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B. Satco, Université de Bretagne Occidentale, UFR Sciences et Techniques
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STRONG CONVERGENCE IN
KENSTOCK-KURZWEIL-PETTIS

INTEGRATION UNDER AN EXTREME
POINT CONDITION

Abstract

In the present paper, some Olech and Visintin-type results are ob-
tained in Henstock-Kurzweil-Pettis integration. More precisely, under
extreme or denting point condition, one can pass from weak conver-
gence (i.e. convergence with respect to the topology induced by the ten-
sor product of the space of real functions of bounded variation and the
topological dual of the initial Banach space) or from the convergence of
integrals to strong convergence (i.e. in the topology of Alexiewicz norm
or, even more, of Pettis norm). Our results extend the results already
known in the Bochner and Pettis integrability setting.

1 Introduction.

It is known that, for a given weakly convergent sequence of Bochner integrable
functions, after imposing an extreme point condition that eliminates persistent
oscillations, one can obtain strong convergence. Analogous results hold for
Pettis integrable functions (see [2], [4] and [5]).

The aim of the present work is a further extension to Henstock-Kurzweil-
Pettis integrability setting. We prove that, given a sequence of Henstock-
Kurzweil-Pettis integrable functions convergent with respect to the topology
induced by the tensor product of the space of real functions of bounded varia-
tion and the topological dual of Banach space, we can deduce its convergence
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with respect to the Alexiewicz norm topology. To this end we impose an
extreme point condition, an interval-tightness condition, as well as an uni-
form integrability assumption appropriate to Henstock-Kurzweil integral. If,
in particular, the sequence consists of selections of a Henstock-Kurzweil-Pettis
integrable multifunction, we obtain the convergence in the Pettis norm topol-
ogy.

The Alexiewicz norm convergence is obtained also for a sequence of selec-
tions of a multifunction such that their integrals converge to an extreme point
of the set-valued integral.

Using Komlós-type results, as well as a convergence result for Henstock
integral, allows us to pass from the w-HKP convergence of a sequence of
Henstock-Kurzweil-Pettis (resp. Henstock) integrable functions to the con-
vergence with respect to the τHKP topology (resp. the Alexiewicz norm one),
under denting point assumptions.

2 Notations and Preliminary Facts.

Let [0, 1] be the real unit interval provided with the σ-algebra Σ of Lebesgue
measurable sets and with the Lebesgue measure µ. We begin by introducing
the Henstock-Kurzweil integral, a concept that extends the classical Lebesgue
integral on the real line. A gauge δ on [0, 1] is a positive function; a partition
of [0, 1] (that is, a finite family (Ii, ti)

n
i=1 of nonoverlapping intervals cover-

ing [0, 1] with the tags ti ∈ Ii) is said to be δ-fine if for each i ∈ {1, . . . , n},
Ii ⊂ ]ti − δ(ti), ti + δ(ti)[.

A function f : [0, 1] → R is called Henstock-Kurzweil (or simply, HK-)
integrable if there exists a real number, denoted by (HK)

∫ 1

0
f(t) dt, such that,

for every ε > 0, one can find a gauge δε such that, for any δε-fine partition
P = (Ii, ti)n

i=1 of [0, 1],
∣∣∣∑n

i=1 f(ti)µ(Ii)− (HK)
∫ 1

0
f(t) dt

∣∣∣ < ε.
For more on this integral, we refer the reader to [11].

Through this paper, X is a real separable Banach space, X∗ denotes its
topological dual, B∗ the closed unit ball of X∗ and P0(X) (resp. Pfc(X),
Pwkc(X), Pkc(X), Plwc(X)) stands for the family of its nonempty (resp. closed
convex, weakly compact convex, strongly compact convex, closed convex lo-
cally weakly compact containing no lines) subsets. If A ∈ Pwkc(X), the sup-
port functional of A is σ (·, A) and is defined by

σ (x∗, A) = sup {〈x∗, x〉 , x ∈ A} ,

for all x∗ ∈ X∗. By D, we will indicate the Hausdorff distance and by | · | =
D(·, {0}).

Let K be a convex subset of X and e ∈ K.
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(i) e is an extreme point if there are no x, y ∈ K \ {e} such that e =
x + y

2
.

(ii) e is a strong extreme point if any xn, yn ∈ K such that
xn + yn

2
→ e

satisfies xn → e. (It can be proved (see [5], p. 3) that e is a strong
extreme point iff, for every ε > 0, there is δε > 0 such that x, y ∈ K,∥∥∥∥x + y

2
− e

∥∥∥∥ < δε imply ‖x− e‖ < ε.)

(iii) We say that e is a denting point of K (provided with some topology τ) if,
for every neighborhood V of e (with respect to τ), e /∈ co (K \ V ) (here
co denotes the closed convex hull). In particular, if the topology is not
specified, then it is understood to be the norm topology of X.

