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Abstract

Given two topological spaces X and Y and a family O∗ of subsets
of X, a function f : X → Y is called O∗-continuous if f−1(V ) ∈ O∗ for
every open set V ⊆ Y . An O∗-step function is meant to be a function
ϕ : X → Y that is piecewise constant on a partition of X into sets
from O∗. Using some technical assumptions on X, Y , and O∗ we give
representations of O∗-continuous functions as uniform limits of O∗-step
functions. We deal in particular with α-continuous, nearly continuous,
almost quasi-continuous, and somewhat continuous functions. The pa-
per is motivated by a corresponding characterization of quasi-continuous
functions.

1 Introduction.

Given two topological spaces X and Y , a function f : X → Y is continuous if
and only if f−1(V ) is open in X for every open subset V ⊆ Y . Replacing in
this definition the system O of open subsets of X by another family O∗ ⊆ 2X

of subsets of X, that does not necessarily satisfy the properties of a topology,
one obtains a modified concept of continuity. A function f : X → Y is called
O∗-continuous if f−1(V ) ∈ O∗ for every open V ⊆ Y . Of course, O∗-continuity
generalizes the classical continuity if O ⊆ O∗.

Various well-known types of generalized continuity fit in with the above
scheme. We consider five examples.
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A subset A of a topological space X is called semi-open if A ⊆ cl(int(A)),
cl(·) and int(·) denoting the closure and the interior operator, respectively.
This concept goes back to [12]. In [16] the name β-set is used, much later
in [24] the name robust set. We denote the family of all semi-open subsets
of X by Os. A function f mapping X into a topological space Y is called
quasi-continuous if f−1(V ) ∈ Os for every open set V ⊆ Y (see [11, 16]).
The authors of [3, 12, 21] speak of neighborly, semi-continuous, and robust
functions, respectively.

A set A ⊆ X is called nearly open if A ⊆ int(cl(A)) (see [23]). Sets of that
type already play a role in [6], where they are called locally dense. Very often
the name preopen is used, starting with [13]. We denote the system of all nearly
open subsets of X by On. A function f : X → Y is called nearly continuous if
f−1(V ) ∈ On for every open V ⊆ Y . The name was introduced by Pták, who
showed that every linear map between two Banach spaces is nearly continuous
(see [19]). Already in [4] Blumberg speaks of densely approached functions. At
present the phrase almost continuous in the sense of Husain is widely used,
going back to the paper [10]. In [13] and related papers these functions are
called precontinuous.

Quasi-continuity and near continuity are complementary in so far as a
function from a topological space X into a regular space Y is continuous if
and only if it is both quasi-continuous and nearly continuous (see [22, 18, 17]).

One easily checks that a set A ⊆ X is both semi-open and nearly open
if and only if A ⊆ int(cl(int(A))). Nj̊astad calls sets of that kind α-sets (see
[16]). We denote the family of all α-sets in X by Oα; that is, Oα = Os ∩ On.
Adjacently, a function f : X → Y is called α-continuous if f−1(V ) ∈ Oα for
every open V ⊆ Y (see [14]). Though the concept of an α-set usually is strictly
wider than that of an open set, because α-sets are exactly those sets that can
be expressed as the difference of an open and a nowhere dense set (see [16]),
the above observation shows that all α-continuous functions f : X → Y are
continuous, provided that Y is regular.

A common generalization of semi-open sets and nearly open sets is given
by the system Osp of all semi-preopen subsets A ⊆ X whose characteristic
property is A ⊆ cl(int(cl(A))) (see [2]). A function f : X → Y is almost
quasi-continuous if f−1(V ) ∈ Osp for every open V ⊆ Y (see [5]). In [1] the
authors speak of β-open sets and β-continuous functions. Although the name
“β-open” is older than “semi-preopen”, we do not use it to avoid confusions
with Nj̊astad’s β-sets mentioned above.

Denoting the class of continuous, α-continuous, quasi-continuous, nearly
continuous, and almost quasi-continuous functions from X to Y by C(X,Y ),
Cα(X,Y ), Cs(X,Y ), Cn(X,Y ), and Csp(X,Y ), respectively, we obtain the
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hierarchies

O ⊆ Oα = Os ∩ On ⊆
〈Os

On

〉
⊆ Osp

and

C(X,Y ) ⊆ Cα(X,Y ) = Cs(X,Y ) ∩ Cn(X,Y ) ⊆
〈Cs(X,Y )
Cn(X,Y )

〉
⊆ Csp(X,Y ).

We finally recall the concept of a somewhat continuous function that has
been explicitly named in [9] and goes back to Froĺık’s studies concerning in-
variance of Baire spaces under mappings (see [8]). A function f : X → Y
is called somewhat continuous if int(f−1(V )) 6= ∅ for every open set V ⊆ Y
with f−1(V ) 6= ∅. Correspondingly, we shall speak of a somewhat open set
A ⊆ X if either A = ∅ or int(A) 6= ∅. We use the symbols Osw and Csw(X,Y )
for denoting the classes of all somewhat open subsets of X and of all some-
what continuous functions f : X → Y , respectively. Of course, Os ⊆ Osw

and Cs(X,Y ) ⊆ Csw(X,Y ). However, in contrast with the previous examples
somewhat openness and somewhat continuity do not describe local properties
of sets or functions, respectively.

The present paper is motivated by a characterization of quasi-continuous
functions from [20].

Theorem 1 ([20, Theorems 1 and 2]). Let f be a real-valued quasi-continuous
function on a topological space X. Then f can be represented as the uniform
limit of a sequence (ϕk)∞k=1 of semi-open step functions which are defined on
a chain K = (Pk)∞k=1 of semi-open partitions Pk =

{
P

(k)
i : i ∈ Ik

}
. If f is

locally bounded, then there exists a chain K of locally finite partitions with the
above property. If f is bounded, then K can be chosen to be a chain of finite
partitions.

If, moreover, X is compact and metrizable, then one can choose K such
that in addition every continuous real-valued function g : X → R can be
attained as the uniform limit of a sequence of semi-open step functions that
are defined on K.

In [15] Naimpally proposed a similar study of nearly continuous functions,
this way motivating investigations of α-continuous, nearly continuous, almost
quasi-continuous, and somewhat continuous functions in the present paper.

Since Theorem 1 serves as a model, we define the involved concepts in
detail. A partition of X is a cover by mutually disjoint sets. We say that
a cover

{
C

(2)
l : l ∈ I2

}
refines a cover

{
C

(1)
k : k ∈ I1

}
if, for every l ∈ I2,

there is k ∈ I1 such that C(2)
l ⊆ C

(1)
k . A chain of partitions is a sequence



218 Christian Richter

(Pk)∞k=1 of partitions such that Pk+1 refines Pk for every k ≥ 1. A partition
of X is called semi-open if it consists of semi-open sets. A function ϕ that is
piecewise constant on the sets of a semi-open partition is called a semi-open
step function (see [20]).

Since semi-open step functions are quasi-continuous and quasi-continuity
is preserved under uniform limits (see [20] or Section 2 of the present paper),
Theorem 1 characterizes quasi-continuous functions as uniform limits of semi-
open step functions. Moreover, Theorem 1 gives a structural insight into the
class Cs(X,R) that usually is not a linear space. Every chain K = (Pk)∞k=1 of
semi-open partitions induces a complete uniform linear space consisting of all
uniform limits of semi-open step functions defined on K. The space induced
by K is separable if all partitions Pk are finite.

The goal of the present paper is to obtain similar theorems related to other
concepts of generalized continuity. Before coming back to the particular con-
tinuity notions introduced above (see Sections 3-6), we establish some general
statements.

