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Abstract

Recall that a Borel probability measure µ on R is called extremal if
µ-almost every number in R is not very well approximable. In this pa-
per, we prove extremality (and implying it the exponentially fast decay
property (efd)) of conformal measures induced by 1-dimensional finite
parabolic iterated function systems. We also investigate the doubling
property of these measures and we estimate from below the Hausdorff
dimension of the limit sets of such iterated systems.

1 Introduction.

This paper is about not very well approximable and badly approximable num-
bers occurring in the limit set of a 1-dimensional finite parabolic iterated
function system. A point x ∈ R is called very well approximable if there exist
δ > 0 and infinitely many integers p, q ∈ Z, q ≥ 1, such that

|qx− p| ≤ q−(1+δ).

It is a classical result that the set of all very well approximable numbers has
the Lebesgue measure zero but the Hausdorff dimension equal to 1. Thus
the natural question arises about other measures. To be more precise, a
Borel measure µ on R is called extremal if µ-almost every number in R is
not very well approximable. Barak Weiss has provided in [10] a nice sufficient
condition, which we call exponentially fast decay (efd) (See the beginning of
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Section 3 for its definition.) for a Borel probability measure on R to be ex-
tremal. We will use this result frequently. We have originated in [8] to study
the extremality property of conformal measures of 1-dimensional regular it-
erated function systems with special attention paid to the systems generated
by the ordinary continued fraction algorithm. For the corresponding results
about multi-dimensional systems see [2], [1] and [9] for example. In this paper
we continue the topic of 1-dimensional systems focusing this time on finite
parabolic iterated function systems. Our ultimate result here, Theorem 5.1,
is that the conformal measure of every 1-dimensional finite parabolic iterated
function system satisfies the (efd) property, and is consequently extremal.

The second leading theme of this paper concerns badly approximable num-
bers. Recall that a number x ∈ R is badly approximable if there is C > 0

such that for all p ∈ Z and q ∈ N, we have that
∣∣∣∣x− p

q

∣∣∣∣ ≥ c

q2
. D. Kleinbock

and Barak Weiss provided in [1] a very useful tool to estimate from below the
Hausdorff dimension of the set of badly approximable points lying in the topo-
logical support of a Borel probability measure. Let us describe this tool in our
special 1-dimensional context. Following [2] we say that a Borel probability
measure µ on R is absolutely decaying if there exist a constant C > 0 and
α > 0 such that for all x, y ∈ R and all r, ε > 0

µ
(
B(x, r) ∩B(y, εr)

)
≤ Cεαµ(B(x, r)).

The measure µ is said to satisfy the doubling (Federer) property provided that
there is a constant F > 0 such that µ(B(x, 2r)) ≤ Fµ(B(x, r)) for every x ∈ R
and every r > 0. Finally, given s > 0 the measure µ is said to be s-upper
geometric if µ(B(x, r)) ≤ Grs for some constant G > 0, all x ∈ R and all
r > 0. The result (in our context) of Kleinbock and Weiss from [1] is given by
the following.

Theorem 1.1. If a Borel probability measure µ on R is absolutely decaying,
s-upper geometric and satisfies the doubling property, then the Hausdorff di-
mension of the set of badly approximable points lying in the topological support
of the measure µ is greater than or equal to s.

In Section 6 we introduce the concept of extendable 1-dimensional finite
parabolic iterated function systems and we prove in Section 7 that the Haus-
dorff dimension of the set of badly approximable points lying in the limit set
of such a system is greater than or equal to h+pS(h−1) > 0, where h ∈ (0, 1]
is the Hausdorff dimension of the limit set and pS > 0 is the parameter de-
scribing the local behavior of our system around parabolic points. The idea
of the proof is to verify the assumptions of Theorem 1.1 for the h-conformal
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measure m. And indeed, the absolute decaying property of m is a rather easy
consequence of the (efd) property and the doubling property. That the confor-
mal measure m is h + pS(h− 1)(> 0)-upper geometric follows easily from [7].
The issue is the doubling property, which is interesting itself. The doubling
property of conformal measures of 1-dimensional systems was studied in [5].
Here, we provide at the beginning of Section 4 a general sufficient condition
for the conformal measure of a 1-dimensional iterated function system to sat-
isfy the doubling property, the condition weaker that those from [5]. As we
have already indicated we introduce in Section 6 the concept of extendable
1-dimensional finite parabolic iterated function systems, which replaces the
annoying super strong open set condition from [5], and we ultimately prove
that each extendable 1-dimensional finite parabolic iterated function system
satisfies the doubling property.

2 Preliminaries From Conformal IFS.

Our setting is the following. Let X be a compact subset of a Euclidean space
Rd with nonempty interior such that the boundary of X has no isolated points.
We consider a countable family of conformal maps φi : X → X, i ∈ I, where
I has at least two elements, satisfying the following conditions:

(1) (Open Set Condition) φi(Int(X)) ∩ φj(Int(X)) = ∅ for all i 6= j.

(2) |φ′i(x)| < 1 everywhere except for finitely many pairs (i, xi), i ∈ I, for
which xi is the unique fixed point of φi and |φ′i(xi)| = 1. Such pairs and
indices i will be called parabolic and the set of parabolic indices will be
denoted by Ω. All other indices will be called hyperbolic.

(3) (extension) There exist an open connected neighborhood V of X and
s < 1 such that ∀n ≥ 1 ∀ω = (ω1, . . . , ωn) ∈ In if ωn is a hyperbolic
index or ωn−1 6= ωn, then φω extends conformally to V , maps V into
itself and ||φ′ω|| ≤ s.

(4) If i is a parabolic index, then
⋂

n≥0 φin(X) = {xi}. (Thus, the diameters
of the sets φin(X) converge to 0.)

