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H-1117 Budapest, Hungary. email: amathe@cs.elte.hu

METRIC CHARACTERIZATION OF PURE
UNRECTIFIABILITY

Abstract

We show that an analytic subset of the finite dimensional Euclidean
space Rm is purely unrectifiable if and only if the image of any of its com-
pact subsets under every local Lipschitz quotient function is a Lebesgue
null. We also construct purely unrectifiable compact sets of Hausdorff
dimension greater than 1 which are necessarily sent to finite sets by local
Lipschitz quotient functions.

1 Introduction.

Let X and Y be metric spaces. A mapping f defined on a subset S of X
with values in Y is called Lipschitz if there exists L > 0, such that for any
x1, x2 ∈ S the distance between f(x1) and f(x2) does not exceed the distance
between x1 and x2 multiplied by L. The least such L is called the Lipschitz
constant of the mapping f .

A dual notion, the notion of co-Lipschitz mappings was introduced in sev-
eral texts (e.g. [12], [6], [5]) but was first systematically studied in [1]. A
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mapping f : X → Y between two metric spaces is called co-Lipschitz, if there
exists a constant c > 0 such that

f(Br(p)) ⊃ Bcr(f(p)) (1)

for any p ∈ X and r > 0. (By Br(p) we mean the open ball in X centered at
p of radius r.) The greatest such c is called the co-Lipschitz constant of the
mapping f .

In this paper, we consider a local analogue of the co-Lipschitz property.
Namely, we say that f : S → Y is local co-Lipschitz, if instead of (1) one has

f(Br(p) ∩ S) ⊃ Bcr(f(p)) ∩ f(S) (2)

for any p ∈ S and r > 0.
If f : S → Y is Lipschitz and local co-Lipschitz, then we say that f is local

Lipschitz quotient.
Note that the difference between co-Lipschitz and local co-Lipschitz map-

pings is more substantial than that between Lipschitz mappings defined on
the whole space X and Lipschitz mappings defined on a set S ⊂ X.

In the case of Lipschitz mappings, a restriction of a Lipschitz mapping
defined on the whole space is Lipschitz on a set. Also, if X and Y are Euclidean
spaces, then any mapping f defined on a subset of X may be extended to a
Lipschitz mapping defined on the whole space X, which has the same Lipschitz
constant as f has. (This is a particular case of the Kirszbraun theorem, see
[8], [3, 3, 2.10.43].)

Such statements do not hold for co-Lipschitz and local co-Lipschitz map-
pings. Consider the orthogonal projection P : (x, y) 7→ x from the plane
onto the real line. Its co-Lipschitz constant is equal to 1, but for S =
{(x, y) : x = 0 or y = 0} the mapping P : S → R is not local co-Lipschitz (take,
for example, p = (x, y) = (0, 2) and r = 1). On the other hand, it is clear that
a local co-Lipschitz mapping even between Euclidean spaces need not have a
co-Lipschitz extension to the whole space, since any constant mapping is local
co-Lipschitz, but any co-Lipschitz mapping between spaces is open.

In this paper we investigate some properties of subsets of Rm which are
studied using orthogonal projections. (An example of such property is pure
unrectifiability defined below.) We would like to find an analogue of these
properties in terms of the metric structure of the sets themselves rather than
in terms of their embeddings in Rm. In this context we consider local Lipschitz
quotient mappings from subsets of Rm to R, as candidates to replace linear
projections.

Let us recall the definition of purely unrectifiable subsets of Rm and a
theorem characterizing such sets in terms of linear projections (see [11]).
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A set E ⊂ Rm is called 1-rectifiable if there exist Lipschitz mappings
fi : R → Rm, i = 1, 2, . . . , such that H1

(
E \

⋃
i≥1 fi(R)

)
= 0. The D-

dimensional Hausdorff measure HD is defined as

HD(A) = sup
δ>0

inf
{∑

j≥1

diam(Cj)D | A ⊂
⋃
j≥1

Cj ,diam(Cj) ≤ δ
}
.

A set F ⊂ Rm is called purely 1-unrectifiable (or purely unrectifiable) ifH1(E∩
F ) = 0 for every 1-rectifiable set E ⊂ Rm.

Remark 1.1. Note that rectifiable sets may be equivalently defined with C1

mappings fi replacing Lipschitz mappings (see [11, Theorem 15.21]).

The following theorem was proved first by Besicovitch [2] in the case m = 2.
The general case was proved by Federer [4] (see also [11, Theorem 18.1]).

Theorem 1.2 (Besicovitch-Federer). A set F ⊂ Rm with finite 1-dimensio-
nal Hausdorff measure is purely unrectifiable if and only if for almost every
direction e ∈ Sm−1 the projection PeF has Lebesgue measure zero.

In the present paper we show that for any compact purely unrectifiable
set F ⊂ Rm and for any local Lipschitz quotient mapping f : F → R, the
image f(F ) necessarily has Lebesgue measure zero. Yet this property alone
does not characterize compact purely unrectifiable sets. We show that there
is a rectifiable compact K ⊂ R2 of finite positive 1-dimensional Hausdorff
measure, such that for any local Lipschitz quotient f : K → R, the image
f(K) is a single point.