2 A General Approach.

Let X be a set, O∗ a family of subsets of X, and Y a topological space. We
denote the set of all O∗-continuous functions from X into Y by C∗(X,Y ). The
elements of O∗ will be called O∗-open sets.

Since O∗ plays a similar role in the definition of O∗-continuity as a system
of open sets does with respect to classical continuity, a fairly natural property
of O∗ is closedness with respect to unions.

(U) The union of any subfamily of O∗ is an element of O∗.
As we shall see now, property (U) already implies closedness of C∗(X,Y )

with respect to uniform limits and motivates a concept of step functions related
to O∗-continuity. (When considering uniform limits of functions with values
in Y , we assume Y to be metric, although sometimes a uniform structure on
Y would suffice.)

Proposition 2. Let X be a set and (Y, dY ) a metric space and let a family
O∗ ⊆ 2X satisfy (U). Then C∗(X,Y ) is closed with respect to uniform limits.

Proof. Let f be the uniform limit of a sequence (fk)∞k=1 ⊆ C∗(X,Y ), say
supx∈X dY (f(x), fk(x)) < 2−k. We need to show that f−1(V ) ∈ O∗ for every
open set V ⊆ Y . Given a fixed V , we write V =

⋃∞
k=1 Vk with open subsets

Vk =
{
y ∈ V : infy′∈Y \V dY (y, y′) > 2−k

}
.
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One easily checks that f−1(V ) =
⋃∞

k=1 f
−1
k (Vk). The sets f−1

k (Vk) are in O∗,
because fk ∈ C∗(X,Y ). Thus f−1(V ) ∈ O∗ by (U).

Proposition 3. Let X be a set and Y a topological space and let a family
O∗ ⊆ 2X satisfy (U). Then a function ϕ : X → Y with discrete range ϕ(X) ⊆
Y is O∗-continuous if and only if there exists a partition P = {Pi : i ∈ I} of
X into sets Pi ∈ O∗ such that ϕ is constant on Pi for every i ∈ I.

Proof. First suppose ϕ ∈ C∗(X,Y ). Since ϕ(X) is discrete, every y ∈ ϕ(X)
has an open neighborhood V such that ϕ−1(y) = ϕ−1(V ) ∈ O∗. Then the
partition {ϕ−1(y) : y ∈ ϕ(X)} of X clearly has the required property.

If ϕ is piecewise constant on a partition P = {Pi : i ∈ I} ⊆ O∗, then the
inverse image ϕ−1(V ) of any open set V ⊆ Y is a union of members of P and
therefore contained in O∗ by (U). Hence ϕ is O∗-continuous.

A function with discrete range can be considered as a natural generalization
of a classical step function, that has to have a finite range. Proposition 3
suggests the following definition. A function ϕ : X → Y is called an O∗-step
function if there exists a partition P of X into O∗-open sets such that ϕ is
constant on every member of P. Partitions of that kind will be called O∗-open
partitions.

Note that the range of an O∗-step function need not be discrete. However,
every O∗-step function is O∗-continuous, as the second part of the above proof
shows (provided that O∗ satisfies (U)). Of course, O∗-step functions can be
seen as very elementary members of C∗(X,Y ).

A characterization of C∗(X,Y ) as the set of all uniform limits of O∗-step
functions from X into Y would be complete once we had shown that every
f ∈ C∗(X,Y ) is representable as the uniform limit of some sequence of O∗-
step functions. The following refinement properties of O∗, to be chosen in
dependence on the structure of Y , yield the desired representation.

(R) Every cover of X by O∗-open sets can be refined to a partition of X
into O∗-open sets.

(Rσ) Every at most countable cover of X by O∗-open sets can be refined
to a partition of X into O∗-open sets.

(Rf) Every finite cover of X by O∗-open sets can be refined to a partition
of X into O∗-open sets.

Proposition 4. Let X be a set, O∗ ⊆ 2X a family of subsets of X, and (Y, dY )
a metric space.
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If O∗ satisfies (R), then every f ∈ C∗(X,Y ) is the uniform limit of O∗-step
functions.

If (Y, dY ) is separable and O∗ satisfies (Rσ), then every f ∈ C∗(X,Y ) is
the uniform limit of O∗-step functions.

If (Y, dY ) is totally bounded and O∗ satisfies (Rf), then every f ∈ C∗(X,Y )
is the uniform limit of O∗-step functions.

Proof. Let f ∈ C∗(X,Y ) and ε > 0. We fix a cover {Vj : j ∈ J} of Y by
open sets of diameter diam(Vj) = supy1,y2∈Vj

dY (y1, y2) ≤ ε. We choose an
at most countable cover of that type if (Y, dY ) is separable and a finite one
if (Y, dY ) is totally bounded. Then {f−1(Vj) : j ∈ J} is an O∗-open cover
of X. The respective refinement property of O∗ yields an O∗-open partition
{Pi : i ∈ I} of X refining {f−1(Vj) : j ∈ J}. For every i ∈ I, we fix j(i) ∈ J
with Pi ⊆ f−1(Vj(i)) and a point yj(i) ∈ Vj(i). We define an O∗-step function
ϕ on {Pi : i ∈ I} by ϕ(Pi) ≡ yj(i), i ∈ I. Then

supx∈X dY (f(x), ϕ(x)) = supi∈I supx∈Pi
dY (f(x), ϕ(x))

= supi∈I supx∈Pi
dY

(
f(x), yj(i)

)
≤ supi∈I supx∈f−1(Vj(i))

dY

(
f(x), yj(i)

)
≤ supi∈I supy∈Vj(i)

dY

(
y, yj(i)

)
≤ supi∈I diam

(
Vj(i)

)
≤ ε.

This completes the proof.

We see that O∗-continuous functions from X into a metric space (Y, dY )
are exactly the uniform limits of O∗-step functions between X and Y , provided
that O∗ satisfies (U) and (R). The relatively strong assumption (R) can be
weakened in dependence on the structure of (Y, dY ). Of course, besides (Rσ)
and (Rf) there exist other weakened versions of (R).

Now we intend to obtain a stronger representation of O∗-continuous func-
tions analogous to Theorem 1. We shall replace (R) by a strong refinement
property, whose formulation requires some preparation.

Let f ∈ C∗(X,Y ). A set A ⊆ X is called (f,O∗)-admissible if A∩f−1(V ) ∈
O∗ for every open set V ⊆ Y . Every (f,O∗)-admissible set A belongs to O∗,
because A = A ∩ f−1(Y ) ∈ O∗ by definition. The intersection A ∩ f−1(W )
of an (f,O∗)-admissible set A with the inverse image of an open set W ⊆ Y
obviously itself is (f,O∗)-admissible.

An equivalent definition of (f,O∗)-admissibility reads as follows.

Lemma 5. Let X be a set, O∗ ⊆ 2X a family satisfying (U), Y a topological
space, and f ∈ C∗(X,Y ) an O∗-continuous function. Then, given any base B
of the system of open subsets of Y , a subset A ⊆ X is (f,O∗)-admissible if
A ∩ f−1(B) ∈ O∗ for every B ∈ B.
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Proof. Suppose A ∩ f−1(B) ∈ O∗ for all B ∈ B. Every open set V ⊆ Y has
a representation V =

⋃
i∈I Bi with suitable sets Bi ∈ B. Thus

A ∩ f−1(V ) =
⋃

i∈I

(
A ∩ f−1(Bi)

)
is a union of sets A∩f−1(Bi) ∈ O∗. Property (U) yields A∩f−1(V ) ∈ O∗.