(5) (Cone Condition) There exist α, l > 0 such that for every x ∈ ∂X ⊂ Rd,
there exists an open cone Con(x, ux, α, l) ⊂ Int(X) with vertex x and a
central angle of Lebesgue measure α, where Con(x, ux, α, l) = {y : 0 <
(y − x, ux) ≤ cos α||y − x|| ≤ l} and ||ux|| = 1.

(6) ∃s < 1 ∀n ≥ 1 ∀ω ∈ In if ωn is a hyperbolic index or ωn−1 6= ωn, then
||φ′ω|| ≤ s.
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(7) (Bounded Distortion Property) ∃K ≥ 1 ∀n ≥ 1 ∀ω = (ω1, . . . , ωn) ∈

In ∀x, y ∈ V if ωn is a hyperbolic index or ωn−1 6= ωn, then
|φ′ω(y)|
|φ′ω(x)|

≤ K.

(8) There are constants L ≥ 1 and α > 0 such that∣∣|φ′i(y)| − |φ′i(x)|
∣∣ ≤ L||φ′i||(||y − x||)α,

for every i ∈ I and every pair of points x, y ∈ V .

Call a finite word ω = ω1ω2 . . . ωn−1ωn hyperbolic if ωn is a hyperbolic index
or ωn−1 6= ωn. As an easy consequence of (7) and (8) we get the following
strengthening of (7).

(9) (Strong Bounded Distortion Property) For every ε > 0 there exists δ > 0
such that for every hyperbolic word ω, every x ∈ X and every y ∈

B(x, δ), we have
|φ′ω(y)|
|φ′ω(x)|

≤ 1 + ε.

The system S = {φi : i ∈ I} is called a conformal iterated function system
abbreviated as conformal IFS. If Ω = ∅, the system S is called hyperbolic and
if Ω 6= ∅, it is called parabolic. By I∗ we denote the set of all finite words
with alphabet I and by I∞ all infinite sequences with terms in I. It follows
from (3) that for every hyperbolic word ω, φω(V ) ⊂ V . For each ω ∈ I∗ ∪ I∞,
we define the length of ω by the uniquely determined relation ω ∈ I |ω|. If
ω ∈ I∗ ∪ I∞ and n ≤ |ω|, then by ω|n we denote the word ω1ω2 . . . ωn. In
[MU4], we proved that limn→∞ sup|ω|=n{diam(φω(X))} = 0. So, the map
π : I∞ → X, π(ω) =

⋂
n≥0 φω|n(X), is uniformly continuous. Its range

J = JS = π(I∞),

the main object of our interest in this paper, is called the limit set of the system
S. For every integer q ≥ 1, let Sq = {φω : ω ∈ Iq}. Of course, JSq = JS and
sometimes in the sequel it will be more convenient to consider an appropriate
family of iterates Sq of S rather than S itself. If d ≥ 3, we put pi = 1 for all
i ∈ Ω. If d = 2 and i ∈ Ω, then there are pi ∈ {1, 2, 3, . . .}, a ∈ C \ {0} and
an ∈ C for every n ≥ pi + 2 such that either

φi(z) =z + a(z − xi)pi+1 +
∞∑

n=pi+2

an(z − xi)n

or

φi(z) =z + a(z − xi)pi+1 +
∞∑

n=pi+2

an(z − xi)n
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on a sufficiently small neighborhood of xi ∈ C. If d = 1, we assume that for
every i ∈ Ω there exist pi ∈ (0,+∞) and a > 0 such that

φi(x) = x− a sign(x− xi)|x− xi|pi+1 + o
(
|x− xi|pi+1

)
.

Let h = HD(JS) be the Hausdorff dimension of the limit set JS . A Borel
probability measure m on J is called h-conformal if and only if

m(φi(A)) =
∫

A

|φ′i|hdm

for every Borel set A ⊂ X. If an h-conformal measure m exists, the system S
is called regular and the measure m is unique. The following result has been
proved in [7] in the case when d = 1 and in [4] in the case when d ≥ 2.

Theorem 2.1. If S is a finite parabolic IFS, then the system S is regular and,
consequently, an h-conformal measure for S exists. In addition

h > max
{

pi

pi + 1
: i ∈ Ω

}
.

Given two sets A,B ⊂ Rd let

dist(A,B) = inf{||y − x|| : x ∈ A, y ∈ B}

and
Dist(A,B) = sup{||y − x|| : x ∈ A, y ∈ B}

The formulas below have been proved in [4] assuming that d ≥ 2. If d = 1,
these can be easily derived from formulas established in [7]. Here they are.
There exist a constant Q ≥ 1 and an integer q ≥ 0 such that for every parabolic
index i ∈ I, every j ∈ I \ {i}, and all n, k ≥ 1 we have that

Q−1n
− pi+1

pi ≤ inf
X
{||φ′inj(x)||}, ||φ′inj ||,diam(φinj(X)) ≤ Qn

− pi+1
pi , (2.1)

Q−1n
− 1

pi ≤ dist(xi, φinj(X)) ≤ Dist(xi, φinj(X)) ≤ Qn
− 1

pi , (2.2)

Dist(φinj(X), φikj(X)) ≤ Q
∣∣∣min{k, n}−

1
pi − (max{k, n}+ 1)−

1
pi

∣∣∣ (2.3)

and, furthermore, if |n− k| ≥ q, then

dist(φinj(X), φikj(X)) ≥ Q|n−
1

pi − k
− 1

pi |. (2.4)



148 Mariusz Urbański

These formulas along with Theorem 2.1 are sufficient for all the considerations
in the last section of [4] to go through regardless whether d = 1 or d ≥ 2. A
convenient tool to study limit sets of parabolic iterated function systems and
corresponding conformal measures is the hyperbolic (see Theorem 5.2 in [3])
system S∗ associated with S. The system S∗ is given by

S∗ = {φinj : n ≥ 1, i ∈ Ω, i 6= j} ∪ {φk : k ∈ I \ Ω}.