Since an analytic set is purely unrectifiable if and only if all its compact
subsets are purely unrectifiable, we conclude that a characteristic property
should be as follows. An analytic set F ⊂ Rm is purely unrectifiable if and only
if for any compact subset F ′ of F and any local Lipschitz quotient mapping
f : F ′ → R, the image f(F ′) has Lebesgue measure zero. This is proved in
Theorem 2.1.

Furthermore, it turns out that unlike linear projections, local Lipschitz
quotient mappings fail to distinguish the sets of Hausdorff dimension greater
than 1 from those of dimension 1 or less. Recall the following theorem proved
by Marstrand [10] (see also [11, Theorem 8.9 and Corollary 9.8]).

Theorem 1.3 (Marstrand). Assume that the set E ⊂ Rm is compact and
its Hausdorff dimension is greater than 1. Then for almost every direction
e ∈ Sm−1 the projection PeE has positive one dimensional Lebesgue measure.
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We show that there exist planar sets of Hausdorff dimension up to 2 such
that any local Lipschitz quotient mapping has finite image whenever the do-
main is one of those sets. As shown in Remark 3.7, the construction can be
modified to give sets of Hausdorff dimension up to m with this property in the
Euclidean space Rm.

Throughout the paper, by Mδ we mean the open δ-neighborhood of a set
M ; i.e., Mδ =

⋃
p∈M Bδ(p). With the exception of Lemma 3.1, where we talk

about general metric spaces, we always consider balls in the Euclidean norm.
By Ar(p) we denote the closed `2∞ ball of radius r; i.e., the square centered at
p with side 2r. We also use the notation Lk for the k-dimensional Lebesgue
measure.

We would like to thank David Preiss for valuable comments on the topic
and Steffen Winter for his helpful remarks. We thank Giovanni Alberti for
his interesting questions which led to a discussion at the Geometric Measure
Theory seminar at University College London; that discussion became a basis
for the present paper.

2 Criterion of Pure Unrectifiability.

In this section we prove a characteristic property of analytic purely unrecti-
fiable subsets of Rm. Recall that a set is called analytic if it is a continuous
image of a Borel set.

Theorem 2.1. An analytic set F ⊂ Rm is purely unrectifiable if and only
if for any compact subset F ′ ⊂ F and any local Lipschitz quotient mapping
f : F ′ → R, the image f(F ′) has Lebesgue measure 0.

Proof. Assume F is not purely unrectifiable. Then by Remark 1.1 there
exists a C1 mapping g : R → Rm, such that H1(F ∩ g(R)) > 0. Let A =
g−1(F ∩ g(R)). Note that A is analytic, and hence is Lebesgue measurable
[9, Chapter III, § 39, II]. We conclude that L1(A) > 0, and choose a compact
subset C ⊂ A such that L1(C) > 0. By the Lebesgue density theorem,

almost every point p ∈ C is a density point (i.e., limr→0
L1

(
(p−r,p+r)∩C

)
2r = 1).

Consider any density point p ∈ C such that the derivative g′(p) is not 0, and
introduce the coordinate system in Rm = R[x1]⊕Rm−1[x2, . . . , xm], with the

x1-axis in the direction of g′(p). Let t > 0 be such that
L1

(
[p−t,p+t]∩C

)
2t > 1/2.

Since g is continuously differentiable at p, there is a small neighborhood U
of p, such that the curve g(U) can be viewed as a graph of a C1-smooth
mapping from R[x1] to Rm−1[x2, . . . , xm]. Then the orthogonal projection
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from F ′ = g(U ∩ [p− t, p+ t]∩C) onto the x1-axis is a local Lipschitz quotient
mapping. But the image of F ′ under this projection has positive Lebesgue
measure.

For the proof of the “only if” part let us show that if E ⊂ Rm is a compact
purely unrectifiable set and f : E → R is local Lipschitz quotient, then f(E)
has Lebesgue measure zero.

Denote C = f(E) and assume L1(C) > 0. The set C ⊂ R is separable, so
there exists a countable dense subset {yi}∞i=1 of C.

For each n ≥ 1, find points {xi,n}n
i=0 in E, so that f(xi,n) = yi for each

i = 1, . . . , n and ‖xi,n − xj,n‖ ≤ c−1|yi − yj | for all 1 ≤ i, j ≤ n, where c is the
co-Lipschitz constant of f . This can be done since we may put yi, 1 ≤ i ≤ n
in the increasing order and then lift them one after another starting from the
preimage of min1≤i≤n yi.

Since {x1,n} ⊂ E, we can choose n1
s such that {x1,n1

s
}∞s=1 converges. Denote

its limit by x1. Note that x1 ∈ E and f(x1) = y1. Now consider the sequence
{x2,n1

s
}∞s=1 and choose a subsequence which converges. Denote its limit by

x2. Note that x2 ∈ E, f(x2) = y2 and ‖x1 − x2‖ ≤ c−1|y1 − y2| (since
‖x1,n2

s
− x2,n2

s
‖ ≤ c−1|y1 − y2| for all s). In the same way for each k ≥ 1 we

construct xk ∈ E such that f(xk) = yk and ‖xi − xj‖ ≤ c−1|yi − yj | for every
i, j ≥ 1.