Now we formulate the strong refinement property. Since the applications
to follow in the next sections concern separable spaces Y , we give the corre-
sponding version. Of course, other variants are possible.

(SRσ) For every f ∈ C∗(X,Y ), every at most countable cover C = {Ci : i ∈
I} of X by (f,O∗)-admissible sets Ci can be refined to a partition P = {Pi :
i ∈ I} of X into (f,O∗)-admissible sets.

We would like to point out that condition (SRσ) is stronger than (Rσ).

Lemma 6. Let X be a set, O∗ a family of subsets of X, and Y a topological
space. If C∗(X,Y ) 6= ∅ (that is, if {∅, X} ⊆ O∗), then (SRσ) implies (Rσ).

Proof. Let f0 ∈ C∗(X,Y ). Then ∅ = f−1
0 (∅), X = f−1

0 (Y ) ∈ O∗. We
fix a constant function ϕ ≡ y0, which in turn belongs to C∗(X,Y ), since
ϕ−1(V ) ∈ {∅, X} for every V ⊆ Y . Thus every set A ∈ O∗ is (ϕ,O∗)-
admissible, because A ∩ ϕ−1(V ) ∈ {∅, A} ⊆ O∗.

Now application of (SRσ) to f = ϕ shows that every at most countableO∗-
open cover C = {Ci : i ∈ I} of X can be refined to a partition P = {Pi : i ∈ I}
of X into O∗-open sets. This proves (Rσ).

Note that, in contrast to the refinement properties (R), (Rσ), and (Rf),
the strong refinement property (SRσ) explicitly bounds the cardinality of the
refining partition P, because P has the same index set I as the given cover C.

The second part of Theorem 1 involves continuous functions on X. Then
one has to dispose of a topology and a system O of open subsets of X. The
following closedness of O∗ with respect to intersections with open sets will help
us to relate continuity and O∗-continuity.

(IO) For every A ∈ O∗ and every G ∈ O, A ∩G ∈ O∗.
Condition (IO) obviously implies O ⊆ O∗ if X ∈ O∗. Another simple

consequence is the following.

Lemma 7. Let X be a topological space, O∗ ⊆ 2X a family satisfying (IO), Y
a topological space, and f ∈ C∗(X,Y ) an O∗-continuous function. If A ⊆ X is
an (f,O∗)-admissible set and G ⊆ X is open, then A∩G is (f,O∗)-admissible,
too.
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Now we come to the abstract counterpart of Theorem 1.

Theorem 8. Let X be a set, (Y, dY ) a separable metric space, O∗ ⊆ 2X a
family satisfying (SRσ), and f ∈ C∗(X,Y ). Then there exists a chain (Pk)∞k=1

of at most countable partitions Pk =
{
P

(k)
i : i ∈ Ik

}
⊆ O∗ of X and a sequence

(ϕk)∞k=1 of O∗-step functions ϕk defined on the partitions Pk such that f is
the uniform limit of (ϕk)∞k=1.

If (Y, dY ) is totally bounded, then this is possible with finite partitions Pk.
If, in addition, X is a compact metrizable space and O∗ satisfies (IO), then

one can choose the chain (Pk)∞k=1 such that, given any continuous function
g ∈ C(X,Y ), there is a sequence (ψk)∞k=1 of O∗-step functions ψk defined on
the partitions Pk such that g is the uniform limit of (ψk)∞k=1.

Proof. We shall define the chain (Pk)∞k=1 inductively starting with the trivial
partition P0 = {X}. Note that the set X is (f,O∗)-admissible, because X ∩
f−1(V ) = f−1(V ) ∈ O∗ for every open set V ⊆ Y .

Given Pk−1, k ≥ 1, the partition Pk will be defined subject to the following
conditions (i)-(iv):

(i) Pk is a refinement of Pk−1 and consists of (f,O∗)-admissible sets.

(ii) Pk is countable and even finite if (Y, dY ) is totally bounded.

(iii) There is a step function ϕk defined on Pk such that

supx∈X dY (f(x), ϕk(x)) ≤ 2−k.

(iv) If X is compact with metric dX and if O∗ satisfies (IO), then, for any
g ∈ C(X,Y ), there is an O∗-step function ψk defined on Pk such that

supx∈X dY (g(x), ψk(x)) ≤ ω
(
g; 2−k

)
,

ω
(
g; 2−k

)
= sup

{
dY (g(x1), g(x2)) : x1, x2 ∈ X, dX(x1, x2) ≤ 2−k

}
de-

noting the modulus of continuity of g.

Suppose k and Pk−1 =
{
P

(k−1)
i : i ∈ Ik−1

}
to be fixed. Let {Vj : j ∈ J} be a

cover of Y by at most countably many open sets of diameter diam(Vj) ≤ 2−k.
We assume J to be finite if Y is totally bounded. If X and O∗ do not satisfy
the topological assumptions of statement (iv) we define a cover C of X by

C =
{
P

(k−1)
i ∩ f−1(Vj) : i ∈ Ik−1, j ∈ J

}
.
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Otherwise we fix an open cover {G1, . . . , Gm} of X with diam(Gl) ≤ 2−k,
1 ≤ l ≤ m, before setting

C =
{
P

(k−1)
i ∩ f−1(Vj) ∩Gl : i ∈ Ik−1, j ∈ J, 1 ≤ l ≤ m

}
.

The sets P (k−1)
i ∩ f−1(Vj) are (f,O∗)-admissible, because the sets P (k−1)

i

are so according to the induction hypothesis. If O∗ satisfies (IO), Lemma 7
shows that the sets P (k−1)

i ∩ f−1(Vj) ∩Gl are (f,O∗)-admissible, too. Hence
in any case C is a cover of X by (f,O∗)-admissible sets. Now we use property
(SRσ) to obtain a partition Pk =

{
P

(k)
i : i ∈ Ik

}
of X into (f,O∗)-admissible

sets that refines C. The index set Ik of Pk coincides with that of C; that is,

Ik = Ik−1 × J or Ik = Ik−1 × J × {1, . . . ,m}, (1)

respectively.
Since C is a refinement of Pk−1, the partition Pk obtained by the aid of

(SRσ) satisfies (i). Property (ii) is a consequence of (1), the corresponding
induction hypothesis on Pk−1, and the choice of J . Claim (iii) follows, because
Pk is via C a refinement of the cover {f−1(Vj) : j ∈ J}. For every i ∈ Ik, we
fix a j(i) ∈ J such that P (k)

i ⊆ f−1(Vj(i)) and choose a value yj(i) ∈ Vj(i).
Then we define a step function ϕk : X → Y on Pk by ϕk

(
P

(k)
i

)
≡ yj(i). We

obtain
supx∈X dY (f(x), ϕk(x)) ≤ supi∈Ik

diam
(
Vj(i)

)
≤ 2−k

as in the proof of Proposition 4. This proves (iii). Similarly, property (iv) is
satisfied, because Pk is a refinement of {G1, . . . , Gm}. Given i ∈ Ik, we fix
l(i) ∈ {1, . . . ,m} such that P (k)

i ⊆ Gl(i) and pick a point xl(i) ∈ Gl(i). We
consider the step function ψk

(
P

(k)
i

)
≡ g(xl(i)), i ∈ Ik, on Pk. Then

supx∈X dY (g(x), ψk(x)) = supi∈Ik
sup

x∈P
(k)
i

dY (g(x), ψk(x))

= supi∈Ik
sup

x∈P
(k)
i

dY (g(x), g(xl(i))) ≤ supi∈Ik
supx∈Gl(i)

dY (g(x), g(xl(i)))

≤ supi∈Ik
ω(g; diam(Gl(i))) ≤ ω(g; 2−k).