Denote by ∂e(K) (resp. ∂se(K), ∂τ−d(K)) the set of all extreme (resp. strong
extreme, denting with respect to τ) points of K. It can be easily seen that
∂d(K) ⊂ ∂se(K) ⊂ ∂e(K) whenever K is closed.

Let us recall that a function f : [0, 1] → X is Pettis integrable if:

1) f is scalarly integrable; i.e., for all x∗ ∈ X∗, 〈x∗, f(·)〉 ∈ L1 ([0, 1]);

2) for each A ∈ Σ, there exists xA ∈ X such that 〈x∗, xA〉 =
∫

A
〈x∗, f(s)〉 ds,

for all x∗ ∈ X∗.

We let xA = (P)
∫

A
f(s) ds and call it the Pettis integral of f .

We denote by Pe(µ,X) the space of Pettis integrable functions. On Pe(µ,X),

we consider the Pettis norm, ‖f‖Pe = sup
x∗∈B∗

∫ 1

0

| 〈x∗, f(s)〉 | ds, that is equiv-

alent to sup
A∈Σ

∥∥∥∥(P)
∫

A

f(s) ds

∥∥∥∥.

A subset K ⊂ Pe(µ,X) is said to be Pettis uniformly integrable (PUI) if
the family {〈x∗, f〉 , x∗ ∈ B∗, f ∈ K} is uniformly integrable, or, equivalently,
for every ε > 0, there is δε > 0 such that, for any A ∈ Σ with µ(A) < δε and
any f ∈ K, ‖fχ

A‖Pe <ε.
The Pettis integral can be generalized, by considering, on the real line, the

Henstock-Kurzweil integral instead of Lebesgue one, as follows.

Definition 1. A function f : [0, 1] → X is said to be Henstock-Kurzweil-Pettis
(or simply, HKP-) integrable if:

1) f is scalarly HK-integrable; i.e., for any x∗ ∈ X∗, 〈x∗, f(·)〉 is HK-integrable,
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2) for each [a, b] ⊂ [0, 1], there is x[a,b] ∈ X such that, for every x∗ ∈ X∗,〈
x∗, x[a,b]

〉
= (HK)

∫ b

a
〈x∗, f(s)〉 ds.

Let x[a,b] = (HKP)
∫ b

a
f(s) ds.

On the space of all HKP-integrable X-valued functions we can consider:

i) the Alexiewicz norm ‖·‖A, where ‖f‖A = sup
[a,b]⊂[0,1]

∥∥∥(HKP)
∫ b

a

f(s) ds
∥∥∥,

ii) the τHKP topology, defined by the following convergence of nets—fα → f

iff ‖〈x∗, fα − f〉‖A = sup
[a,b]⊂[0,1]

∥∥∥(HK)
∫ b

a

〈x∗, fα(s)− f(s)〉 ds
∥∥∥ → 0, for

each x∗ ∈ X∗,

iii) the topology induced by the tensor product of the space of real functions of
bounded variation and X∗. (We call it the weak-Henstock-Kurzweil-Pettis
topology and denote it by w-HKP.) That is, the net (fα)α converges to f

if
(
(HK)

∫ 1

0
g(s) 〈x∗, fα(s)〉 ds

)
α

converges to (HK)
∫ 1

0
g(s) 〈x∗, f(s)〉 ds,

for every g : [0, 1] → R of bounded variation and every x∗ ∈ X∗.

Our consideration arises naturally from the Pettis integrability setting, where
by weak-Pettis topology we mean the one induced by L∞([0, 1])⊗X∗.

A family K of real HK-integrable functions on [0, 1] is uniformly HK-
integrable if, for any ε > 0, there is a gauge δε such that, for every δε-fine
partition and any f ∈ K,

∣∣∣∑n
i=1 f(ti)µ(Ii)− (HK)

∫ 1

0
f(t) dt

∣∣∣ < ε.
The family H of HKP-integrable functions is said to be uniformly HKP-

integrable if the set {〈x∗, f〉 : x∗ ∈ B∗, f ∈ H} is uniformly HK-integrable.

The following straightforward generalization of Henstock-Kurzweil integral
to Banach spaces (see [7]) will be used.

Definition 2. A function f : [0, 1] → X is Henstock integrable if we can
find (H)

∫ 1

0
f(s) ds ∈ X such that, for every ε > 0, there is δε > 0 with∥∥∥∑n

1=1 f(ti)µ(Ii)− (H)
∫ 1

0
f(s) ds

∥∥∥ < ε for every δε-fine partition of [0, 1].

