.

Let us show that $\nu(K) < +\infty$ for every compact Baire subset K of G. Since H is dense in G, there are $h_1, h_2, \ldots, h_n \in H$ such that $K \subseteq \bigcup_{i=1}^n h_i O$. Thus

$$\nu(K) \le \sum_{i=1}^{n} \mu^*(X \cap h_i O) = \sum_{i=1}^{n} \mu^*(h_i X \cap h_i O) = n\mu^*(X \cap O) < +\infty.$$

ON A THEOREM OF VOLKMANN

Moreover, it is immediately seen that $\nu(hB) = \nu(B)$ for every $h \in H$ and $B \in \mathcal{B}_0 \cap \mathcal{S}$. Hence, by Theorem 62.G in [4] and the density of H in G, we get $\nu(gB) = \nu(B)$ for every $g \in G$ and $B \in \mathcal{B}_0 \cap \mathcal{S}$. Since both $I_{\nu}(f) := \int f d\nu$ and $I_{\lambda}(f) := \int f d\lambda$ define left Haar integrals on the space of all real valued continuous functions on G with compact support, by the uniqueness theorem for the Haar integral there is a constant $c \in (0, +\infty)$ such that $I_{\nu} = cI_{\lambda}$. Thus, $\nu(B) = c\lambda(B)$ for every $B \in \mathcal{B}_0 \cap \mathcal{S}$.¹

To conclude the proof, we appeal to Theorem 64.I in [4]. Given $M \in \mathcal{M} \cap S$, choose $A, B \in \mathcal{B}_0 \cap S$ such that

$$X \cap M \subseteq B$$
 and $\lambda^*(X \cap M) = \lambda(B)$,
 $A \subseteq M$ and $\lambda(A) = \lambda(M)$.

Then the following chain of inequalities gives (*):

$$c\lambda(M) = c\lambda(A) = \nu(A) = \mu^*(X \cap A) \le \mu^*(X \cap M)$$
$$\le \mu^*(X \cap B) = \nu(B) = c\lambda(B) = c\lambda^*(X \cap M) \le c\lambda(M).$$

Remark 2. In the case $G = (\mathbb{R}, +)$ the nonelementary part of the proof above (i.e., the existence of the constant c such that $\nu(B) = c\lambda(B)$ for every $B \in \mathcal{B}_0 \ (= \mathcal{B})$) can be derived in a very basic way. To see this, define f : $[0, +\infty) \rightarrow [0, +\infty)$ by $f(x) := \nu([0, x))$. Of course f is increasing and satisfies f(g+h) = f(g) + f(h) for all nonnegative $g, h \in H$. Using the density of H in \mathbb{R} , it follows that f is continuous. Hence f(x) = cx for some constant c. One then obtains $\nu([g,h)) = c\lambda([g,h))$ for every $g, h \in H$. Since \mathcal{B} is generated by the semiring $\{[g,h) \mid g, h \in H\}$, we infer that ν and $c\lambda$ coincide on \mathcal{B} .

In generalizing Volkmann's theorem we will apply Lemma 1 in the case when μ^* is a generalized Hausdorff outer measure; still, it is worth mentioning that Lemma 1 is of interest also for $\mu^* = \lambda^*$. We recall that a set $A \in \mathcal{P}(G)$ is completely nonmeasurable if $A \cap M \notin \mathcal{M}$ whenever $M \in \mathcal{M}$ and $\lambda(M) > 0$ -equivalently, if $\lambda_*(A) = \lambda_*(G \setminus A) = 0$. Completely nonmeasurable sets (also called "saturated nonmeasurable" in the literature) have been studied since the early works of Sierpiński. A detailed account on them can be found in [6] (see also [9]).

Corollary 3. Let H be a dense subgroup of G and X a left H-invariant subset of G such that $\lambda^*(X) > 0$ and $\lambda^*(G \setminus X) > 0$. Then X is completely nonmeasurable.

¹As an alternative argument, one can directly apply Exercise 60.7 in [4].

PROOF. For $\mu^* = \lambda^*$, condition *ii*) of Lemma 1 is never satisfied, while condition *i*) does not hold since $\lambda^*(X) > 0$. From (*) we then infer $\lambda(M) = 0$ for every compact set M disjoint from X, which means $\lambda_*(G \setminus X) = 0$. The same argument for $G \setminus X$ yields $\lambda_*(X) = 0$. It follows that X is completely nonmeasurable.

3 A Generalization of Volkmann's Theorem.

In this section we present a generalization of Volkmann's theorem quoted in the introduction. It proves to be a consequence of the following proposition, which in turn follows directly from Lemma 1.

Proposition 4. Besides the assumptions of Lemma 1 suppose that $\mu^*(S) < +\infty$ implies $\lambda^*(S) = 0$ for every $S \in S$. Then:

- i) $\mu^*(X \cap S) = 0$ for every $S \in S$ or
- ii) $\mu^*(X \cap O) = +\infty$ for every nonvoid open subset O of G.

PROOF. The additional assumption on μ^* and *iii*) of Lemma 1 are incompatible, as can be seen by taking a compact neighborhood of e for M in (*). \Box

Proposition 4 immediately yields for $G = (\mathbb{R}, +)$ that any subgroup of the reals of Hausdorff dimension $s \in (0, 1)$ is dimensional in the sense of Volkmann, by taking for μ^* the s-dimensional Hausdorff outer measure \mathcal{H}^s . More generally, one obtains such a result for subgroups of a locally compact group G whose left Haar measure λ is the *n*-dimensional Hausdorff measure for some n > 0. This leads in a natural way to the question when the left Haar measure λ on G coincides with a Hausdorff measure. It is well known that this is the case if G is a locally compact linear space over a locally compact field (i.e., a finite dimensional linear space over \mathbb{R} or over a *p*-adic number field \mathbb{Q}_p or over a field F((X)) of formal power series in one indeterminate with coefficients in a finite field). As proved by Goetz [3], this is also the case when Gis an *n*-dimensional Lie group. Another result in this direction has been given by Kahnert [5]. He proved that for a much larger class of locally compact groups (namely for separable locally compact groups of finite topological dimension) any left Haar measure is a generalized Hausdorff measure (possibly different from the Hausdorff measures in the usual sense). We will generalize Volkmann's theorem in this situation.