Hence conditions (i)-(iv) are confirmed.
Note that the above definition of (Pk)∞k=1 proves the theorem. Indeed, (i)

shows that we have obtained a chain of partitions of X, the partition sets
P

(k)
i belonging to O∗, because every (f,O∗)-admissible set is in O∗. Con-

dition (ii) gives the claim concerning the cardinality of the partitions Pk in
dependence on the structure of Y . By (iii), f is the uniform limit of the se-
quence (ϕk)∞k=1. Finally, (iv) shows that (ψk)∞k=1 uniformly tends to g, because
limk→∞ ω(g; 2−k) = 0 by continuity of g and compactness of X.
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In the following we shall apply the above abstract results to particular
generalizations of continuity.

3 Nearly Continuous Functions.

The family On of nearly open subsets of a topological space X obviously sat-
isfies condition (U). Hence the set Cn(X,Y ) of nearly continuous maps from
X into a metric space (Y, dY ) is closed under uniform limits by Proposition 2.
Proposition 3 leads to the corresponding concept of nearly open step functions.
These are piecewise constant functions on nearly open partitions.

We want to characterize nearly continuous functions as uniform limits of
nearly open step functions in the strong sense of Theorem 8. Condition (IO)
applies to On. For the case of a perfect metrizable space X and a separable
metric space Y we can prove (SRσ). We recall that a topological space is
called perfect if it does not contain isolated points.

Lemma 9. Let X be a perfect metrizable space and (Y, dY ) a separable metric
space. Then On satisfies (SRσ).

Proof. Let f ∈ Cn(X,Y ) and let C = {Ci : i ∈ I} be an at most countable
cover of X consisting of (f,On)-admissible sets. For the construction of the
required refinement P = {Pi : i ∈ I} we assume X to be metrized by dX and
fix a countable base B = {B1, B2, . . .} of the system of open subsets of Y .

We start by defining pairwise disjoint and locally finite sets P (i, j, k) ⊆ X,
(i, j, k) ∈ I × {1, 2, . . .}2, subject to

(i) P (i, j, k) ⊆ Ci ∩ f−1(Bj) and,
(ii) for every x ∈ Ci∩f−1(Bj), there is x′ ∈ P (i, j, k) with dX(x, x′) ≤ 2−k.
We suppose the index set I × {1, 2, . . .}2 to be ordered by � such that

(I × {1, 2, . . .}2,�) is isomorphic to ({1, 2, . . .},≤). We proceed by induction
with respect to �. Let us assume that P (i, j, k) is already defined for (i, j, k) ≺
(i0, j0, k0). Now we construct P (i0, j0, k0) as follows.

By paracompactness of X (see [7, p. 300]), there exists a locally finite open
cover U = {Ul : l ∈ L} of X such that diam(Ul) ≤ 2−k0 . Let

U ′ =
{
Ul ∩

(
Ci0 ∩ f−1(Bj0)

)
: l ∈ L

}
\ {∅} = {U ′l : l ∈ L′},

where U ′l = Ul ∩
(
Ci0 ∩ f−1(Bj0)

)
and L′ = {l ∈ L : U ′l 6= ∅}. The sets U ′l

are nearly open, because Ci0 is (f,On)-admissible and On satisfies (IO). For
every l ∈ L′, we fix a point xl ∈ U ′l ⊆ int(cl(U ′l )). Then xl is the limit of a
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sequence of elements of U ′l \ {xl}, because X is perfect. Thus we can pick a
point

x′l ∈ U ′l \
⋃

(i,j,k)≺(i0,j0,k0)
P (i, j, k), (2)

for
⋃

(i,j,k)≺(i0,j0,k0)
P (i, j, k) is locally finite according to the induction hy-

pothesis.
We define

P (i0, j0, k0) = {x′l : l ∈ L′}.

The set P (i0, j0, k0) is locally finite, because U ′ is, and disjoint with P (i, j, k),
(i, j, k) ≺ (i0, j0, k0), by (2). Property (i) comes from x′l ∈ U ′l ⊆ Ci0∩f−1(Bj0).
For proving (ii) we consider x ∈ Ci0 ∩ f−1(Bj0). We choose l ∈ L such that
x ∈ Ul. Then x ∈ U ′l = Ul ∩

(
Ci0 ∩ f−1(Bj0)

)
, in particular l ∈ L′. The

corresponding point x′l belongs to P (i0, j0, k0). The inclusion (2) together
with U ′l ⊆ Ul yields dX(x, x′l) ≤ diam(Ul) ≤ 2−k0 . This confirms (ii) and
completes the inductive definition of the sets P (i, j, k).

Now we come to the partition P. By setting P
(1)
i =

⋃
j,k≥1 P (i, j, k) we

obtain a partition
{
P

(1)
i : i ∈ I

}
of X1 =

⋃
(i,j,k)∈I×{1,2,...}2 P (i, j, k). Since I

is at most countable, we can assume I = {1, . . . , n} or I = {1, 2, . . .}. Then
the remainder X2 = X \ X1 of X admits the partition

{
P

(2)
i : i ∈ I

}
into

the sets P (2)
i = (Ci \ (C1 ∪ . . . ∪ Ci−1)) ∩X2. We finally define the partition

P = {Pi : i ∈ I} of X by Pi = P
(1)
i ∪ P (2)

i . Of course, P refines C, because
Pi = P

(1)
i ∪ P (2)

i ⊆ (Ci ∩X1) ∪ (Ci ∩X2) = Ci by (i).
It remains to show that the sets Pi are (f,On)-admissible. By Lemma 5,

this amounts to Pi ∩ f−1(Bj) ∈ On for all j ≥ 1. Let i and j be fixed.
Properties (i) and (ii) yield

cl
(
Ci∩f−1(Bj)

)
= cl

( ⋃
k≥1 P (i, j, k)

)
⊆ cl

(
P

(1)
i ∩f−1(Bj)

)
⊆ cl

(
Pi∩f−1(Bj)

)
.

Using this and the (f,On)-admissibility of Ci we obtain

Pi ∩ f−1(Bj) ⊆ Ci ∩ f−1(Bj) ⊆ int
(
cl

(
Ci ∩ f−1(Bj)

))
⊆ int

(
cl

(
Pi ∩ f−1(Bj)

))
,

which shows that Pi ∩ f−1(Bj) ∈ On. This completes the proof.

Now Theorem 8 gives a representation of nearly continuous functions.

Theorem 10. Let X be a perfect metrizable space, (Y, dY ) a separable metric
space, and f : X → Y a nearly continuous function. Then there exists a chain
(Pk)∞k=1 of at most countable and nearly open partitions Pk =

{
P

(k)
i : i ∈ Ik

}
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of X and a sequence (ϕk)∞k=1 of nearly open step functions ϕk defined on the
partitions Pk such that f is the uniform limit of (ϕk)∞k=1.

If (Y, dY ) is totally bounded, then this is possible with finite partitions Pk.
If, in addition, X is a compact metrizable space, then one can choose the

chain (Pk)∞k=1 such that, given any continuous function g ∈ C(X,Y ), there is
a sequence (ψk)∞k=1 of nearly open step functions ψk defined on the partitions
Pk such that g is the uniform limit of (ψk)∞k=1.