Consider a mapping g : {yi}∞i=1 → Rm defined by the rule g(yi) = xi.
Since g is a Lipschitz mapping, we may extend it to the closure of {yi}, which
coincides with C. Note that then E1 = g(C) ⊂ E and f(g(y)) = y for all
y ∈ C. Let G : R → Rm be a Lipschitz extension of g. Since E is purely
unrectifiable, we conclude that H1(E ∩ G(R)) = 0. Since E ∩ G(R) ⊃ E1,
we conclude H1(E1) = 0, and therefore (since f is Lipschitz) L1(C) = 0, a
contradiction.

Now let us show that the condition in Theorem 2.1 that for any compact
subset F ′ ⊂ F and any local Lipschitz quotient f : F ′ → R the image f(F ′)
has Lebesgue measure 0 is essential (i.e., if, for example, F ⊂ Rm is compact
then in order to conclude that F is purely unrectifiable it is not enough to
require that the image f(F ) has Lebesgue measure 0 for any local Lipschitz
quotient f : F → R).

In Theorem 2.3, we construct a rectifiable compact subset K of the plane,
of positive and finite 1-dimensional Hausdorff measure, such that for any con-
tinuous function f : K → R, which is local open (that is, for any open U the
image f(U ∩K) is equal to an intersection of f(K) with an open set), f(K) is
a single point. It is clear that any local Lipschitz quotient mapping is contin-
uous local open. In fact the set K will be a union of countably many closed
intervals with finite sum of lengths.
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Lemma 2.2. If K = I ∪K1, where I = [a, b] is a closed interval in the plane,
K1 ⊂ R2 is compact, K1 ∩ I = {a}, and f : K → R is continuous and local
open, f(K) = [x, y], then f(b) = x or f(b) = y.

Proof. Assume f(b) lies inside the open interval (x, y). Denote by Iε the half-
open interval, which is the intersection of [a, b] and the open ball of radius ε
around point b. For sufficiently small ε one has Iε = K ∩ Bε(b). Therefore,
for sufficiently small ε the image f(Iε) contains an open interval around f(b).
Then there exist z1, z2 ∈ Iε such that f(z1) > f(b) > f(z2). Then there exists
w1 ∈ [z1, z2] ⊂ Iε such that f(w1) = f(b). Without loss of generality assume
that the order of points is b–z1–w1–z2.

Then the continuous mapping f |[b,w1] takes the same value f(b) at the ends
of the interval. Moreover, since z1 ∈ (b, w1), we conclude that max[b,w1] f ≥
f(z1) > f(b). Assume t ∈ (b, w1) is such that f(t) = max[b,w1] f . Then f is
not open at t, since the image of a small neighborhood of t should contain an
open interval around f(t).

This contradiction finishes the proof of the lemma.

Theorem 2.3. Let K = ∪n≥1[0, ei/n2
/n2]. Then for any continuous function

f : K → R, such that f is local open, f(K) is a single point.

Proof. First of all, note that K is closed and connected, and so since f is
continuous, f(K) is a closed interval [x, y]. Assume x 6= y.

If zn = ei/n2
/n2, then by Lemma 2.2, f(zn) is equal to either x or y for

any n ≥ 1. Since zn → 0 as n → ∞, the value f(0) is either x or y. Assume
f(0) = x.

Then there exists ε > 0 such that f(B(0, ε)∩K) ⊂ [x, x+y
2 ] (and therefore,

all values of f in this intersection are strictly less than y). If n > 1/ε, then
f(zn) cannot be equal to y, so that it is equal to x. For such n, let t ∈ [0, zn]
be such that f(t) = max[0,zn] f . Note that if f(t) = x, then f |[0,zn] ≡ x, and
therefore f is not local open (the intersection of a small ball around inner point
of the interval [0, zn] with K is a small subinterval of [0, zn], and its image has
to contain a small open neighborhood of x). Therefore, f(t) > x. But n is
such that f([0, zn]) ⊂ [x, x + y/2]; thus, x < f(t) < y. Then the image of the
small neighborhood of t has to contain an open neighborhood of f(t). This is
impossible, since this image does not contain values greater than f(t).
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3 Sets of Hausdorff Dimension Greater Than 1.

In this section we show that unlike in the case of Hausdorff dimension 1,
local Lipschitz quotient mappings fail to distinguish planar subsets of higher
Hausdorff dimensions. For every D ∈ (1, 2] we construct a D-dimensional
compact subset S of the plane with the property that for every local Lipschitz
quotient mapping f : S → R the image f(S) is necessarily finite. We show
that for D < 2 the set S may be constructed to be purely unrectifiable, and
in the case D = 2 we construct a totally disconnected compact set S.

The next lemma proves an important property of mappings which are local
Lipschitz quotient.