Note that this concept is stronger than HKP-integrability.
Let us now recall the definitions of set-valued integrals which will be of use

later.
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i) Γ : [0, 1] → P0(X) is said to be Aumann-Henstock-Kurzweil-Pettis (or
AHKP-) integrable if it has at least one HKP-integrable selection. In this
case,

(AHKP)
∫ 1

0

Γ(s) ds =
{

(HKP)
∫ 1

0

f(s) ds, f HKP-integrable selection of Γ
}

,

ii) Γ is called scalarly (resp. scalarly HK-) integrable if, for every x∗ ∈ X∗,
σ (x∗,Γ(·)) is Lebesgue (resp. HK-) integrable,

iii) A Pwkc(X)-valued function Γ is “Pettis integrable in Pwkc(X)” (or, sim-
ply, Pettis integrable) if it is scalarly integrable and for every A ∈ Σ,
there exists IA ∈ Pwkc(X) such that, for each x∗ ∈ X∗, σ (x∗, IA) =∫

A
σ (x∗,Γ(t)) dt. We denote IA by (P)

∫
A

Γ(t) dt,

iv) A Pwkc(X)-valued function Γ is “HKP-integrable in Pwkc(X)” (or, simply,
HKP-integrable) if it is scalarly HK-integrable and for every [a, b] ⊂ [0, 1],
there exists Ib

a ∈ Pwkc(X) such that σ
(
x∗, Ib

a

)
= (HK)

∫ b

a
σ (x∗,Γ(t)) dt,

for each x∗ ∈ X∗. We denote Ib
a by (HKP)

∫ b

a
Γ(t) dt.

Theorem 1 in [9] states the following characterizations of Pwkc(X)-valued
HKP-integrable multifunctions.

Theorem 3. Let Γ : [0, 1] → Pwkc(X) be scalarly HK-integrable. Then the
following conditions are equivalent:

i) Γ is HKP-integrable.

ii) Γ has at least one HKP-integrable selection and for any HKP-integrable
selection f there exists a Pettis integrable multifunction G : [0, 1] →
Pwkc(X) such that, for every t ∈ [0, 1], Γ(t) = f(t) + G(t).

iii) Each measurable selection of Γ is HKP-integrable.

iv) For all [a, b] ⊂ [0, 1], (AHKP)
∫ b

a
Γ(t) dt belongs to Pwkc(X) and, for every

x∗ ∈ X∗, σ
(
x∗, (AHKP)

∫ b

a
Γ(t) dt

)
= (HK)

∫ b

a
σ (x∗,Γ(t)) dt.

Remark 4. i) An immediate consequence of condition iv) is that, under the
previously mentioned hypothesis, the Aumann-Henstock-Kurzweil-Pettis inte-
gral coincides with the Henstock-Kurzweil-Pettis integral.
ii) (Remark 1 in [9]) The previous result still holds if one replaces everywhere
“weakly compact” by “compact”.

The notations SPe
Γ , SH

Γ , resp. SHKP
Γ stand for the family of Pettis, Hen-

stock, resp. HKP-integrable selections of the set-valued function Γ.
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3 Strong Convergence Results under Extreme and Dent-
ing Point Condition.

Our first two results require the convergence of the sequence of integrals.

Theorem 5. Let (fn)n be a sequence of HKP-integrable selections of a mea-
surable multifunction Γ : [0, 1] → Pfc(X) satisfying:

1) limn→∞ (HKP)
∫ 1

0
fn(s) ds = e.

2) e ∈ ∂se

(
(AHKP)

∫ 1

0
Γ(s) ds

)
.

Then there is an unique HKP-integrable selection f of Γ with (HKP)
∫ 1

0
f(s) ds

= e and (fn)n converges to f with respect to the Alexiewicz norm topology.

Proof. Let us begin by proving that there exists at most one (therefore,
exactly one, since e is an element of the AHKP-integral) selection f such that
(HKP)

∫ 1

0
f(s) ds = e. (This is true even for extreme points of the integral,

not necessarily strong extreme.) Suppose that we can find two selections f1

and f2 with this property. Consider an arbitrary subinterval [a, b] ⊂ [0, 1] and
the elements of the set-valued integral of Γ defined by

e1,2 = (HKP)
∫ b

a

f1(s) ds + (HKP)
∫

[0,1]\[a,b]

f2(s) ds and

e2,1 = (HKP)
∫ b

a

f2(s) ds + (HKP)
∫

[0,1]\[a,b]

f1(s) ds.

They satisfy the equality e =
e1,2 + e2,1

2
. Therefore e = e1,2 = e2,1. Hence

(HKP)
∫ b

a
f1(s) ds = (HKP)

∫ b

a
f2(s) ds and, as the subinterval was arbitrarily

chosen, it follows that f1 = f2 a.e.
Now, since e is a strong extreme point of (AHKP)

∫ 1

0
Γ(s) ds, for every

ε > 0 there is δε > 0 such that max(‖x− e‖ , ‖y − e‖) < ε whenever x and

y are elements of the integral with
∥∥∥x + y

2
− e

∥∥∥ < δε. Hypothesis 1) gives

nε ∈ N such that
∥∥∥(HKP)

∫ 1

0
fn(s) ds− e

∥∥∥ < δε,∀n ≥ nε. We claim that

sup
t∈[0,1]