Thus, I∗, the countable set of indices or letters for the system S∗ is

I∗ = {inj : n ≥ 1, i ∈ Ω, i 6= j} ∪ {k : k ∈ I \ Ω}.

This system was described and analyzed in [3]. The limit sets generated by
the system S∗ and S differ only by a countable set. If a parabolic system S
is regular, in particular if it is finite, then the h-conformal measure m for S is
obviously h-conformal for S∗.

3 Extremality and (efd) Property for Regular 1-Dimen-
sional Systems.

We have proved in [8] the following proposition.

Proposition 3.1. Let (X, ρ) be a metric space and let µ be a Borel probability
measure on X. Then the following two conditions are equivalent:

(a)
∃(α ∈ (0, 1))∃(β > 1)∃(ξ > 0)∀(x ∈ X)∀(r ≤ ξ)

µ(B(x, r)) ≤ αµ(B(x, βr)).

(b) There exists a Borel set Y ⊂ X with µ(Y ) = 1 such that the condition
(a) is satisfied with X replaced by Y .

Any Borel probability measure satisfying condition (a) or, equivalently,
condition (b) of Proposition 3.1, was said in [8] to satisfy the exponentially
fast decay (efd) property. The significance of this property, though interesting
itself, results from the following fact, essentially proven in [10] and crucial for
our approach.

Theorem 3.2. (B. Weiss) Every Borel probability measure on R satisfying
the (efd) property is extremal.
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For every x ∈ R and r > 0 put

B+(x, r) = B(x, r) ∩ [x, +∞) and B−(x, r) = B(x, r) ∩ (−∞, x].

We prove in this section the following general condition for the conformal
measure of a 1-dimensional regular system to satisfy the (efd) property.

Theorem 3.3. Suppose that the 1-dimensional system S = {φi}i∈I is regular
and denote by m the corresponding h-conformal measure. Assume that there
exist four real constants: γ ≥ 1, β > 1, α ∈ (0, 1), κ ∈ (0,min{dist(X, ∂V ), |X|}),
and a finite set F ⊂ I such that

m(B(x, r)) ≤ αm(B(x, βr)) (3.1)

for all i ∈ I \ F , all x ∈ φi(J) and all r ∈ [γ||φ′i||, κ]. Then the h-conformal
measure m satisfies the (efd) property and is consequently extremal.

Proof. Fix an integer s ≥ 0 so large that 3Khαs < 1. A straightforward
induction gives that

m(B(x, r)) ≤ αsm(B(x, βst)) (3.2)

for all i ∈ I \ F , all x ∈ φi(J) and all r ∈ [γ||φ′i||, β−sκ]. Since supp(m) = J ,
we have that Q := inf{m(B(x, κ)) : x ∈ J} > 0 and, since the measure m has
no atoms, there exists θ ∈

(
0,K−1 min{1, κ, |X|}

)
so small that

m(B(x,Kθ)) ≤ αsQ (3.3)

for all x ∈ J . Fix now x ∈ J and r ∈ (0, θ). Write x = π(ω), where ω ∈ I∞,
and let n ≥ 0 be the least integer such that ||φ′ω|n || ≤ θ−1r. Then n ≥ 1 and

||φ′ω|n−1
|| > θ−1r. (3.4)

Consequently

γθ−1Kr||φ′ω|n−1
||−1 ≥ γθ−1r||φ′ω|n ||

−1||φ′ωn
|| ≥ γ||φ′ωn

|| (3.5)

and
Kr||φ′ω|n−1

||−1 < Kθ < κ ≤ dist(X, ∂V ). (3.6)

In view of (3.4) and the choice of θ, we get that

|φω|n−1(X)| ≥ K−1||φ′ω|n−1
|||X| ≥ K−1θ−1|X|r > r.
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Hence, the set φω|n−1(X) contains at least one side of the ball B(x, r). So, we
may assume without loss of generality that φω|n−1(X) ⊃ B+(x, r). Combining
this with (3.6), we see that

φω|n−1

(
X ∩B

(
π(σn−1(ω),Kr||φ′ω|n−1

||−1
))

=φω|n−1(X) ∩ φω|n−1

(
B

(
π(σn−1(ω),Kr||φ′ω|n−1

||−1
))
⊃ B+(x, r).

(3.7)

Hence, assuming that γθ−1βsKr||φ′ω|n−1
||−1 < κ, using (3.5) along with the

fact that π(σn−1(ω) ∈ φωn(J) and also (3.2), we get that

m(B+(x, r)) ≤ m
(
φω|n−1

(
X ∩B

(
π(σn−1(ω)),Kr||φ′ω|n−1

||−1
)))

=
∫

X∩B
(
π(σn−1(ω)),Kr||φ′

ω|n−1
||−1

) |φ′ω|n−1
|hdm

≤ ||φ′ω|n−1
||hm

(
B

(
π(σn−1(ω)),Kr||φ′ω|n−1

||−1
))

≤ ||φ′ω|n−1
||hm

(
B

(
π(σn−1(ω)), γθ−1Kr||φ′ω|n−1

||−1
))

≤ αs||φ′ω|n−1
||hm

(
B

(
π(σn−1(ω)), βsγθ−1Kr||φ′ω|n−1

||−1
))

≤ Khαsm
(
φω|n−1

(
B

(
π(σn−1(ω)), βsγθ−1Kr||φ′ω|n−1

||−1
)))

≤ Khαsm
(
B(x, βsγθ−1Kr)

)
.