Lemma 3.1. Let X and Y be metric spaces, S ⊂ X, f : S → Y be a local Lips-
chitz quotient mapping, with Lipschitz constant L and co-Lipschitz constant 1.
If T ⊂ S and the points t0 ∈ T , x1, . . . , xn ∈ S are such that (TLr \T )∩S = ∅,
d(f(x1), f(t0)) < Lr and d(xi, xi+1) < r for every i = 1, . . . , n− 1, then there
exist t1, . . . , tn ∈ T such that f(ti) = f(xi) for all i = 1, . . . , n.

Proof. Let us prove this lemma by induction on n. Since f is local co-
Lipschitz, for n = 1 we have that

f(BLr(t0) ∩ S) ⊃ BLr(f(t0)) ∩ f(S) 3 f(x1),

therefore there exists a point t1 ∈ TLr ∩ S = T such that f(t1) = f(x1).
Suppose now we have already constructed ti ∈ T such that f(ti) = f(xi),

i ≤ n − 1. Since f is Lipschitz with constant L we have d(f(tn−1), f(xn)) =
d(f(xn−1), f(xn)) < Lr. Then by what we have just proved there exists tn ∈ T
such that f(tn) = f(xn).

For the construction of the set S we need the following lemma.

Lemma 3.2. For every positive integer n there exists a function

γn = (γn
1 , γn

2 ) : {1, . . . , 4n2} → {0, . . . , 2n− 1} × {0, . . . , 2n− 1}, (3)

such that

1. |γn
1 (k)− γn

1 (k + 1)|+ |γn
2 (k)− γn

2 (k + 1)| = 1 for every 1 ≤ k ≤ 4n2 − 1,

2. γn is injective,

3. γn({1, . . . , 2n2}) = {0, . . . , 2n− 1} × {n, . . . , 2n− 1} and
γn({2n2 + 1, . . . , 4n2}) = {0, . . . , 2n− 1} × {0, . . . , n− 1},
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Figure 1: Squares R1, . . . , R4N2 , N = 3.

4. γn(1) = (0, n) and γn(4n2) = (0, n− 1).

Proof. Let us denote by [x] the integer part of the real number x, put {x} =
x−[x]. For each n ≥ 1 and v = 1, 2 we define the functions γn

v : {1, . . . , 4n2} →
{0, . . . , 2n−1} by the following formulas. If 1 ≤ j ≤ 2n2, then γn

1 (j) =
[

j−1
n

]
,

γn
2 (j) =

{
n + n{ j−1

n } if
[

j−1
n

]
is even

2n− n{ j−1
n } − 1 if

[
j−1
n

]
is odd.

If 2n2 + 1 ≤ j ≤ 4n2, then we put γn
1 (j) = γn

1 (4n2 + 1 − j) and γn
2 (j) =

2n− γn
2 (4n2 + 1− j).

The set S is defined as an intersection of the decreasing sequence of sets Sk,
with each Sk being a finite disjoint union of closed squares Qk

m, m = 1, . . . ,Mk,
with horizontal and vertical sides.

Let S1 be the unit square and suppose that Sk is already constructed. For
a suitable integer N = Nk, which will be precisely defined below and any fixed
1 ≤ m ≤ Mk, we divide each side of Qk

m into 2N equal intervals in order to
obtain 4N2 smaller squares. We denote these squares R1, . . . , R4N2 in such a
way that Rj denotes the square in the intersection of the γN

1 (j)th column and
γN
2 (j)th row (see Figure 1).

For every 1 ≤ j ≤ 4N2 we choose then an appropriate positive integer
nj and some aj ∈ (0, s(Qk

m)/(2Nnj)), where s(Qk
m) denotes the length of the

side of Qk
m. Now let us divide Rj into n2

j squares {Rj,s}1≤s≤n2
j

(by dividing

the sides of Rj into nj equal parts) and let P(Qk
m) =

⋃4N2

j=1

⋃n2
j

s=1 Aaj/2(cj,s),
where cj,s is the center of Rj,s (see Figure 2 (a)). Then we define Sk+1 as
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aj
� -

6

-

�

6

Figure 2:
(a): An example of a square Rj such that nj = 3.
(b): An example of how S2 may be obtained from S1.

a union
⋃Mk

m=1 P(Qk
m). Figure 2 (b) shows an example of how S2 may be

obtained from S1.
We will choose nj and aj in such a way that the squares Rj+1,s will be

much smaller than the squares Rj,s, and the distance between two neighbor
squares among Aaj+1/2(cj+1,s) (i.e., those lying in adjacent squares Rj+1,s)
will be much smaller than between neighbor squares among Aaj/2(cj,s). The
freedom in the choice of nj and aj makes it possible to construct a set S of
Hausdorff dimension arbitrarily close to 2.

The next lemma will be our main tool to prove that the set S we are going
to construct has finite image under any local Lipschitz quotient function.

Lemma 3.3. Let N ≥ 40, n1, . . . , n4N2 be positive integers; L, s, {aj} and
{dj} (j = 1, . . . , 4N2) be positive real numbers such that

aj + dj = s
2Nnj

for 1 ≤ j ≤ 4N2,

aj > aj+1, dj > dj+1 for 1 ≤ j ≤ 4N2 − 1,

dj ≥ 4L
√

a2
j+1 + (2aj+1 + dj+1)2 for 1 ≤ j ≤ 4N2 − 1,

1 ≤ L ≤ N
40 .