∥∥∥∥(HKP)
∫ t

0

(fn(s)− f(s)) ds

∥∥∥∥ ≤ ε,∀n ≥ nε. Indeed, if we take an arbi-

trary t ∈ [0, 1], then for every n ≥ nε we have∥∥∥(HKP)
∫ 1

0
(fn

χ
[0,t]+fχ

[t,1])(s) ds+(HKP)
∫ 1

0
(fχ

[0,t]+fn
χ

[t,1])(s) ds

2
− e

∥∥∥ < δε,
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and, by the choice of δε,
∥∥∥(HKP)

∫ 1

0

(
fn

χ
[0,t] + fχ

[t,1]

)
(s) ds− e

∥∥∥ < ε; that

is to say,
∥∥∥(HKP)

∫ t

0
(fn(s)− f(s)) ds

∥∥∥ < ε. It follows that, for any n ≥ nε,

‖fn − f‖A ≤ 2 sup
t∈[0,1]

∥∥∥∥(HKP)
∫ t

0

(fn(s)− f(s)) ds

∥∥∥∥ ≤ 2ε, and thus the conver-

gence in the Alexiewicz norm topology is proved.

We can replace the strong extreme condition by the extreme one, but we
have to assume that Γ is HKP-integrable.

Proposition 6. Let Γ : [0, 1] → Pkc(X) be HKP-integrable and (fn)n ⊂
SHKP

Γ such that

1) (HKP)
∫ 1

0
fn(s) ds → e with respect to the weak topology of X.

2) e ∈ ∂e

(
(HKP)

∫ 1

0
Γ(s) ds

)
.

Then there exists an unique HKP-integrable selection f of Γ satisfying that
(HKP)

∫ 1

0
f(s) ds = e and ‖fn − f‖Pe → 0.

Proof. For the uniqueness of f see the proof of Theorem 5. (By Theo-
rem 3 and Remark 4, the AHKP-integral coincides in this case with the HKP-
integral.) By Remark 4, there exist γ ∈ SHKP

Γ and G : [0, 1] → Pkc(X) Pettis
integrable such that Γ(t) = γ(t) + G(t), for every t ∈ [0, 1]. Then (fn − γ)n

is a sequence of measurable selections of G. Thus, by Theorem 5.4 in [10],
it is a sequence in SPe

G . Obviously,
(
(P)

∫ 1

0
(fn − γ)(s) ds

)
n

converges with

respect to the weak topology of X to the element e − (HKP)
∫ 1

0
γ(s) ds; that

is, an extreme point of (P)
∫ 1

0
G(s) ds. Applying Theorem 2.3 in [2] gives that

‖fn − f‖Pe = ‖(fn − γ)− (f − γ)‖Pe → 0.

In what follows, the convergence with respect to the w-HKP topology will
be imposed in order to obtain a stronger convergence. Proposition 8 below
assumes that the limit function is an extreme point of the selections set.

The following lemma gives a property of extreme points of the selections
family similar to those already known in Bochner and Pettis integrability.

Lemma 7. Let Γ:[0, 1]→Pwkc(X) be HKP-integrable. Then ∂e(SHKP
Γ )=SHKP

∂e(Γ) .
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Proof. Consider γ ∈ SHKP
Γ . Then the multifunction G : [0, 1] → Pwkc(X)

defined by G(t) = Γ(t) − γ(t),∀t ∈ [0, 1] is Pettis integrable. Moreover,
SHKP

Γ = γ + SPe
G . By Theorem 1.3 in [2], we have ∂e(SPe

G ) = SPe
∂e(G). It

follows that

∂e(SHKP
Γ ) = ∂e(γ + SPe

G ) = γ + ∂e(SPe
G ) = γ + SPe

∂e(G) = SHKP
∂e(Γ) .

Proposition 8. Let Γ : [0, 1] → Pkc(X) be HKP-integrable and (fn)n ⊂
SHKP

Γ be w-HKP convergent to f ∈ ∂e(SHKP
Γ ). Then ‖fn − f‖Pe → 0.

Proof. We can find γ ∈ SHKP
Γ and G : [0, 1] → Pkc(X) Pettis integrable such

that Γ(t) = γ(t)+G(t), for any t ∈ [0, 1]. Then (fn−γ)n is a sequence of Pettis
integrable selections of G. By the sequential σ (Pe(µ,X), L∞([0, 1])×X∗)-
compactness of the family of selections of a Pwkc(X)-valued Pettis integrable
multifunction (Theorem 1.1 in [2]), any subsequence has a further subse-
quence (fkn)n such that fkn − γ → g in the weak-Pettis topology, where
g is a Pettis integrable selection of G. Hence, for every t ∈ [0, 1] and any
x∗ ∈ X∗,

〈
x∗, (P)

∫ t

0
fkn(s)− γ(s) ds

〉
converges to

〈
x∗, (P)

∫ t

0
g(s) ds

〉
and

also to
〈
x∗, (P)

∫ t

0
f(s)− γ(s) ds

〉
, whence

〈
x∗, (P)

∫ t

0

g(s) ds

〉
=

〈
x∗, (P)

∫ t

0

f(s)− γ(s) ds

〉
,∀t ∈ [0, 1],∀x∗ ∈ X∗.