(3.8)
If, on the other hand, γθ−1βsKr||φ′ω|n−1

||−1 ≥ κ, then using (3.3), (3.6) and
(3.7), we obtain

m
(
B(x, βsγθ−1Kr)

)
≥ m

(
φω|n−1

(
B

(
π(σn−1(ω)), κ

)))
≥ K−h||φ′ω|n−1

||hm
(
B

(
π(σn−1(ω)), κ

))
≥ K−hα−s||φ′ω|n−1

||h
(
B

(
π(σn−1(ω)),Kθ

))
≥ K−hα−sm

(
φω|n−1

(
B

(
π(σn−1(ω)),Kθ

)
∩X

)))
≥K−hα−sm

(
φω|n−1

(
B

(
π(σn−1(ω)),Kr||φ′ω|n−1

||−1
)
∩X

))
≥ K−hα−sm(B+(x, r)).

In any case, (3.8) always holds. Now let y ∈ J be the infimum of all z ∈
B−(x, r) for which (3.8) holds with x replaced by z. Since the measure m has
no atoms, (3.8) also holds for y. If J ∩ (x − r, y) = ∅, then B(x, r) ∩ J =
J ∩ (B+(y, r) ∪B+(x, r)), and consequently

m(B(x, r) ≤ m(B+(y, r)) + m(B+(x, r))

≤ Khαs
(
m

(
B(y, βsγθ−1Kr)

)
+ m

(
B(x, βsγθ−1Kr)

))
≤ 2Khαsm

(
B

(
x, (1 + βsγθ−1K)r

))
.
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If J ∩ (x − r, y) 6= ∅, then set w = sup(J ∩ (x − r, y)). There then exists an
infinite sequence {wk}∞k=1 of points (not necessarily distinct) in J ∩ (x− r, y)
converging to w such that for every k ≥ 1 the formula (3.8) is satisfied with
B+(x, r) replaced by B−(wk, r). Since m is atomless, (3.8) therefore holds also
for B+(x, r) replaced by B−(w, r). Since J ∩B(x, r) ⊂ B−(w, r) ∪B+(y, r) ∪
B+(x, r), we thus get

m(B(x, r)) ≤m
(
B−(w, r) ∪B+(y, r) ∪B+(x, r)

)
≤Khαs

(
m

(
B(w, βsγθ−1Kr)

)
+ m

(
B(y, βsγθ−1Kr)

))
+ m

(
B(x, βsγθ−1Kr)

)
≤3Khαsm

(
B

(
x, (1 + βsγθ−1K)r

))
.

4 The Doubling Property for Regular 1-Dimensional Sys-
tems.

A Borel probability measure ν in a metric space Y is said to satisfy the dou-
bling (Federer) property provided that there exists a constant C ≥ 1 such
that for every x ∈ Y and every radius r > 0 we have that ν(B(x, 2r)) ≤
Cν(B(x, r)). In [5] (see Theorem 2.1) we have provided a sufficient condition
for the h-conformal measure of a regular iterated function system to satisfy
the doubling property. Here, in the setting of 1-dimensional systems, we want
to get rid of this rather restrictive and annoying condition replacing it by
condition (a) in the next proposition. In order to formulate it we need one
definition. Given a conformal iterated function system S = {φi : X → X}i∈I ,
X ⊂ V , a pair (Y, W ) is called S-eligible provided that the following conditions
are satisfied

(a) Y ⊂ X is a compact connected set and W ⊂ V is an open connected set.

(b) Y ⊂ W .

(c) φi(Y ) ⊂ Y and φi(W ) ⊂ W for all i ∈ i.

Obviously S′ = {φi : Y → Y }i∈I , Y ⊂ W , is a conformal iterated function
system, JS′ = JS , and conformal measures for S and S′ (if at least one exists)
coincide. S′ is called an eligible version of S. Let a and b be respectively the
left hand endpoint of Y and the right hand endpoint of Y . We shall prove the
following.
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Proposition 4.1. Suppose that S = {φi}i∈I is a regular 1-dimensional iter-
ated function system and denote by m the corresponding h-conformal measure.
Suppose also that there exist an S-eligible pair (X, V ) and constants γ ≥ 1,
ρ ∈ (0,dist(X, ∂V ) and C > 0 with the following properties:

(a) ∀(ω ∈ I∗)∀(r ∈ (0, ρ)

m(φω(B+(b, r))) ≤ Cm(φω(B−(b, r)))
and m(φω(B−(a, r))) ≤ Cm(φω(B+(b, r))).

(b) ∀(i ∈ I)∀(x ∈ φi(J)) m
(
B

(
x, 2γdiam(φi(X)

))
≤ C||φ′i||h.

(c) ∀(i ∈ I)∀(x ∈ φi(J))∀(r ≥ diam(φi(X)))) m(B(x, 2r)) ≤ Cm(B(x, r)).

Then the measure m satisfies the doubling property.

Proof. It follows from the Strong Bounded Distortion Property that there
exists R ∈ (0, ρ) such that for all ω ∈ I∗, all x ∈ X, and all y ∈ B(x, 2R), we
have that

3
4
≤ |φ′ω(y)|
|φ′ω(x)|

≤ 4
3
. (4.1)

Fix now an arbitrary point x ∈ J and radius r ∈ (0, R/2). Write x = π(ω),
ω ∈ I∞. There then exists the least n ≥ 0 such that 2r||φ′ω|n ||

−1 < R. Then
B

(
π(σn(ω)), 2r||φ′ω|n ||

−1
)
⊂ V , and it follows from (4.1) that

φω|n
(
B

(
π(σn(ω)),

3
4
r||φ′ω|n ||

−1
))
⊂ B(x, r).