For each 1 ≤ j ≤ 4N2, 1 ≤ l,m ≤ nj consider the collection of closed squares
in the square [0, s]× [0, s]

Ql,m,j = Aaj/2(s
(γN

1 (j)
2N + l−1/2

2Nnj

)
, s

(γN
2 (j)
2N + m−1/2

2Nnj

)
).



204 Gábor Kun, Olga Maleva and András Máthé
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Figure 3: Neighboring squares.

If a set S ⊂ R2 intersects every square Ql,m,j and is contained in the union of
all squares

⋃4N2

j=1

⋃nj

l,m=1 Ql,m,j, then for any local Lipschitz quotient mapping
f : S → R with Lipschitz constant L and co-Lipschitz constant 1, one has
f(S) = f(Q1,1,1 ∩ S).

Proof. For each 1 ≤ j ≤ 4N2, let Qj denote the union of all aj × aj squares
Q·,·,j from the considered family of squares Qj =

⋃nj

l,m=1 Ql,m,j . Note that the
distance between two neighbor squares Ql,m,j and Ql′,m′,j (that is, lying in the
adjacent (s/2Nnj)× (s/2Nnj) squares) is equal to dj . More generally, we will
say that Q = Ql,m,j and Q′ = Ql′,m′,j′ are neighboring, if the “grid” squares
R = As/(4Nnj)(cQ) and R′ = As/(4Nnj′ )

(cQ′) (cQ and cQ′ denote the centers of
Q and Q′ respectively) they are contained in, intersect by a nontrivial interval.

Assume x, y ∈ S do not belong to the same Ql,m,j . Then there exist
disjoint squares Qlx,mx,jx

3 x and Qly,my,jy
3 y. If jx = jy = j, then there is

a finite sequence of points zi ∈ Qj ∩ S (1 ≤ i ≤ I), such that z1 = x, zI = y,
and zi and zi+1 are in neighbor squares Q·,·,j (see Figure 3). Then for every i

the distance between zi and zi+1 is at most δj =
√

a2
j + (2aj + dj)2.

Note that if Q = Ql,m,j and Q′ = Ql′,m′,j+1 are neighboring, then the
distance between any two points z ∈ Q and z′ ∈ Q′ is at most

√
2(aj +

aj+1 + dj), since dj > dj+1. Since aj > aj+1, this expression is less than√
2(2aj + dj) <

√
2δj (see Figure 3 for an illustration).

This means that if jx 6= jy, then there exists a finite sequence of points
from

⋃max{jx,jy}
n=min{jx,jy} Qn ∩ S, which starts at x, finishes at y, and the distance

between each two consequent points is not greater than
√

2δmin{jx,jy}.
Let us show that the diameter of f(S) is not greater than 10Ls

N . Assume
diamf(S) > 10Ls

N . Consider any point x ∈ Q1,1,4N2 ∩ S. There exists a point
x′ ∈ S such that |f(x)− f(x′)| > 5Ls

N . Let 1 ≤ j ≤ 4N2 be such that x′ ∈ Qj .
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Choose any sequence of points zi ∈ Qi∩S, i = 1, . . . , j−1. Let z0 = x, zj = x′.
Since z0 ∈ Q1,1,4N2 ⊂ Q4N2 , and Q4N2 is neighbor to Q1, we conclude that

‖zi − zi+1‖ ≤
s
√

5
2N

for every i = 0, . . . , j − 1

(the maximal distance between any two points of neighbor squares s
2N × s

2N

is s
√

5
2N ).
Since f is L-Lipschitz, it follows that |f(zi) − f(zi+1)| ≤ Ls

√
5

2N whenever
0 ≤ i ≤ j − 1. But we also know that |f(z0)− f(zj)| > 5Ls

N . Therefore there
exists 0 ≤ i0 ≤ j such that

min{|f(x′)− f(zi0)|, |f(zi0)− f(x)|} > Ls/N and
f(zi0) belongs to the interval with endpoints f(x) and f(x′).

This immediately implies 1 ≤ i0 ≤ j − 1.
On the other hand there is a finite sequence y1, . . . , yI ∈ S such that y1 = x,

yI = x′, ‖yi − yi+1‖ ≤
√

2δj for all 1 ≤ i ≤ I − 1, and yi ∈
⋃

n≥j Qn ∩ S for
all 1 ≤ i ≤ I. Since f(zi0) is between f(x) and f(x′), there exists 1 ≤
i1 ≤ I such that |f(yi1) − f(zi0)| ≤ L

√
2δj . Put t0 = zi0 , xi = yi1+i−1,

r = 2δj and T = Ql,m,i0 ∩ S where l,m are such that zi0 ∈ Ql,m,i0 . Note that
Lr ≤ dj−1

2 ≤ di0
2 , since i0 ≤ j − 1. Therefore, TLr \ T does not intersect S

(T is contained in the Ql,m,i0 , which has distance greater than di0/2 to any
other Q·,·,·, so that there are no points of S in TLr other than points from
T ). This means all hypotheses of Lemma 3.1 are fulfilled for T , S, t0, {xv}
and f (t0 ∈ T , |f(x1) − f(t0)| < Lr and ‖xi − xi+1‖ < r for all i). Then
there exists t ∈ T such that f(t) = f(xI−i1+1) = f(yI) = f(x′). Therefore,
Ls
N < |f(zi0) − f(x′)| = |f(zi0) − f(t)| ≤ L

√
2ai0 since zi0 , t ∈ T ⊆ Ql,m,i0 .