So the equality (P)
∫ t

0
g(s) ds = (P)

∫ t

0
f(s) − γ(s) ds holds for any t ∈ [0, 1]

and then g(t) = f(t) − γ(t) a.e. Thus, any subsequence contains a further
subsequence such that (fkn −γ)n converges to f −γ with respect to the weak-
Pettis topology. Applying Lemma 2.2 in [2] and Lemma 7, we obtain that
‖fkn

− f‖Pe → 0. Finally, since this is true for any subsequence, it follows
that ‖fn − f‖Pe → 0.

More generally, an extreme point condition and a tightness assumption ap-
propriate to Henstock-Kurzweil integral permits Alexiewicz norm convergence
to follow from the w-HKP convergence.

Definition 9. A family K of X-valued functions is called interval-tight (resp.
interval-s-tight) if for every ε > 0 there exists a Pwkc(X) (resp. Pkc(X))-
valued HKP-integrable multifunction Γε such that, for any f ∈ K, there is an
interval If,ε with µ(If,ε) < ε and {t : f(t) /∈ Γε(t)} ⊂ If,ε.
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By Ls {xn : n ∈ N} we denote the pointwise Kuratowski lim sup of the
sequence (xn)n; i.e., Ls {xn : n ∈ N} = ∩∞p=1{xn : n ≥ p}.

The following result asserts that a sequence of HKP-integrable functions
that converges with respect to the w-HKP topology is Alexiewicz-norm con-
vergent if the limit function has extreme points as values.

Theorem 10. Let (fn)n be a sequence of HKP-integrable functions such that:

1) (fn)n is interval-s-tight.

2) (fn)n w-HKP converges to a HKP-integrable function f∞ and, for almost
every t ∈ [0, 1], f∞(t) ∈ ∂e(co(Ls {fn(t) : n ∈ N})).

3) For every ε > 0, there exists δε > 0 satisfying that ‖(HKP)
∫ t2

t1
fn(s) ds‖ <

ε, for all n ∈ N ∪ {∞} and t1, t2 with |t1 − t2| < δε.

If co(Ls {fn(t) : n ∈ N}) ∈ Plwc(X) a.e., then ‖fn − f∞‖A → 0.

Proof. By the interval-s-tightness hypothesis we deduce that, for every ε >
0, there exists a Pkc(X)-valued HKP-integrable multifunction Γε with the
property that, for every n ∈ N there is an interval In

ε ⊂ [0, 1] with µ(In
ε ) <

δε

3
such that fn(t) ∈ Γε(t) for any t ∈ [0, 1] \ In

ε . We claim that, for any

subsequence (fkn
)n of (fn)n, there is a further subsequence (fekn

)n and an
interval Iε ⊂ [0, 1] such that µ(Iε) < δε and fekn

(t) ∈ Γε(t) for every t ∈ [0, 1]\Iε

and every n ∈ N. Indeed, denote by Nε the integer part of the real 3
δε

and

consider the partition (Ji)
Nε

i=0 of the unit interval given by

Ji =

{[
δε

3 i, δε

3 (i + 1)
[

if 0 ≤ i ≤ Nε − 1[
δε

3 Nε, 1
]

if i = Nε.

For the sequence
(
Ikn
ε

)
n

of intervals of [0, 1] there is an i0 ∈ {0, . . . , Nε}
and a further subsequence

(
I

ekn
ε

)
n

with I
ekn
ε ∩ Ji0 6= ∅,∀n ∈ N. Then the

interval Iε = Ji0−1 ∪ Ji0 ∪ Ji0+1 has µ(Iε) < δε and
(
fekn

(t)
)
n
⊂ Γε(t), for any

t ∈ [0, 1] \ Iε. Remark 4 gives a HKP-integrable function γε and a Pkc(X)-
valued Pettis integrable multifunction Gε such that Γε(t) = γε(t)+Gε(t),∀t ∈
[0, 1]. On [0, 1] \ Iε, the sequence

(
fekn

− γε

)
n

of Pettis integrable functions
is PUI, since

(
fekn

− γε

)
n
(t) ⊂ Gε(t), for every t ∈ [0, 1] \ Iε. Moreover,

as the family of all Pettis integrable selections of a Pwkc(X)-valued Pettis
integrable multifunction is sequentially σ(Pe(µ,X), L∞([0, 1])⊗X∗)-compact,
we can find a subsequence (not relabeled) such that (fekn

− γε)n converges
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with respect to this topology to a Pettis integrable selection g. It follows that
g = f∞ − γε a.e. on [0, 1] \ Iε. We apply Theorem 3.1 in [4] to obtain that∥∥∥(

fekn
−f∞

)
χ

[0,1]\Iε

∥∥∥
Pe
→0.