Hence,

m(B(x, r)) ≥
(

3
4

)h

||φ′ω|n ||
hm

(
B

(
π(σn(ω)),

3
4
r||φ′ω|n ||

−1
))

. (4.2)

Also
φω|n

(
B

(
π(σn(ω)),

3
2
r||φ′ω|n ||

−1
))
⊃ B

(
x,

9
8
r
)
. (4.3)

Since 2r||φ′ω|n ||
−1 < R, it follows from condition (a) that

m
(
φω|n

(
B

(
π(σn(ω)),

3
2
r||φ′ω|n ||

−1
)))

≤(1 + C)m
(
φω|n

(
X ∩B

(
π(σn(ω)),

3
2
r||φ′ω|n ||

−1
)))

.
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Therefore, applying (4.3), we get that

m
(
B

(
x,

9
8
r
))
≤ (1 + C)

(
4
3

)h

||φ′ω|n ||
hm

(
X ∩B

(
π(σn(ω)),

3
2
r||φ′ω|n ||

−1
))

= (1 + C)
(

4
3

)h

||φ′ω|n ||
hm

(
X ∩B

(
π(σn(ω)),

3
2
r||φ′ω|n ||

−1
))

.

(4.4)
It follows from minimality of n ≥ 0 that 2r||φ′ω|n+1

||−1 ≥ R. So,

3
4
r||φ′ω|n ||

−1 ≥ 3
8
R||φ′ω|n ||

−1||φ′ω|n+1
|| ≥ 3

8
K−1R||φ′ωn+1

||. (4.5)

Suppose first that

3
4
r||φ′ω|n ||

−1 ≥ γdiam
(
φωn+1(X)

)
.

Since π(σn(ω)) = φωn+1(π(σn+1(ω))), it therefore follows from item (c) that

m
(
B

(
π(σn(ω)),

3
2
r||φ′ω|n ||

−1
))
≤ Cm

(
B

(
π(σn(ω)),

3
4
r||φ′ω|n ||

−1
))

.

Hence, combining this along with (4.4) and (4.2), we obtain

m
(
B

(
x,

9
8
r
))
≤ C(1 + C))

(
4
3

)2h

m(B(x, r)). (4.6)

Looking at (4.5) we may now assume that

3
8
K−1R||φ′ωn+1

|| ≤ 3
4
r||φ′ω|n ||

−1 ≤ γdiam
(
φωn+1(X)

)
. (4.7)

Using the right-hand side of this formula and applying (4.4) along with item
(b), we obtain

m
(
B

(
x,

9
8
r
))
≤ (1 + C)

(
4
3

)h

m
(
B

(
π(σn(ω)), 2γdiam

(
φωn+1(X)

)))
≤ C(1 + C)

(
4
3

)h

||φ′ω|n ||
h||φ′ωn+1

||h.

(4.8)

Since supp(m) = J , the number

M = inf
{

m

(
B

(
z,

3R

8K

))
: z ∈ J

}



154 Mariusz Urbański

is finite. Now using the left-hand side of (4.7) and (4.2), we get that

m(B(x, r)) ≥
(

3
4

)h

||φ′ω|n ||
hm

(
B

(
π(σn(ω)),

3
8
K−1R||φ′ωn+1

||
))

≥
(

3
4

)h

||φ′ω|n ||
hm

(
φωn+1

(
B

(
π(σn+1(ω)),

3R

8K

)))
≥

(
3

4K

)h

||φ′ω|n ||
h||φ′ωn+1

||hm
(
B

(
π(σn+1(ω)),

3R

8K

))
≥ M

(
3

4K

)h

||φ′ω|n ||
h||φ′ωn+1

||h.

Along with (4.8), this gives that

m
(
B

(
x,

9
8
r
))
≤ C(1 + C)M−1

(
16
9

)h

m(B(x, r)).

This inequality and (4.6) complete the proof.

5 Extremality and the (efd) Property for 1-Dimensional
Parabolic Iterated Function Systems.

The result of this section, and one of the two main results of the whole paper,
is the following.

Theorem 5.1. The h-conformal measure of a finite 1-dimensional parabolic
iterated function system satisfies the (efd) property, and is consequently ex-
tremal.

Proof. Let S = {φi : X → X}i∈I be our parabolic system, and let m be the
corresponding conformal measure. The idea of the proof is to check that the
assumptions of Theorem 3.3 are satisfied for the associated hyperbolic system
S∗. Since I is finite, the set of hyperbolic elements from I in I∗ is also finite,
and it is therefore sufficient to verify (3.1) for the maps of the form φjki, where
i, j ∈ I, i 6= j, j is a parabolic element and k ≥ 2 is an integer which will be
assumed appropriately large in the course of the proof. Fix γ = 2 max{1, |X|}.
Fix then i and j as in the previous sentence, x ∈ φjki(X), and r ∈ [γ||φ′jki||, κ],
where κ > 0 will be assume sufficiently small in the course of the proof and
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γ ≥ 1 like k will be assumed appropriately large in the course of the proof.
Let

a = min{l ≥ 0 : B(x, r)∩φjli(X) 6= ∅}, b = sup{l ≥ 0 : B(x, r)∩φjli(X) 6= ∅}

and

c = min{l ≥ 0 : B(x, βr) ⊃ φjli(X)}, d = sup{l ≥ 0 : B(x, βr) ⊃ φjli(X)}.

Assume without loss of generality that the (parabolic) fixed point of the
parabolic map φj is equal to 0 and that φji(X) ⊂ (0,+∞). Put p = pj .
Observe that if k ≥ 2 and γ are large enough, then

a−
1
p � x + r and c−

1
p � x + βr. (5.1)

If x− r > 0 or x− βr > 0, then respectively

b−
1
p � x− r and d−

1
p � x− βr. (5.2)

Now, the Mean Value Theorem produces three points z ∈ (x − r, x + r),
y ∈ (x− βr, x− r) and w ∈ (x + r, x + βr) such that

(x + r)(p+1)h−p − (x− r)(p+1)h−p � rz(p+1)(h−1),

(x− r)(p+1)h−p − (x− βr)(p+1)h−p � ry(p+1)(h−1),

(x + βr)(p+1)h−p − (x + r)(p+1)h−p � rw(p+1)(h−1).