This is a contradiction, since ai0 ≤ s
2N < s√

2N
. Thus diamf(S) ≤ 10Ls

N .

Consider now the set Shalf =
⋃4N2

n=2N2+1 Qn ∩ S. Let x ∈ Q2N2+N ∩ S be
any point in the bottom right corner of the square [0, s]× [0, s] (see Figure 1).
Since f is 1-local co-Lipschitz, diamf(S) ≤ 10Ls

N and 1 ≤ L ≤ N
40 we get

f(S) ⊂ B10Ls/N (f(x)) ∩ f(S) ⊂ f
(
B10Ls/N (x) ∩ S

)
⊂ f

(
Bs/4(x) ∩ S

)
⊂ f(Shalf).

This implies f(Shalf) = f(S).
Let us show now that in fact f(S) = f(Q1,1,1 ∩ S). Fix any α ∈ f(S) and

consider arbitrary x ∈ Q1,1,1. Since α, f(x) ∈ f(Shalf), there exist x′, y′ ∈ Shalf

such that f(x′) = f(x) and f(y′) = α. There exists a finite sequence of points
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x1, x2, . . . , xI ∈ Shalf, such that x1 = x′, xI = y′ and ‖xi − xi+1‖ ≤
√

2δ2N2+1

for all 1 ≤ i ≤ I−1. If we put now T = Q1,1,1∩S, t0 = x and r = 2δ2N2+1, then
all the assumptions of Lemma 3.1 hold (since Lr ≤ d2N2

2 < d1
2 , one has (TLr \

T )∩S = ∅). Therefore, there exists t ∈ T such that f(t) = f(xI) = f(y′) = α.
This implies f(S) ⊂ f(Q1,1,1 ∩ S) or, equivalently, f(S) = f(Q1,1,1 ∩ S).

In what follows, the length of a side of a square Q = Ar(p) (which equals
2r) is denoted by s(Q).

Lemma 3.4. Let D ∈ (0, 2) be fixed. Assume Sk is a decreasing sequence of
compact sets in the plane and Nk are positive integers such that the following
three conditions hold:

– S1 is the unit square [0, 1]× [0, 1].
– Every Sk is a finite union

⋃Mk

m=1 Qk
m of disjoint closed squares with

horizontal and vertical sides.
– Sk+1 is obtained from Sk in the following way. Let R be one of the

disjoint squares Qk
m. Consider the partition of R into 4N2

k squares (which are
obtained by dividing each side of R into 2Nk equal segments) R1, . . . , R4N2

k
.

For each 1 ≤ j ≤ 4N2
k , let aj and dj be positive real numbers, nj be positive

integer, such that 2Nknj(aj + dj) = s(R) and (2Nknj)2aD
j = s(R)D.

For any closed square Ar(x, y), a < 2r/n let

Pa,n(Ar(x, y)) =
⋃

1≤i,i′≤n

Aa/2(x + ( 2i−1
n − 1)r, y + ( 2i′−1

n − 1)r).

We then define P(R) =
⋃4N2

k
j=1 Paj ,nj

(Rj) and Sk+1 =
⋃Mk

m=1 P(Qk
m).

Then the D-dimensional Hausdorff measure of the intersection S = ∩∞k=1Sk

is nonzero and finite.

Proof. Note that it is enough to prove that the D-dimensional Hausdorff
measure of S with respect to `2∞-norm is a non-zero finite number.

Let us observe that for each k, the sum of Dth powers of sides of all
squares which form Sk, equals 1. This is because aj and dj are so chosen in
the lemma, that the sum of Dth powers of sides of squares in Paj ,nj

(Rj) equals
s(R)D/(2Nk)2 for each j, and therefore,

∑
Q∈P(R) s(Q)D = s(R)D. Since the

squares in Sk become arbitrarily small as k grows, it follows that the Hausdorff
measure of

⋂
k≥1 Sk is at most 1.

The positivity of HD(S) is due to the following fact. There exists an
absolute constant c > 0 such that for an arbitrary closed square Q (with
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horizontal and vertical sides) intersecting S, there is n0 = n0(Q) such that for
any n ≥ n0

s(Q)D ≥ c
∑

1≤m≤Mn

Qn
m∩Q6=∅

s(Qn
m)D. (4)

Indeed, let {Bv}v≥1 be any countable covering of S by open `2∞-balls. Since
S is compact, there exists a finite subcovering, {Bvl

}1≤l≤L. The closed squares
Kl = Bvl

also form a covering of S. Then for any n ≥ max1≤l≤L n0(Kl) one
has ∑

1≤l≤L

s(Kl)D ≥ c
∑

1≤m≤Mn

s(Qn
m)D = c.