Since∥∥∥fekn
− f∞

∥∥∥
A
≤

∥∥∥(
fekn

− f∞

)
χ

Iε

∥∥∥
A

+
∥∥∥(

fekn
− f∞

)
χ

[0,1]\Iε

∥∥∥
Pe

≤
∥∥∥fekn

χ
Iε

∥∥∥
A

+ ‖f∞χ
Iε
‖A +

∥∥∥(
fekn

− f∞

)
χ

[0,1]\Iε

∥∥∥
Pe

≤ 2ε +
∥∥∥(

fekn
− f∞

)
χ

[0,1]\Iε

∥∥∥
Pe

,

it follows that
∥∥∥fekn

− f∞

∥∥∥
A
→ 0.

Finally, as any subsequence of (fn)n possess a further subsequence satisfy-
ing the condition

∥∥∥fekn
− f∞

∥∥∥
A
→ 0, we deduce that the whole sequence has

the same feature. Thus (fn)n converges to f∞ with respect to the Alexiewicz
norm topology.

The following result is a Henstock-Kurzweil variant of Theorem 3.1 in [4].

Proposition 11. Let the sequence (fn)n of HKP-integrable functions satisfy:

1) (fn)n is interval-s-tight.

2) (fn)n w-HKP converges to a HKP-integrable function f∞ and, for almost
every t ∈ [0, 1], f∞(t) ∈ ∂e(co(Ls {fn(t) : n ∈ N})).

3) (fn)n∈N∪{∞} is uniformly HKP-integrable and pointwise bounded.

If co(Ls {fn(t) : n ∈ N}) ∈ Plwc(X) a.e., then ‖fn − f∞‖A → 0.

Proof. It suffices to prove that the uniform HKP-integrability assumption
implies the hypothesis 3) of Theorem 10. In other words, it suffices to show
that, if (x∗k)k is a w∗-dense sequence of B∗, the double indexed sequence
f̃n,k = (HK)

∫ ·
0
〈x∗k, fn(s)〉 ds is equicontinuous on [0, 1]. Consider f̃ : [0, 1] →

l∞ defined by f̃(t) =
(
f̃n,k(t)

)
n,k

,∀t ∈ [0, 1]. Let us first show that f̃ is
l∞-valued. Take c ∈ [0, 1]. By the uniform HKP-integrability hypothe-
sis, there is a partition of [0, c] such that, for all k ∈ N and n ∈ N ∪
{∞},

∣∣∣∑N
i=1 〈x∗k, fn(ti)〉 (ci+1−ci)− (HK)

∫ c

0
〈x∗k, fn(s)〉 ds

∣∣∣ <1. By the point-
wise boundedness assumption there is M < ∞ such that ‖fn(ti)‖ ≤ M , for
every i ∈ {1, . . . , N} and n ∈ N∪{∞}. Thus

∣∣(HK)
∫ c

0
〈x∗k, fn(s)〉 ds

∣∣≤1+Mc,



Strong Convergence in Henstock-Kurzweil-Pettis Integration189

for every n and k, so the statement is proved.
To show the equicontinuity of the above defined sequence is equivalent to

proving that the function f̃ is continuous with respect to the ‖ · ‖∞-topology
on l∞ (thus uniformly continuous, since the definition domain is compact) fix
c ∈ [0, 1] and ε > 0. By hypothesis, we can find Mc < +∞ such that, for all
n ∈ N ∪ {∞}, ‖fn(c)‖ ≤ Mc and a gauge δε satisfying that∣∣∣∣∣

N∑
i=1

〈x∗k, fn(ti)〉 (ci+1 − ci)−
(∫ ci+1

0

〈x∗k, fn(s)〉 ds−
∫ ci

0

〈x∗k, fn(s)〉 ds

)∣∣∣∣∣ < ε

for every n, k and every δε-fine partition. Then, by Saks-Henstock’s Lemma

(Lemma 9.11 in [11]), any t with |t− c| ≤ ηε,c, where ηε,c = min
(

δε(c),
ε

Mc

)
,

satisfies∣∣∣∣(HK)
∫ t

0

〈x∗k, fn(s)〉 ds− (HK)
∫ c

0

〈x∗k, fn(s)〉 ds

∣∣∣∣ ≤ |〈x∗k, fn(c)〉 (t−c)|

+
∣∣∣∣(HK)

∫ t

c

〈x∗k, fn(s)〉 ds− 〈x∗k, fn(c)〉 (t−c)
∣∣∣∣ ≤ 2ε,∀k ∈ N,∀n∈N ∪ {∞},

since (t, c) with the tag c is an element of a δε-fine partition of [0, 1]. Con-
sequently, for every t with |t− c| ≤ ηε,c,

∥∥∥f̃(t)− f̃(c)
∥∥∥
∞
≤ 2ε, and so f̃ is

continuous.

Under denting point assumptions, using the characterizations of Pwkc(X)-
valued HKP-integrable multifunctions (Theorem 3), we get the following.