(5.3)

The choice of integers a, b, c, d along with (5.1) gives us that

m(B(x, r)) �
b∑

l=a

||φ′jli||
h �

b∑
l=a

l−
p+1

p h � a
p−(p+1)h

p − b
p−(p+1)h

p

� (x + r)(p+1)h−p − (x− r)(p+1)h−p

(5.4)

and

m(B(x, βr) \B(x, r)) = m((x− βr, x− r) ∪ (x + r, x + βr))

�
a∑

l=c

||φ′jli||
h +

d∑
l=b

||φ′jli||
h � c

p−(p+1)h
p − a

p−(p+1)h
p + b

p−(p+1)h
p − d

p−(p+1)h
p .

(5.5)

Now observe that verifying formula (3.1) is equivalent to verifying the formula

m(B(x, βr) \B(x, r)) � m(B(x, r)).
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In order to do it consider two cases.

Case 10: x− βr > 0.
Using then (5.4) and (5.3), we get

m(B(x, r)) � rz(p+1)(h−1) � r(x− r)(p+1)(h−1).

Using in turn (5.5), (5.3), and (5.2), we obtain

m(B(x, βr) \B(x, r)) �rw(p+1)(h−1) − (x− r)(p+1)h−p + (x− r)(p+1)h−p

− (x− βr)(p+1)h−p

�ry(p+1)(h−1) � r(x− r)(p+1)(h−1).

Hence, we are done in this case.

Case 20: x− βr ≤ 0:
Then x + r ≤ (1 + β)r and x + βr ≤ 2βr. Thus, in view of (5.4), we get

m(B(x, r)) �
∞∑

s=a

s−
p+1

p h � (x + r)(p+1)h−p � r(p+1)h−p.

Now it follows from (5.2) and (5.3) that

m(B(x, βr) \B(x, r)) ≥ m([x + r, x + βr))

� (x + βr)(p+1)h−p − (x + r)(p+1)h−p

� rw(p+1)(h−1) ≥ r(x + βr)(p+1)(h−1)

≥ rr(p+1)(h−1) = r(p+1)h−p.

Hence we are also done in this case, and the proof of our theorem is complete.

6 The Doubling Property for 1-Dimensional Parabolic
IFS.

As a fairly immediate consequence of reasonings contained in [3], which are
stated only in the case when d ≥ 2 but, as was explained in the paragraph
following formula (2.3), which go through with essentially no modifications in
the case when d = 1 as well, we shall prove the following.
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Lemma 6.1. If S = {φi : X → X}i∈I is an arbitrary finite parabolic iterated
function system, then condition (b) from Proposition 4.1 is satisfied for the
hyperbolic system S∗; i.e., for every γ ≥ 1 there exists C ≥ 1 such that for
every ω ∈ I∗ and every x ∈ φω(J),

m
(
B

(
x, 2γdiam(φω(X))

))
≤ C||φ′ω||h, (6.1)

where m is the unique h-conformal measure for S and S∗.

Proof. Since the set I is finite, it suffices to prove (6.1) for all the elements
of ω ∈ I∗ of the form inj, where i is a parabolic element, j 6= i, and n ≥ 1
is large enough. Inspecting the proof of Lemma 4.7 from [4], we see that all

we need to do is to show that Σ2 � n
− pi+1

pi
h. And indeed, if n ≥ 1 is large

enough, then 1
2n

− 1
pi ≤ η ≤ 2n

− 1
pi , where η > 0 is taken from the proof of

Lemma 4.7 in [4]. But then, regardless whether h ≥ 1 or h ≤ 1, we conclude
from the third bottom line of page 251 of [4], that

Σ2 � n
− pi+1

pi n
− 1

pi
(pi+1)(h−1) = n

− pi+1
pi

h
.

Lemma 6.2. If S is a finite 1-dimensional parabolic iterated function system
and m is the corresponding h-conformal measure, then the condition (c) of
Proposition 4.1 is satisfied for the hyperbolic system S∗.

Proof. We use the notation and formulas established in the proof of Theo-
rem 5.1 (assuming β = 2) before this proof was split into cases. And indeed,
since h ≤ 1, it follows from (5.4) and (5.3) that m(B(x, r)) � rz(p+1)(h−1) �
r(x + r)(p+1)(h−1). It also follows from (5.3) that (x + 2r)(p+1)h−p − (x +
r)(p+1)h−p ≤ r(x + r)(p+1)(h−1). Therefore, we conclude from (5.5) and (5.4)
that in order to prove our lemma, it suffices to show that

b
p−(p+1)h

p − d
p−(p+1)h

p � a
p−(p+1)h

p − b
p−(p+1)h

p

or equivalently that

b
p−(p+1)h

p � a
p−(p+1)h

p + d
p−(p+1)h

p . (6.2)

But since p− (p + 1)h < 0, it follows from (5.2) and (5.1) that if x > r, then
b

p−(p+1)h
p � a

p−(p+1)h
p and we are done in this case. If x ≤ r, then b = +∞ and

(6.2) is trivially true. The proof is complete.
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Let S = ({φi : X → X}i∈I , V ) be a finite 1-dimensional parabolic iterated
function system. Denote by Ĵ the convex hull of J ; i.e., the least closed
segment containing J . Obviously ({φi : Ĵ → Ĵ}i∈I , V ) is an eligible version of
S. Denote the left endpoint of Ĵ by a and the right endpoint by b. Notice that
there exists exactly one ia ∈ I such that a ∈ φia

(Ĵ) and exactly one ib ∈ I
such that b ∈ φia(Ĵ). Rename the set I so that ia = a and ib = b. Passing
to S2, the second iterate of S, we may assume without loss of generality that
φa(a) = a and φb(b) = b. We call the parabolic system S extendable if one of
the following conditions is satisfied:

(ae) Ĵ is a proper subset of X

(be) Ĵ = X, both elements a and b are hyperbolic and |φ′a(a)| = |φ′b(b)|.