As Theorem 1 does for quasi-continuous functions, Theorem 10 does not
only characterize nearly continuous functions as uniform limits of nearly open
step functions, but also explains substructures of Cn(X,Y ). The set of all
uniform limits of nearly open step functions defined on a fixed chain K =
(Pk)∞k=1 of nearly open partitions is closed with respect to uniform limits. If
the partitions are finite, then K defines a complete separable metric space
with the distance d(f1, f2) = supx∈X dY (f1(x), f2(x)). If Y is a linear space,
then every K gives rise to a linear subspace of Cn(X,Y ), although Cn(X,Y )
usually is not closed under linear operations.

We want to end this section by showing that the assumption of perfectness
of X cannot be dropped in Theorem 10. We give an example of a non-perfect
compact metric subspace X of the Euclidean plane R2 and of a continuous
function f : X → [0, 1] such that f cannot be represented as the uniform limit
of a sequence of nearly open step functions.

Let X = X∞ ∪
⋃∞

i=0Xi, where Xi = {(m 2−i, 2−i) : m = 0, . . . , 2i} and
X∞ = [0, 1] × {0}, and let f(ξ1, ξ2) = ξ1. Assume that there exists a nearly
open step function ϕ : X → [0, 1] such that supx∈X |f(x)−ϕ(x)| < 1

2 . That is

sup(ξ1,ξ2)∈X |ξ1 − ϕ(ξ1, ξ2)| < 1
2 . (3)

We infer a contradiction.
ϕ is piecewise constant on a nearly open partition P. Say (0, 0) ∈ P0 ∈ P.

Since ϕ(P0) ≡ α is constant, inequality (3) yields

ξ = sup{ξ1 : (ξ1, 0) ∈ P0} < 1,

because ξ ≤ |0− α|+ |ξ − α| ≤ 2 sup(ξ1,0)∈P0
|ξ1 − ϕ(ξ1, 0)| < 2 · 1

2 = 1. Now
we consider the point x0 = (ξ, 0).

Case 1: x0 ∈ P0. We obtain x0 ∈ int(cl(P0)), because P0 ∈ On. Thus
there is a positive radius ε0 > 0 such that B(x0, ε) ⊆ cl(P0), B(x0, ε0) denoting
the ball {x ∈ X : dX(x, x0) ≤ ε0}. Since an isolated point x ∈ X \X∞ belongs
to P0 if it is an element of cl(P0), we have

B(x0, ε0) \X∞ ⊆ P0. (4)
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Now we fix x1 = (ξ+δ, 0) ∈ X∞ with δ > 0 and x1 ∈ B(x0, ε0). Then x1 /∈ P0

by the choice of ξ, say x1 ∈ P1. Therefore x1 ∈ int(cl(P1)) and, as above,
there exists ε1 > 0 such that

B(x1, ε1) \X∞ ⊆ P1. (5)

By x1 ∈ B(x0, ε0), there is an overlap (B(x0, ε0) ∩ B(x1, ε1)) \X∞ 6= ∅. But
then inclusions (4) and (5) yield P0 ∩ P1 6= ∅, a contradiction.

Case 2: x0 /∈ P0, say x0 ∈ P1. Now we proceed in a similar way. We find
ε0 > 0 such that B(x0, ε0) \X∞ ⊆ P1. Then we can pick x1 = (ξ − δ, 0) ∈ P0

with x1 ∈ B(x0, ε0) according to the choice of ξ. We find ε1 > 0 such that
B(x1, ε1)\X∞ ⊆ P0. Again ∅ 6= ((B(x0, ε0)∩B(x1, ε1))\X∞ ⊆ P1∩P0. This
contradiction completes the example.

4 Almost Quasi-Continuous Functions.

The family Osp of semi-preopen subsets of a topological space X clearly sat-
isfies (U) and (IO). Proposition 2 shows that the set Csp(X,Y ) of almost
quasi-continuous functions into a metric space (Y, dY ) is closed under uniform
limits. Proposition 3 motivates the concept of a semi-preopen step function,
that has to be piecewise constant on the sets of a partition of X into semi-
preopen subsets. Condition (SRσ) is not trivial.

Lemma 11. Let X be a metrizable space and (Y, dY ) a separable metric space.
Then Osp satisfies (SRσ).

We prepare the proof of Lemma 11 by a technical statement.

Lemma 12. Let X be a metrizable space, let X ′ denote the set of non-isolated
points of X, let (Y, dY ) be a separable metric space, and let f ∈ Csp(X,Y ). If
A is an (f,Osp)-admissible set and x0 is a point from A∩X ′, then one of the
following claims applies:

(α) there is a sequence (x̃m)∞m=1 ⊆ A \X ′ such that limm→∞ x̃m = x0 and
limm→∞ f(x̃m) = f(x0) or

(β) x0 ∈ cl
(
int

(
cl

(
A ∩ f−1(V ) ∩ X ′))) for every open set V ⊆ Y with

x0 ∈ f−1(V ).

Proof. Let A and x0 be fixed and suppose that (β) is not the case. That is,
there exists an open set V0 ⊆ Y such that

x0 ∈ f−1(V0) and x0 6∈ cl
(
int

(
cl

(
A ∩ f−1(V0) ∩X ′))). (6)
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We assume X to be metrized by dX . We shall show that, for every m ≥ 1,
there exists x̃m ∈ A\X ′ with dX(x0, x̃m) ≤ 2−m and dY (f(x0), f(x̃m)) ≤ 2−m.
This then obviously implies (α).

We fix an open set Vm ⊆ Y such that f(x0) ∈ Vm ⊆ V0 and diam(Vm) ≤
2−m. Since A is (f,Osp)-admissible, we have

x0 ∈ A ∩ f−1(Vm) ⊆ cl
(
int

(
cl

(
A ∩ f−1(Vm)

)))
.

We abbreviate H = A∩f−1(Vm). Since X splits into the two open sets X \X ′

and int(X ′) and the nowhere dense set bd(X ′), we obtain

x0 ∈ cl(int(cl(H)))
= cl(int(cl(H)) ∩ (X \X ′)) ∪ cl(int(cl(H)) ∩ int(X ′))
⊆ cl(int(cl(H ∩ (X \X ′)))) ∪ cl(int(cl(H ∩ int(X ′))))

= cl
(
int

(
cl

((
A ∩ f−1(Vm)

)
∩ (X \X ′)

)))
∪ cl

(
int

(
cl

((
A ∩ f−1(Vm)

)
∩ int(X ′)

)))
⊆ cl

(
int

(
cl

(
(A \X ′) ∩ f−1(Vm)

)))
∪ cl

(
int

(
cl

(
A ∩ f−1(V0) ∩X ′))).

Now the second part of (6) yields x0 ∈ cl
(
int

(
cl

(
(A \X ′)∩ f−1(Vm)

)))
. Thus

we find x̃m ∈ (A \X ′)∩ f−1(Vm) such that dX(x0, x̃m) ≤ 2−m. The inclusion
x0 ∈ f−1(Vm) gives the estimate dY (f(x0), f(x̃m)) ≤ diam(Vm) ≤ 2−m.

Proof of Lemma 11. Let a function f ∈ Csp(X,Y ) and an at most count-
able cover C = {Ci : i ∈ I} of X by (f,Osp)-admissible sets be given
(I = {1, . . . , n} or I = {1, 2, . . .}). We assume X to be metrized by a metric
dX and fix a countable base B = {B1, B2, . . .} of the system of open subsets
of Y . Let X ′ denote the set of all non-isolated points of X.