Theorem 12. Let Γ : [0, 1] → Pwkc(X) be HKP-integrable and (fn)n a se-
quence of HKP-integrable selections w-HKP convergent to f . If a.e. f(t) is a
denting point of Γ(t), then ‖fn − f‖Pe → 0.

Proof. Let γ be a HKP-integrable function and let G be a Pwkc (X)-valued
Pettis integrable multifunction so that, for all t ∈ [0, 1], Γ(t) = γ(t) + G(t).
As in the proof of Proposition 8, for any subsequence we can find a fur-
ther subsequence (fkn)n such that fkn − γ → f − γ with respect to the
σ(Pe(µ,X), L∞([0, 1]) ⊗ X∗)-topology. Since, obviously, f(t) − γ(t) is a.e.
a denting point of G(t), the hypotheses of Theorem 3.4 in [5] are satisfied, so
‖fkn

− f‖Pe = ‖(fkn
−γ)− (f−γ)‖Pe→0. Hence, ‖fn − f‖Pe → 0.

Using Komlós-type results, as well as a convergence theorem given in [8]
for Henstock integral, one can obtain further results under denting point as-
sumptions on the family of selections this time. Let us first of all recall the
concept of Komlós convergence.
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Definition 13. A sequence of functions (gn)n is said to be Komlós-convergent
to g if for every subsequence (gkn)n there is a µ-null set N ⊂ [0, 1] (depending

on the subsequence), such that for every t ∈ [0, 1]\N , lim
n→∞

1
n

n∑
i=1

gki
(t) = g(t).

Theorem 14. Let the sequence (fn)n of Henstock-Kurzweil-Pettis integrable
selections of a Pwkc(X)-valued function Γ satisfy:

1 (fn)n is pointwise bounded and, for every x∗∈X∗, the set {〈x∗, fn〉 , n ∈ N}
is uniformly HK-integrable.

2 fn → f with respect to the w-HKP topology.

3 f ∈ ∂τHKP−d

(
SHKP

Γ

)
.

Then (fn)n converges in the τHKP-topology to f .

Proof. Suppose that (fn)n does not converge to f in the τHKP topology.
Then we are able to find a neighborhood V (with respect to this topology)
of f and a subsequence (not relabeled) such that fn /∈ V,∀n ∈ N. Con-
sider the sequence (Ẽm)m of measurable subsets of [0, 1] defined by Ẽm =
= {t ∈ [0, 1] : ‖fn(t))‖ ≤ m,∀n ∈ N} which, by the hypothesis of pointwise
boundedness, covers the unit interval. Let (Em)m be the associated pair-
wise disjoint sequence, which means that E1 = Ẽ1 and, for every m ≥ 2,
Em = Ẽm \

⋃m−1
i=1 Ẽi. On each Em, the sequence (fn)n is L1(Em, X)-bounded

and the closed convex hull co {fn(t);n ∈ N} is weakly compact, so, by Corol-
lary 2.2 in [3], one can find a subsequence Komlós-convergent (with respect
to the weak topology of X) on Em to a Bochner integrable function gm. Ap-
plying successively this method on E1, E2, . . . we obtain that the diagonal
subsequence, denoted by (fkn

)n, Komlós-converges on [0, 1] to the function
g that coincides with gm on Em, for each m. Otherwise stated, on any
further subsequence, not relabeled,

(
1
n

∑n
i=1 fki

)
n

weakly a.e. converges to
g. Since the Banach space is separable, it follows that g is measurable.
We are able to apply Theorem 4 in [8] (in the particular case of real val-
ued functions) and obtain that g is scalarly HK-integrable and, for each
x∗ ∈ B∗,

∥∥〈
x∗, 1

n

∑n
i=1 fki

− g
〉∥∥

A
→ 0. By hypothesis 2), the equality∫ t

0
〈x∗, g(s)〉 ds =

∫ t

0
〈x∗, f(s)〉 ds holds for any x∗ ∈ X∗ and any t ∈ [0, 1],

whence, as X is separable, it follows that f=g a.e. and f ∈ co
(
SHKP

Γ \ V
)
.

This contradicts our denting assumption.

As it was noticed in [11], p. 209, the concept of uniform HK-integrability
ignoring µ-null sets isn’t allowed. Whereas we have the following property.
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Lemma 15. Any pointwise bounded sequence of functions fk : [0, 1] → R
which are null except on a set of null measure is uniformly HK-integrable.

Proof. Let N be the µ-null set from the hypothesis. For every n ∈ N,
put N ′

n = {t ∈ N : 0 < |fk(t)| ≤ n,∀k ∈ N} and let (Nn)n be the associated
pairwise disjoint sequence. By the pointwise boundedness assumption, the
sequence (Nn)n covers the set N . Let ε > 0 be arbitrary. One can find, for
each n, an open set On such that Nn ⊂ On and µ(On) < ε

n2n . Define the
gauge δε : [0, 1] → R by

δε(t) =

{
1 if t ∈ [0, 1] \N

d(t, (On)c) if t ∈ Nn.