(ce) Ĵ = X, both elements a and b are parabolic and pa = pb.

We shall prove the following.

Lemma 6.3. If a finite 1-dimensional parabolic iterated function system S =(
{φi : X → X}i∈I , V

)
is extendable, then the condition (a) from Proposi-

tion 4.1 is satisfied for the hyperbolic system S∗.

Proof. If both a, b ∈ IntX, then
(
{φi : Ĵ → Ĵ}i∈I , X

)
is an eligible version

of S and condition (a) from Proposition 4.1 holds since φω

(
Int(X)\ Ĵ

)
∩J = ∅

for all ω ∈ I∗. So, keep the assumption that Ĵ is a proper subset of X
but assume that Ĵ and X have exactly one common endpoint. Without loss
of generality we may assume that this is the right endpoint b. Again, since
φω

(
Int(X) \ Ĵ

)
∩ J = ∅ for all ω ∈ I∗, condition (a) from Proposition 4.1

holds for the left endpoint a. Now fix an arbitrary finite word ω ∈ I∗ and
write ω = τbn, n ≥ 0, τ|τ | 6= b (allowing τ = ∅). Put |τ | = q. Consider the
segment φτq

(
φbn(B+(b, r))

)
. If τq = ∅, then φbn(B+(b, r))∩J = ∅, and we are

done. So, suppose that τq ∈ I. Since τq 6= b, φτq (b) ∈ Int(Ĵ). If φτq (b) = φi(c),
where c is the left-hand endpoint of X and i ∈ I, then taking r > 0 universally
sufficiently small, the open set condition implies φτq

(B+(b, r)) ⊂ φi(X \ Ĵ) =
φi(Int(X) \ Ĵ)∪ {φi(c)} ⊂ X. Since φi

(
Int(X) \ Ĵ

)
∩ J = ∅, we conclude that

φω(B+(b, r))∩ J ⊂ {φi(b)}. Since the conformal measure m has no atoms, we
are done in this case. We similarly arrive in the same conclusion if φτq (b) is
no endpoint of any interval φi(X), i 6= τq. So, suppose that φτq (b) = φj(b) for
some j ∈ I \ {τq}. Since φτq

(b) 6= b and φb(b) = b, we have that j 6= b. Notice
also that regardless whether b is a parabolic fixed point (see Lemma 5.1 in [7]
for this case) or a repelling fixed point, there exists a constant C1 ≥ 1 and
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κ > 0 (κ = h in the repelling case and κ = pb + (pb − 1)h in the parabolic
case) such that for all s > 0 small enough, we have that

C−1
1 sκ ≤ m(B−(b, s)) ≤ C1s

κ. (6.3)

Also observe (use formulas (2.1)-(2.4) in the parabolic case) that regardless of
whether b is a parabolic fixed point or a repelling fixed point, there exists a
constant C2 ≥ 1 such that

C−1
2 ≤ |φn

b (b + s)− b|
|φn

b (b− s)− b|
≤ C2 (6.4)

for all n ≥ 1 and all s > 0 sufficiently small. Now, since φj(Ĵ) and φτq (B+(b, R))
overlap with the common endpoint φτq

(b) = φj(b) (R > 0 fixed), there exists
a unique positive-valued function Hb defined on [0, R] (assuming that R > 0 is
small enough) such that φτq

(b + s) = φj(b−Hb(s)). Now, for every s ∈ [0, R],
we have

|φτq (b + s)− φτq (b)| ≤ 2|φ′τq
(b)|s

and

|φτq
(b + s)− φτq

(b)| = |φj(b−Hb(s))− φj(b)| ≥
1
2
|φ′j(b)|Hb(s)|.

Hence,
Hb(s) ≤ As, (6.5)

where A = 4max{|φ′i(b)| : i ∈ I}min−1{|φ′i(b)| : i ∈ I}. Using (6.5) and (6.4),
we get that

φτbn(B+(b, r)) = φτ |q−1 ◦ φτq

(
B+(b, φn

b (b + r)− b)
)

= φτ |q−1 ◦ φj

(
B−

(
b, Hb(φn

b (b + r)− b)
))

⊂ φτ |q−1 ◦ φj

(
B−

(
b, A|φn

b (b + r)− b|
))

⊂ φτ |q−1 ◦ φj

(
B−

(
b, AC2|φn

b (b− r)− b|
))

.

It therefore follows from h-conformality of the measure m and (6.3) that

m
(
φτbn(B+(b, r))

)
≤ ||φ′τ |q−1

||h||φ′j ||hC1(AC2)κ|φn
b (b− r)− b|κ. (6.6)

Since φbn(B−(b, r)) = B−(b, b − φn
b (b − r)|) and since τq 6= b, it follows from

the Bounded Distortion Property and (6.3) that

m
(
φτbn(B−(b, r))

)
= m

(
φτ

(
B−(b, b− φn

b (b− r))
))

≥ K−h||φ′τ ||hm
(
B−(b, b− φn

b (b− r))
)

≥ K−2h||φ′τ |q−1
||h||φτq

||hC−1
1 |φn

b (b− r)− b|κ.

(6.7)
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Combining this with (6.6) we get that

m
(
φτbn(B+(b, r))

)
≤ AA1C

2
1 (AC2)κK2hm

(
φτbn(B−(b, r))

)
, (6.8)

where A1 = max{||φ′i|| : i ∈ I}min−1{inf{|φ′i(x)| : x ∈ X} : i ∈ I}. So, we are
done in the case when Ĵ is a proper subset of X.