The construction of the refinement P of C required in (SRσ) starts with the
definition of pairwise disjoint and locally finite sets P (i, j, k) ⊆ X, (i, j, k) ∈
I × {1, 2, . . .}2, that satisfy

(i) P (i, j, k) ⊆ Ci ∩ f−1(Bj),

(ii) for every x0 ∈ Ci ∩ f−1(Bj) ∩ X ′, there exists x′ ∈ P (i, j, k) with
dX(x0, x

′) ≤ 2−k, and

(iii) for every x0 ∈ Ci ∩ f−1(Bj) ∩X ′, if there exists a sequence (x̃m)∞m=1 ⊆
Ci \ X ′ such that limm→∞ x̃m = x0 and limm→∞ f(x̃m) = f(x0), then
there is x′ ∈ P (i, j, k) \X ′ with dX(x0, x

′) ≤ 2−k.
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As in the proof of Lemma 9 we assume I × {1, 2, . . .}2 to be ordered by �.
We proceed by induction and suppose in the sense of an induction hypothesis
that P (i, j, k) is already defined for (i, j, k) ≺ (i0, j0, k0). The construction of
P (i0, j0, k0) is as follows.

We fix a locally finite open cover U = {Ul : l ∈ L} of X with diam(Ul) ≤
2−k0 . Let

U ′ =
{
Ul ∩

(
Ci0 ∩ f−1(Bj0)

)
∩X ′ : l ∈ L

}
\ {∅} = {U ′l ∩X ′ : l ∈ L′},

where U ′l = Ul ∩
(
Ci0 ∩ f−1(Bj0)

)
and L′ = {l ∈ L : U ′l ∩X ′ 6= ∅}. Let l ∈ L′

be fixed. Then U ′l ∩X ′ 6= ∅ and the set U ′l is (f,Osp)-admissible by Lemma 7.
We apply Lemma 12 to A = U ′l .

Case α: There is a point x0 ∈ U ′l ∩X ′ satisfying property (α). Then we
can pick a point

xl ∈ (U ′l \X ′) \
⋃

(i,j,k)≺(i0,j0,k0)
P (i, j, k),

because
⋃

(i,j,k)≺(i0,j0,k0)
P (i, j, k) is locally finite by the induction hypothesis.

Case β: No point of U ′l ∩X ′ satisfies (α). Lemma 12 provides us with a
point x0 ∈ U ′l ∩X ′ satisfying (β), in particular x0 ∈ cl(int(cl(U ′l ))). Since x0

is not isolated in X, x0 is the limit of other points of U ′l . Therefore we can
choose a point

xl ∈ U ′l \
⋃

(i,j,k)≺(i0,j0,k0)
P (i, j, k),

because
⋃

(i,j,k)≺(i0,j0,k0)
P (i, j, k) is locally finite.

Now we define P (i0, j0, k0) by

P (i0, j0, k0) = {xl : l ∈ L′}.

Clearly, P (i0, j0, k0) is locally finite, because xl ∈ U ′l ⊆ Ul and U is locally
finite, and P (i0, j0, k0) is disjoint with P (i, j, k) for (i, j, k) ≺ (i0, j0, k0). Con-
dition (i) applies, since xl ∈ U ′l ⊆ Ci0 ∩ f−1(Bj0).

To verify (ii) and (iii) we consider x0 ∈ Ci0 ∩ f−1(Bj0) ∩X ′. There exists
l ∈ L with x0 ∈ Ul. Then x0 ∈ Ul ∩Ci0 ∩ f−1(Bj0)∩X ′ = U ′l ∩X ′ and l ∈ L′.
Thus we find x′ = xl ∈ P (i0, j0, k0) and obtain dX(x0, x

′) ≤ diam(Ul) ≤ 2−k0 ,
because x0 ∈ Ul and x′ = xl ∈ U ′l ⊆ Ul. This confirms (ii). Now we suppose in
addition that there is a sequence (x̃m)∞m=1 ⊆ Ci0 \X ′ with limm→∞ x̃m = x0

and limm→∞ f(x̃m) = f(x0). Since Ul and Bj0 are neighborhoods of x0 and
f(x0), respectively, we can assume that (x̃m)∞m=1 ⊆ Ul ∩ f−1(Bj0) and obtain
(x̃m)∞m=1 ⊆

(
Ul ∩ f−1(Bj0)

)
∩ (Ci0 \X ′) = U ′l \X ′. Hence the point x′ = xl

is chosen according to Case α, in particular x′ ∈ X \X ′. This proves (iii).
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Now, having successfully constructed the sets P (i, j, k), we define the par-
tition P = {Pi : i ∈ I} as in the proof of Lemma 9. Pi = P

(1)
i ∪ P (2)

i ,
where

{
P

(1)
i : i ∈ I

}
with P

(1)
i =

⋃
j,k≥1 P (i, j, k) is a partition of X1 =⋃

(i,j,k)∈I×{1,2,...}2 P (i, j, k) and
{
P

(2)
i : i ∈ I

}
with P

(2)
i = (Ci \ (C1 ∪ . . . ∪

Ci−1)) \X1 is a partition of X \X1. Property (i) shows that P refines C.
We finally have to show that the sets Pi are (f,Osp)-admissible. That is,

for every i ∈ I and every j ∈ {1, 2, . . .},

Pi ∩ f−1(Bj) ⊆ cl
(
int

(
cl

(
Pi ∩ f−1(Bj)

)))
.

We consider fixed i0 and j0 and a fixed point x0 ∈ Pi0 ∩ f−1(Bj0) for proving
this inclusion.

Case 1: x0 ∈ X \X ′. Then x0 is isolated and

x0 ∈ cl(int(cl({x0}))) ⊆ cl
(
int

(
cl

(
Pi0 ∩ f−1(Bj0)

)))
.

Case 2: x0 ∈ X ′. Then x0 ∈ Pi0 ∩X ′ ⊆ Ci0 ∩X ′, the set Ci0 ∈ C being
(f,Osp)-admissible. Application of Lemma 12 to A = Ci0 gives the following
two subcases.

Case 2.1: x0 ∈ cl
(
int

(
cl

(
Ci0 ∩f−1(Bj0)∩X ′))). Here property (ii) yields

cl
(
Ci0 ∩ f−1(Bj0) ∩X ′) ⊆ cl

( ⋃
k≥1 P (i0, j0, k)

)
⊆ cl

(
Pi0 ∩ f−1(Bj0)

)
and therefore

x0 ∈ cl
(
int

(
cl

(
Ci0 ∩ f−1(Bj0) ∩X ′))) ⊆ cl

(
int

(
cl

(
Pi0 ∩ f−1(Bj0)

)))
.

Case 2.2: There is a sequence (x̃m)∞m=1 ⊆ Ci0 \X ′ with limm→∞ x̃m = x0

and limm→∞ f(x̃m) = f(x0). Since x0 ∈ Ci0 ∩ f−1(Bj0) ∩ X ′, property
(iii) shows that, for every k ≥ 1, there exists x′k ∈ P (i0, j0, k) \ X ′ with
dX(x0, x

′
k) ≤ 2−k. This yields

x0 ∈ cl({x′k : k = 1, 2, . . .}) = cl
( ⋃

k≥1

{x′k}
)

= cl
( ⋃

k≥1

int
(
cl

(
{x′k}

)))
⊆ cl

(
int

(
cl

( ⋃
k≥1

{x′k}
)))

⊆ cl
(
int

(
cl

( ⋃
k≥1

P (i0, j0, k)
)))

⊆ cl
(
int

(
cl

(
Pi0 ∩ f−1(Bj0)

)))
.