Then for every δε-fine partition P of [0, 1], denote by Pn the subset of P that
has tags in Nn. If I is an interval of Pn, then I ⊂ On. If we denote by f(P)
the HK-integral sum associated to f and to the partition P, then, for every k,
|fk(P)| ≤

∑∞
n=1 |fk(Pn)| ≤

∑∞
n=1 nµ(On) < ε. Thus the considered sequence

is uniformly HK-integrable.

This allows us to deduce another strong convergence result under denting
point condition.

Proposition 16. Let the sequence (fn)n of Henstock-Kurzweil-Pettis inte-
grable selections of a Pwkc(X)-valued scalarly HK-integrable multifunction Γ
satisfy:

1’) (fn)n is pointwise bounded.

2) fn → f with respect to the w-HKP topology.

3) f ∈ ∂τHKP−d

(
SHKP

Γ

)
.

Then (fn)n converges in the τHKP-topology to f .

Proof. The proof is similar to that of Theorem 14. As it was done there, we
obtain a subsequence (fkn

)n that Komlós-converges. It suffices to show that,
by the scalar HK-integrability assumption on Γ, this subsequence satisfies
that, for every x∗ ∈ X∗, the set

{〈
x∗, 1

n

∑n
i=1 fki

〉
, n ∈ N

}
is uniformly HK-

integrable. Fix x∗ ∈ X∗. Then one can find a µ-null set N ⊂ [0, 1] on whose
complement

(〈
x∗, 1

n

∑n
i=1 fki

(t)
〉)

n
converges to 〈x∗, f(t)〉 and

−σ (−x∗,Γ(t)) ≤

〈
x∗,

1
n

n∑
i=1

fki
(t)

〉
≤ σ (x∗,Γ(t)) , ∀n ∈ N.
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Then the sequence defined, for each n ∈ N, by f̃n =
(

1
n

∑n
i=1 fki

)
χ

[0,1]\N ,

satisfies that
(〈

x∗, f̃n

〉)
n

converges on [0, 1] to
〈
x∗, f̃

〉
, where f̃ = fχ

[0,1]\N .

Moreover, for every t ∈ [0, 1] and any n ∈ N,

−σ (−x∗,Γ(t))χ
[0,1]\N (t) ≤

〈
x∗, f̃n(t)

〉
≤ σ (x∗,Γ(t))χ

[0,1]\N (t)

and the two extreme functions are HK-integrable. By Corollary 13.17 in [11],
the sequence

(〈
x∗, f̃n

〉)
n

is uniformly HK-integrable and, by Lemma 15, the

set
{〈

x∗, 1
n

∑n
i=1 fki

〉
, n ∈ N

}
is uniformly HK-integrable. The rest of the

proof goes then as in Theorem 14.

In the sequel, the Alexiewicz norm convergence is obtained, under denting
point assumption, in Henstock integrability setting.

Theorem 17. Let the sequence (fn)n of Henstock integrable selections of a
set-valued function Γ satisfy:

1) (fn)n is uniformly HKP-integrable, pointwise bounded and, for a.e. t∈[0, 1],
co ({fn(t), n∈N}) is ball-compact (that is, its intersections with closed balls
are compact).

2) fn → f with respect to the w-HKP topology.

3) f ∈ ∂‖·‖A−d

(
SH

Γ

)
.

Then (fn)n converges in Alexiewicz-norm to f .

Proof. As in the proof of Theorem 14, there exists a measurable partition
(Em)m∈N of [0, 1] such that, on each Em, the sequence (fn)n is L1(Em, X)-
bounded. Suppose that (fn)n does not converge with respect to the Alexiewicz-
norm topology to f . Then one can find ε > 0 and a subsequence, not relabeled,
such that, for every n ∈ N, ‖fn − f‖A ≥ ε. On each Em we are able to apply
to (fn)n the remark which postponed Komlós-type Corollary 2.2 in [3] (on
the Banach space considering the norm topology) in order to obtain a subse-
quence that Komlós-converges. By doing this successively on E1, E2, . . . we
obtain the diagonal subsequence (fkn)n that is Komlós-convergent to a func-
tion g on [0, 1]. Therefore

(
1
n

∑n
i=1 fki

)
n

converges a.e. to g; whence, by
Theorem 4 in [8], g is Henstock-integrable and

∥∥ 1
n

∑n
i=1 fki

− f
∥∥

A
→ 0. This

implies that f = g a.e. and f ∈ co(SH
Γ \ B‖·‖A

(f, ε)), which contradicts the
denting point assumption on f .
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Corollary 18. Let (fn)n be a sequence of Henstock integrable selections of
a Pkc(X)-valued function Γ satisfying hypothesis 2), 3) in Theorem 17 and
1’) (fn)n is uniformly HKP-integrable and pointwise bounded. Then (fn)n

converges in Alexiewicz-norm to f .

Proof. It suffices to note that the ball-compactness holds as a consequence
of the compactness assumption on the values of Γ and then the statement
follows from Theorem 17.
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