So, assume that either (be) or (ce) holds. Consider again without loss of
generality the right endpoint b and then a word ω = τbn, n ≥ 0. Put also
q = |τ |. If φτq

(b) is no endpoint of any segment φi(X), i 6= τq, then the same
argument as in the previous case (ae) completes the proof. If φτq

(b) = φj(b)
for some j ∈ I \ {τq}, then also exactly the same reasoning as in the case (ae)
completes the proof. So, suppose that φτq (b) = φj(a) for some j ∈ I. Since, by
the Open Set Condition, the sets φτq

(
B

(
b, dist(X, ∂V )

))
and φj(X) overlap

with the common end point φτq
(b) = φj(a), there exists a unique positive-

valued function Ha defined on [0, R] with R > 0 sufficiently small, such that
φτq

(b + s) = φj(a + Ha(s)). Formula (6.5) remains true with Hb replaced by
Ha if in the minimum part of the formula defining the constant A, φ′i(b) is
replaced by φ′i(a). Because of (be) or (ce), which mean that both fixed points
a and b are of the same kind, formula (6.3) remains the same with b replaced
by a, and (6.4) takes on the form

C−1
2 ≤ |φn

b (b− s)− b|
|φn

b (a + s)− a|
≤ C2.

Similarly as in the case (ae), we therefore get that

φτbn(B+(b, r)) ⊂φτ |q−1 ◦ φj

(
B+

(
a,A|φn

a(a + r)− a|
))

⊂φτ |q−1 ◦ φj

(
B+

(
a,AC2|φn

b (b + r)− b|
))

,

and from this

m
(
φτbn(B+(b, r))

)
≤ ||φ′τ |q−1

||h||φ′j ||hC1(AC2)κ|φn
b (b− r)− b|κ. (6.9)

Since (6.7) is always true, independently of any case considered, combining it
with (6.9), we obtain (6.8) also in this case ((be) or (ce)). We are done.

Combining Proposition 4.1, Lemma 6.1 Lemma 6.3, and Lemma 6.2, we
obtain the following main result of this section.

Theorem 6.4. If S is a 1-dimensional finite extendable parabolic iterated
function system, then the corresponding h-conformal measure satisfies the dou-
bling property.
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7 Badly Approximable Points.

We start with the following.

Lemma 7.1. If µ is a Borel probability measure on the real line R, satisfying
the (efd) and the doubling property, then the measure µ is absolutely decaying.

Proof. In view of the doubling property and the (efd) property, there are
constants C > 0 and α ∈ (0, 1) such that for all r > 0 sufficiently small and
all z ∈ supp(µ), we have

µ(B(z, 2r)) ≤ Cµ(B(z, r) and µ(B(z, r)) ≤ αµ(B(z, 2r)).

In order to prove the lemma, fix x ∈ supp(µ), y ∈ B(x, r) and ε ∈ (0, 1/4).
If B(y, εr) ∩ supp(µ) = ∅, then µ(B(y, εr)) = 0 and we are done. Otherwise,
take an arbitrary point w ∈ B(y, εr) ∩ supp(µ). Then B(y, εr) ⊂ B(w, 2εr)
and B(w, r/2) ⊂ B(x, 2r). Let n be the least integer such that 2n ≤ (4ε)−1.
Since ε ∈ (0, 1/4), we see that n ≥ 0. Then (2εr)2n ≤ r/2, and consequently

µ(B(y, εr)) ≤ µ(B(w, 2εr)) ≤ αnµ(B(w, r/2))
≤ αnµ(B(x, 2r)) ≤ Cαnµ(B(x, r)).

Now, by the definition of n, we have 2n ≥ (8ε)−1. Hence, as log α < 0,

αn = 2n log α
log 2 ≤ (8ε)−

log α
log 2 8

log(1/α)
log 2 ε

log(1/α)
log 2 .

Therefore

µ
(
B(x, r) ∩B(y, εr)

)
≤ µ(B(y, εr)) ≤ C8

log(1/α)
log 2 ε

log(1/α)
log 2 µ(B(x, r)).

Set pS = max{pi : i ∈ Ω}.

Proposition 7.2. If S is a finite 1-dimensional parabolic iterated function
system satisfying condition (a) of Proposition 4.1, then the corresponding h-
conformal measure m is h + pS(h− 1)-upper geometric.

Proof. We infer from condition (a) of Proposition 4.1 that for all r > 0 small
enough, all x ∈ X ((X, V ) is the S-eligible pair involved in condition (a)), and
all ω ∈ I∗,

m
(
φω(B(x, r))

)
≤ (C + 1)m

(
φω(B(x, r)) ∩X

)
.
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This is the property that makes the proofs of Lemma 6.3 and Theorem 6.4,
which is the same as Theorem 6.2 in [7], from [6] go through in the setting of
our proposition. As the result, we get that there exists a constant Q ≥ 1 such
that for every r > 0 sufficiently small and every z = π(ω) ∈ JS there exist a
number p(z, r) ∈ {pi : i ∈ Ω} ∪ {0} and an integer u ≥ 0 such that

Q−1
(
r−1|φ′ω|u(π(σu(ω)))|

)p(z,r)(1−h) ≤ m(B(z, r))
rh

≤ Q
(
r−1|φ′ω|u(π(σu(ω)))|

)p(z,r)(1−h)
.

(7.1)

Since |φ′ω|u(π(σu(ω)))| ≤ 1 and since 1 − h ≥ 0, we therefore get from (7.1)
that m(B(z, r)) ≤ Qrh+p(z,r)(h−1) ≤ Qrh+pS(h−1) for all r > 0 sufficiently
small and every z ∈ JS .

As an immediate consequence of this, Proposition 7.2, Lemma 6.3, and
Theorem 1.1 from [1], we get the following main result of this section.

Theorem 7.3. If S is a finite extendable 1-dimensional parabolic iterated
function system, then the Hausdorff dimension of badly approximable points
in JΦ is greater than or equal to h + pS(h− 1) > 0.

Note that because of Theorem 2.1, h + pS(h− 1) > 0.
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