Theorem 8 now gives a characterization of almost quasi-continuous func-
tions.
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Theorem 13. Let X be a metrizable space, (Y, dY ) a separable metric space,
and f : X → Y an almost quasi-continuous function. Then there exists a chain
(Pk)∞k=1 of at most countable and semi-preopen partitions Pk =

{
P

(k)
i : i ∈ Ik

}
of X and a sequence (ϕk)∞k=1 of semi-preopen step functions ϕk defined on the
partitions Pk such that f is the uniform limit of (ϕk)∞k=1.

If (Y, dY ) is totally bounded, then this is possible with finite partitions Pk.
If, in addition, X is a compact metrizable space, then one can choose the

chain (Pk)∞k=1 such that, given any continuous function g ∈ C(X,Y ), there is
a sequence (ψk)∞k=1 of semi-preopen step functions ψk defined on the partitions
Pk such that g is the uniform limit of (ψk)∞k=1.

The remarks on the role of Theorem 10 concerning nearly continuous func-
tions apply analogously to Theorem 13 with respect to almost quasi-continuous
functions. However, it is remarkable that Theorem 13 covers all metrizable
spaces X, whereas the restriction of Theorem 10 to perfect spaces is essential.

5 α-Continuous Functions.

The family Oα of α-sets in a topological space X again satisfies (U) and
(IO). Hence the set Cα(X,Y ) of all α-continuous functions from X into a
metric space (Y, dY ) is closed under uniform limits by Proposition 2. Proposi-
tion 3 leads to the concept of α-step functions. These are piecewise constant
functions on partitions of X into α-sets.

In contrast with Os, On, Osp, and Osw, Oα is a topology (see [16]). We
have already mentioned in the introduction that α-sets are very close to open
sets, though Oα usually is strictly larger than O. A strong relation between
Oα and O is the following.

Proposition 14. If a topological space X is partitioned into α-sets Ai, i ∈ I,
then the sets Ai are open.

Proof. We equip I with the discrete metric dI . Then the map ϕ : X → I,
ϕ(Ai) ≡ i, is α-continuous by Proposition 3. An α-continuous function into
a metric space is continuous, because it is quasi-continuous as well as nearly
continuous (see [17]). Thus Ai = ϕ−1({i}) is open, since it is the inverse image
of the open set {i} under the continuous map ϕ.

Proposition 14 shows that α-step functions on a space X in fact are based
on open partitions of X. We do not use the name “open step function” in
order to avoid confusion with the concept of open functions.
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A space X clearly cannot be connected if it possesses non-constant α-step
functions. We characterize the spaces X that admit an analogue of Theorem 8
within the class of all paracompact spaces. We recall that a topological space
X is paracompact if it is a Hausdorff space and every open cover of X has a lo-
cally finite open refinement. Paracompact spaces are normal. A normal space
is strongly zero-dimensional if, for every pair A, B of completely separated sub-
sets of X, there is an open and closed set G ⊆ X such that A ⊆ G ⊆ X \ B.
Here A, B are called completely separated if there is a continuous function f
from X into the closed interval [0, 1] such that f(A) ≡ 0 and f(B) ≡ 1 (see
[7, pp. 42, 299, 300, 361]).

As already mentioned in the introduction, a map from a topological space
into a metric space is α-continuous if and only if it is continuous. For that
reason we formulate the following theorem for continuous functions.

Theorem 15. Let X be a paracompact space. The following are equivalent:

(i) Every continuous function f : X → [0, 1] is the uniform limit of α-step
functions ϕk : X → [0, 1], k = 1, 2, . . .

(ii) Let (Y, dY ) be a separable metric space and let f ∈ C(X,Y ). Then
there exists a chain (Pk)∞k=1 of at most countable and open partitions
Pk =

{
P

(k)
i : i ∈ Ik

}
of X and a sequence (ϕk)∞k=1 of α-step func-

tions ϕk defined on the partitions Pk such that f is the uniform limit
of (ϕk)∞k=1. If (Y, dY ) is totally bounded, then this is possible with finite
partitions Pk. If, in addition, X is compact and metrizable, then one
can choose the chain (Pk)∞k=1 such that, given any continuous function
g ∈ C(X,Y ), there is a sequence (ψk)∞k=1 of α-step functions ψk defined
on the partitions Pk such that g is the uniform limit of (ψk)∞k=1.

(iii) X is strongly zero-dimensional.

Proof. (ii)⇒(i) is trivial.
(i)⇒(iii). Let A,B ⊆ X be completely separated by a function f ∈

C(X, [0, 1]). By (i), there exists an α-step function ϕ : X → [0, 1] such that
supx∈X dY (f(x), ϕ(x)) < 1

2 . Let G = ϕ−1
([

0, 1
2

))
. Then G is open and closed,

since both G = ϕ−1
([

0, 1
2

))
and X \G = ϕ−1

([
1
2 , 1

])
are unions of sets from

the underlying open partition of ϕ. Condition supx∈X dY (f(x), ϕ(x)) < 1
2

yields
A ⊆ ϕ−1

([
0, 1

2

))
= G ⊆ X \ ϕ−1

((
1
2 , 1

])
⊆ X \B.

(iii)⇒(ii). We want to apply Theorem 8. We have to verify the conditions
(SRσ) and (IO) for the family O of open subsets of X, because the claim
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concerns continuous functions and step functions on open partitions. (IO) is
trivial. Since {A ⊆ X : A is (f,O)-admissible} = O for every f ∈ C(X,Y ),
condition (SRσ) amounts to: Every at most countable open cover C = {Ci :
i ∈ I} of X can be refined to an open partition P = {Pi : i ∈ I}.

We suppose I = {1, 2, . . .}. (If I is finite we proceed analogously.) By
paracompactness of X, there exists a locally finite open refinement C′ = {C ′j :
j ∈ J} of C. We obtain a locally finite open refinement C̃ =

{
C̃i : i ∈ I

}
of

C by choosing an index i(j) ∈ I with C ′j ⊆ Ci(j) for every j ∈ J and setting
C̃i =

⋃
{C ′j : j ∈ J, i(j) = i}. Now we define the required open partition

P = {Pi : i ∈ I} that refines C by inductively constructing pairwise disjoint
open and closed sets Pi ⊆ C̃i such that

{
P1, . . . , Pi, C̃i+1, C̃i+2, . . .

}
covers X,

i = 1, 2, . . . (The covering property of P follows from the local finiteness of C̃.)
Let i0 be fixed and assume P1, . . . , Pi0−1 to be already defined. Let

A = X \
( ⋃

i<i0
Pi ∪

⋃
i>i0

C̃i

)
and B = X \ C̃i0 .

The sets A and B are closed and disjoint. Hence they are completely separated,
since X is normal. By (iii), there exists an open and closed set G ⊆ X such
that A ⊆ G ⊆ X \ B. We define Pi0 = G \

⋃
i<i0

Pi. This set is open and
closed by the induction hypothesis. It is disjoint with Pi, i < i0, and satisfies
Pi0 ⊆ G ⊆ X \ B = C̃i0 . Finally,

{
P1, . . . , Pi0 , C̃i0+1, C̃i0+2, . . .

}
covers X,

because
Pi0 = G \

⋃
i<i0

Pi ⊇ A \
⋃

i<i0
Pi = A

and therefore

Pi0 ∪
⋃

i<i0
Pi ∪

⋃
i>i0

C̃i ⊇ A ∪
⋃

i<i0
Pi ∪

⋃
i>i0

C̃i = X.

6 Somewhat Continuous Functions.

The family Osw of somewhat open subsets of a topological space X trivially
satisfies (U). Proposition 2 ensures that the set Csw(X,Y ) of somewhat con-
tinuous functions from X into a metric space (Y, dY ) is closed under uniform
limits. We call a function ϕ : X → Y a somewhat open step function if ϕ is
piecewise constant on a partition of X into somewhat open sets. Somewhat
open step functions represent a basic type of somewhat continuous functions
(see Proposition 3).