Therefore,
∑

v≥1 s(Bv)D ≥ c, and since the covering {Bv} is arbitrary, this
implies HD(S) ≥ c.

It remains to prove inequality (4) for any closed square Q. Denote q =
s(Q). We may assume Q ⊂ S1 = [0, 1]2 (otherwise replace Q by a square
inside S1 whose side is shorter than q but which contains Q ∩ S1). We will
consider four cases. In each case, we will show that there exists n0, such that
(4) holds for n = n0. Then (4) holds for any n > n0 since, as we showed in
the beginning of the proof of this lemma, the sum of Dth powers of all sides of
squares obtained from Qn0

m at each subsequent step remains equal to s(Qn0
m )D.

Let
k = 1 + max{n : there exists m, such that Q ⊂ Qn

m} (5)

(note that k ≥ 2). Among the squares in Sk−1, let R be the one which contains
Q.

Denote by R1, . . . , R4N2
k−1

the squares which are obtained from R by di-
viding each side of R into 2N = 2Nk−1 equal segments, let s = s(R).

Case 1. Q contains at least one of the squares R1, . . . , R4N2 .
Then m =

[
q/( s

2N )
]

is at least 1, and Q is covered by at most (m + 2)2

squares among the Rj . Therefore∑
1≤i≤Mk,

Qk
i ∩Q6=∅

s(Qk
i )D ≤ (m + 2)2

∑
1≤i≤Mk,

Qk
i ∈P(Rj)

s(Qk
i )D = (m + 2)2

sD

4N2
.

Note that m + 2 ≤ 3m since m ≥ 1, therefore∑
1≤i≤Mk,

Qk
i ∩Q6=∅

s(Qk
i )D ≤ 9m2 sD

4N2
= 9sD

( m

2N

)2

≤ 9
( sm

2N

)D

≤ 9qD.
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(The inequality
(

m
2N

)2 ≤
(

m
2N

)D holds since m ≤ 2N .) Thus, (4) holds with
c = 1/9 and n = k.

Case 2. Q does not contain any of R1, . . . , R4N2 ; Q∩Sk intersects at least
two of the Rj ’s.

Then Q may intersect up to 6 squares among the Rj . If Q intersects at
least five Ri’s, then q ≥ s

2N . Then∑
1≤i≤Mk,

Qk
i ∩Q6=∅

s(Qk
i )D ≤ 6

sD

(2N)2
≤ 6

( s

2N

)D

≤ 6qD,

therefore (4) holds with c = 1/6 and n = k.
Suppose Q intersects at most four squares Rj . Let qj be the bigger side of

the rectangle Q ∩ Rj for each of those values of j. Since Q ∩ Sk intersects at
least two of the Rj ’s, for each such j one has qj ≥ dj/2 (because the distance
between Rj ∩ Sk and the border of Rj is at least dj/2).

Let us prove that for each such j,

c0

∑
1≤i≤Mk,

Qk
i ∈P(Rj),Q

k
i ∩Q6=∅

s(Qk
i )D ≤ qD

j

where c0 = min{(2 2−D
D −1)D/8, 1/9}. Then (4) holds with c = c0/4 and n = k.

Consider a square Q′ ⊃ Q ∩ Rj such that s(Q′) = qj and Q′ ⊂ Rj , let
m =

[ qj

aj+dj

]
. If m ≥ 1, then Q′ intersects at most (m + 2)2 squares among

Qk
i ∈ P(Rj). Therefore,∑

1≤i≤Mk,

Qk
i ∈P(Rj),Q

k
i ∩Q6=∅

s(Qk
i )D ≤ (m + 2)2aD

j ≤ 9m2aD
j .

On the other hand,

qD
j ≥ mD(aj + dj)D = mDaD

j (2Nnj)2−D ≥ mDaD
j m2−D = m2aD

j .

Thus (4) holds with c = 1/9 and n = k.
If m = 0, then Q′ intersects at most 2 squares among Qk

i ∈ P(Rj). There-
fore, ∑

1≤i≤Mk,

Qk
i ∈P(Rj),Q

k
i ∩Q6=∅

s(Qk
i )D ≤ 2aD

j
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and, since qj ≥ dj/2,

qD
j ≥ 1

4
dD

j =
aD

j

4

(aj + dj

aj
− 1

)D

=
aD

j

4

(
(2Nnj)

2−D
D − 1

)D

≥ aD
j

(2
2−D

D − 1)D

4
.