First we recall the notion of a generalized Hausdorff outer measure. Suppose that G is metrizable and let d be a left invariant metric inducing the

topology of G. Let \mathcal{F} be the class of all continuous, increasing functions $f: [0, +\infty) \to [0, +\infty)$ such that f(t) > 0 for every t > 0 and f(0) = 0. For $f \in \mathcal{F}$ and $A \in \mathcal{P}(G)$ we define

$$\mu_f^*(A) := \sup_{t>0} \inf \left\{ \sum_{i=1}^{+\infty} f(\delta(A_i)) \mid A \subseteq \bigcup_{i=1}^{+\infty} A_i, \ \delta(A_i) \le t \text{ for each } i \in \mathbb{N} \right\},$$

where $\delta(A_i)$ denotes the diameter of A_i with respect to d. (If $f(t) = t^s$ for some s > 0, then μ_f^* is the usual s-dimensional Hausdorff outer measure.)

It is well known that $\mu_f^* : \mathcal{P}(G) \to [0, +\infty]$ is a left invariant outer measure and that every Borel set of G is μ_f^* -measurable (see [7], Theorem 27). Therefore, if $\lambda(K) = \mu_f^*(K)$ for some compact neighborhood of e, then μ_f^* is a Haar measure on $\mathcal{B} \cap \mathcal{S}$ and so coincides on $\mathcal{B} \cap \mathcal{S}$ with λ , by the uniqueness theorem for Haar measures. (Recall that on $\mathcal{B} \cap \mathcal{S}$ the regularity condition required in the definition of a Haar measure is automatically satisfied, by Halmos's Theorem 64.I [4].)² It then follows that $\mu_f^*(S) = \lambda^*(S)$ for all $S \in \mathcal{S}$, as for every $A \in \mathcal{P}(G)$ it holds $\mu_f^*(A) = \inf\{\mu_f^*(B) : A \subseteq B, B \in \mathcal{B}\}$ ([7], Theorem 27).

For $f, g \in \mathcal{F}$ we write $g \prec f$ if $\lim_{t\to 0^+} f(t)/g(t) = 0$. If $g \prec f$, then $\mu_g^*(A) < +\infty$ implies $\mu_f^*(A) = 0$ for every $A \in \mathcal{P}(G)$ ([7], Theorem 40).

From these facts on Hausdorff measures and Proposition 4 we immediately obtain the announced generalization of Volkmann's theorem.

Theorem 5. Let H be a dense subgroup of G and X be a left H-invariant subset of G. Suppose that the topology of G is induced by a left invariant metric d and that, for some $f \in \mathcal{F}$ and some compact neighborhood K of e, $\mu_f^*(K) \in (0, +\infty)$. Let $g \in \mathcal{F}$ with $g \prec f$. Then:

- i) $\mu_a^*(X \cap S) = 0$ for every $S \in \mathcal{S}$ or
- ii) $\mu_a^*(X \cap O) = +\infty$ for every nonvoid open subset O of G.

(Of course, μ_f^* and μ_q^* are defined with respect to d.)

Remark 6. Even in the situation considered by Volkmann (where $G = (\mathbb{R}, +)$ and $g(t) = t^s$ and thus $\mu_g^* = \mathcal{H}^s$), Theorem 5 cannot be sharpened in the sense that $\mathcal{H}^s(X \cap B)$ admits only the values 0 or $+\infty$ for every Borel set B. To see this, let H be a subgroup of \mathbb{R} that is a Borel set with Hausdorff dimension $s \in (0, 1)$ and $\mathcal{H}^s(H) = +\infty$ (as mentioned in the introduction, such a group does exist [2]). By Theorem 57 in [7], H contains a compact set K with $\mathcal{H}^s(K) \in (0, +\infty)$. Therefore, for X = H we have $\mathcal{H}^s(X \cap K) \in (0, +\infty)$.

²Of course, this conclusion can also be drawn from Lemma 1 for $\mu^* = \mu_f^*$ and X = G.

References

- G. Edgar, C. Miller, *Borel Subrings of the Reals*, Proc. Amer. Math. Soc., 131 (2003), 1121–1129.
- [2] J. Foran, Some Relationships of Subgroups of the Real Numbers to Hausdorff Measures, J. London Math. Soc., 7 (1974), 651–661.
- [3] A. Goetz, Bemerkungen über Hausdorffsche Maße und Hausdorffsche Dimensionen in Lieschen Gruppen, Colloq. Math., 5 (1958), 55–65.
- [4] P. R. Halmos, *Measure Theory*. 2nd printing, Springer-Verlag, New-York, 1974.
- [5] D. Kahnert, Haar-Maβ und Hausdorff-Maβ, in Proc. Conf. Oberwolfach 1975, Measure Theory, Springer-Verlag, New-York, (1976), 13–23.
- [6] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Państowe Wydawnyctwo Naukowe, Warsaw, 1985.
- [7] C. A. Rogers, *Hausdorff Measures*, Cambridge University Press, London, 1970.
- [8] B. Volkmann, Eine metrische Eigenschaft reeller Zahlkörper, Math. Ann., 141 (1960), 237–238.
- [9] H. Weber, E. Zoli, On the Steinhaus Property in Topological Groups, Topol. Appl. (to appear).