However, simple examples on X = R show that Osw does not satisfy (IO).
Moreover, already the weakest refinement property (Rf) fails on the compact
space X = [0, 1]∪{2} ⊆ R. The cover {{0, 2}, {1, 2}, (0, 1)} is somewhat open,
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but cannot be refined to a partition of X into somewhat open sets, because
neither {0, 2} nor {1, 2} can be subdivided into two non-empty somewhat open
subsets.

Nevertheless, one can prove an analogue of the main part of Theorem 8.

Theorem 16. Let X be a topological space and (Y, dY ) a metric space and let
f ∈ Csw(X,Y ). Then there exists a chain (Pk)∞k=1 of somewhat open partitions
Pk =

{
P

(k)
i : i ∈ Ik

}
of X and a sequence (ϕk)∞k=1 of somewhat open step

functions ϕk defined on the partitions Pk such that f is the uniform limit of
(ϕk)∞k=1. This is possible with at most countable partitions Pk if (Y, dY ) is
separable and with finite partitions Pk if (Y, dY ) is totally bounded.

The proof is based on the following claim.

Lemma 17. Let X be a topological space, (Y, dY ) a metric space, f : X → Y
a somewhat continuous function, and ε > 0. Then every (f,Osw)-admissible
set A ⊆ X can be partitioned into (f,Osw)-admissible subsets Aj, j ∈ J , such
that diam(f(Aj)) ≤ ε. This is possible with an at most countable set J if
(Y, dY ) is separable and with finite J if (Y, dY ) is totally bounded.

Proof. We consider f(A) as a metric subspace of (Y, dY ). We shall denote
the closure operator in f(A) by clf(A)(·) in contrast with the operators cl(·)
and int(·) in Y . Using paracompactness of f(A) (see [7, p. 300]) we obtain a
locally finite open cover W = {Wj : j ∈ J} of f(A) with diam(Wj) ≤ ε. We
can assume J to be at most countable if (Y, dY ) is separable and to be finite
if (Y, dY ) is totally bounded.

We suppose J to be totally ordered and define

W ′
j = Wj \

⋃
i<j clf(A)(Wi) = Wj \ clf(A)

( ⋃
i<j Wi

)
,

the second equation being a consequence of the local finiteness of W. The sets
W ′

j are disjoint and open in f(A). We obtain f(A) =
⋃

j∈J clf(A)(W ′
j). Hence

the sets
W ′′

j = clf(A)(W ′
j) \

⋃
i<j clf(A)(W ′

i ),

j ∈ J , form a partition of f(A). Consequently,

Aj = A ∩ f−1(W ′′
j ), j ∈ J,

defines a partition of A. Clearly,

diam(f(Aj)) ≤ diam(W ′′
j ) ≤ diam(clf(A)(W ′

j)) = diam(W ′
j) ≤ diam(Wj) ≤ ε.
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Now it remains to prove that the sets Aj are (f,Osw)-admissible; that is,
for every j ∈ J and every open set V ⊆ Y , Aj ∩ f−1(V ) ∈ Osw. Let j and
V be fixed. We can assume Aj ∩ f−1(V ) 6= ∅, because otherwise trivially
Aj ∩ f−1(V ) = ∅ ∈ Osw.

Since W ′
j is open in f(A), there exists an open set W̃j ⊆ Y such that

W ′
j = f(A) ∩ W̃j . Next we show that

int
(
A ∩ f−1

(
W̃j ∩ V

))
6= ∅. (7)

We have

∅ 6= f
(
Aj ∩ f−1(V )

)
⊆ f(Aj) ∩ V ⊆W ′′

j ∩ V ⊆ clf(A)(W ′
j) ∩ V ⊆ cl(W ′

j) ∩ V.

This yields W ′
j ∩ V 6= ∅, because V is open. Since W ′

j ∩ V ⊆ Wj ⊆ f(A), we
obtain

∅ 6= A ∩ f−1(W ′
j ∩ V ) = A ∩ f−1

(
f(A) ∩ W̃j ∩ V

)
= A ∩ f−1(f(A)) ∩ f−1

(
W̃j ∩ V

)
= A ∩ f−1

(
W̃j ∩ V

)
.

This yields (7), because the last set is somewhat open, for A is (f,Osw)-
admissible and W̃j ∩ V is open.

Since the sets W ′
i , i ∈ J , are disjoint and open in f(A), we obtain

f(A) ∩ W̃j = W ′
j = W ′

j \
⋃

i<j clf(A)(W ′
i ) ⊆W ′′

j .

This yields

A∩f−1
(
W̃j∩V

)
= A∩f−1

(
f(A)∩W̃j∩V

)
⊆ A∩f−1(W ′′

j ∩V ) = Aj∩f−1(V ).

Combining this inclusion with (7) we arrive at int
(
Aj ∩ f−1(V )

)
6= ∅. This

gives Aj ∩ f−1(V ) ∈ Osw and completes the proof.

Proof of Theorem 16. We apply Lemma 17 to the (f,Osw)-admissible set
X and ε1 = 2−1 and obtain a partition P1 =

{
P

(1)
i : i ∈ I1

}
ofX into (f,Osw)-

admissible sets with diam
(
f
(
P

(1)
i

))
≤ 2−1. Given the partition Pk−1, appli-

cation of Lemma 17 to all elements of Pk−1 and εk = 2−k yields a partition
Pk =

{
P

(k)
i : i ∈ Ik} into (f,Osw)-admissible sets with diam

(
f
(
P

(k)
i

))
≤ 2−k.

This defines a chain (Pk)∞k=1 of somewhat open partitions. The lemma gives
at most countable or even finite partitions Pk if (Y, dY ) is separable or totally
bounded, respectively. Since diam

(
f
(
P

(k)
i

))
≤ 2−k for i ∈ Ik, there is a some-

what open step function ϕk on Pk with supx∈X dY (f(x), ϕk(x)) ≤ 2−k.
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As previous theorems did for other concepts of generalized continuity, The-
orem 16 illuminates the structure of Csw(X,Y ). Every chain (Pk)∞k=1 of some-
what open partitions defines a subset of Csw(X,Y ) that is closed under uni-
form limits. It is a metric space if the partitions Pk all are finite. The space is
separable if (Y, dY ) in addition is separable. For the case of a linear space Y
the subset of Csw(X,Y ) defined by a chain (Pk)∞k=1 is a linear space, though
Csw(X,Y ) itself usually is not.

The following example illustrates that, in contrast with Theorems 1, 8, 10,
13, and 15, the final passage on “universal chains” of partitions on compact
metrizable spaces X does not apply to somewhat continuous functions. Let
X = Y = [0, 2] be equipped with the usual distance from R. Then the
functions

f(x) =

{
1 for x ∈ {0} ∪ [1, 2]
0 for x ∈ (0, 1)

, and g(x) = x

are somewhat continuous and continuous, respectively. However, there does
not exist a somewhat open partition P of X and somewhat open step functions
ϕ and ψ on P such that supx∈X |f(x)−ϕ(x)| < 1

2 and supx∈X |g(x)−ψ(x)| < 1
2 .

Indeed, otherwise the set P ∈ P with 0 ∈ P would satisfy P ⊆ {0} ∪ [1, 2]
by the first estimate and P ⊆ [0, 1) by the second estimate. But this yields
P = {0}, a contradiction with P ∈ Osw.
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