Therefore, in this case (4) holds with c = (2
2−D

D − 1)D/8 and n = k.
Case 3. Q does not contain any of R1, . . . , R4N2 ; Q ∩ Sk is contained in

only one of these squares, say Rj ; q ≥ dj/2.
If m =

[
q

aj+dj

]
≥ 1, then Q intersects at most (m + 2)2 squares among

Qk
i ∈ P(Rj). Therefore, the same argument as in Case 2 shows that (4) holds

with c = 1/9 and n = k. If m = 0; that is, dj/2 ≤ q < aj + dj , then the
same argument as in Case 2 shows that (4) holds with c = (2

2−D
D − 1)D/8 and

n = k.
Case 4. Q does not contain any of R1, . . . , R4N2 ; Q ∩ Sk is contained in

only one of these squares, say Rj ; q < dj/2.
In this case Q intersects only one square among Qk

i ∈ P(Rj). Denote
this square by R∗. There exists a square Q1, which lies inside R∗ and inter-
sects the boundary of R∗, such that s(Q1) ≤ s(Q) and Q1 ⊃ Q ∩ S. Then
max{n : there exists m, such that Q1 ⊂ Qn

m} = k (see (5)). Now divide R∗

into 4N2
k+1 squares R∗

1, . . . , R
∗
4N2

k+1
and consider n = k + 1 and the square Q1

instead of Q. Since Q1 intersects the boundary of R∗, Q1 intersects at least
one R∗

j for which s(Q1) ≥ d∗j/2. Therefore, Q1 will fit into one of the first
three cases, and we will get a positive constant c1 such that

qD ≥ s(Q1)D ≥ c1

∑
1≤i≤Mk+1,

Qk+1
i ∩Q1 6=∅

s(Qk+1
i )D.

Theorem 3.5. For every 0 < D < 2 there is a compact purely unrectifiable
set S in the plane, such that its Hausdorff dimension is equal to D and for
any local Lipschitz quotient map f : S → R the image f(S) is finite.

Proof. Let Sk be a decreasing sequence of compact sets, where every Sk

is the union of finitely many disjoint closed squares as in Lemma 3.3 and
Lemma 3.4. We put S1 = [0, 1]× [0, 1]. Assume Sk =

⋃
1≤i≤Mk

Qk
i is already

constructed. Let Nk = 40k. Let us show that for each 1 ≤ i ≤ Mk, there exist



210 Gábor Kun, Olga Maleva and András Máthé

sequences of positive real numbers aj = aj(i), dj = dj(i) and positive integers
nj = nj(i) (1 ≤ j ≤ 4N2

k ) such that

(A) 4N2
kn2

ja
D
j =

(
2Nknj(aj + dj)

)D,

(B) 2Nknj(aj + dj) = s(Qk
i ),

(C) aj+1 < aj , dj+1 < dj ,

(D) dj

4 ≥ kδj+1 = k
√

(aj+1)2 + (2aj+1 + dj+1)2.

Note that (A) implies aj
D = (2Nknj)−2

(
2Nknj(aj + dj)

)D. Therefore from
(B) we can find aj = s(2Nknj)−2/D, where s = s(Qk

i ). Thus dj = s
2Nknj

−
s

(2Nknj)2/D . If the sequence nj increases, then aj decrease; if 1
2Nkn1

< (D
2 )

D
2−D ,

then dj also decrease, since (x− x2/D)′ = 1− (2/D)x
2−D

D > 0 if x < (D
2 )

D
2−D .

If nj is already constructed, we always can find nj+1 > nj such that (D)
hold, since the right-hand side of (D) tends to 0 as nj+1 → ∞. Then we
put Sk+1 =

⋃
1≤i≤Mk

P(Qk
i ). Lemma 3.4 guarantees that S =

⋂
k≥1 Sk has

Hausdorff dimension D.
Assume now that f : S → R is a local Lipschitz quotient mapping. Assume

also that k ≥ 1 is such that L1 = L/c, the ratio of the Lipschitz and co-
Lipschitz constants of f is less than Nk/40. Since we may rescale f (f̃(x) =
f(x/c)), we can assume without loss of generality that f is 1-local co-Lipschitz
and is L1-Lipschitz.

Let us show that f(Qk
i ∩S) is a single point for every 1 ≤ i ≤ Mk. Indeed,

fix 1 ≤ i ≤ Mk and let T1 = Qk
i ∩S. By Lemma 3.3 there exists a square Qk+1

i1

among the finite family of squares P(Qk
i ) such that f(T1 ∩ Qk+1

i1
) = f(T1).

The same lemma may be applied to the set T2 = T1 ∩ Qk+1
i1

, and so there
exists a square Qk+2

i2
∈ P(Qk+1

i1
) such that f(T2 ∩Qk+2

i2
) = f(T2). Note that

since T1∩Qk+2
i2

= T2∩Qk+2
i2

, this implies f(T1∩Qk+2
i2

) = f(T1). If we proceed
further, we find a sequence of squares {Qk+n

in
}n≥1 such that Qk+n

in
⊃ Qk+n+1

in+1

and f(T1) = f(T1 ∩Qk+n
in

) for every n ≥ 1. Since the diameter of Qk+n
in

tends
to 0, and f is continuous, this implies that f(T1) is a single point. Therefore
f(S) is finite, since there are finitely many squares Qk

i .
Finally let us note that S is purely unrectifiable. For any s ∈ S and any

ε > 0 there exists a positive ρ < ε such that (B(s, ρ) \B(s, ρ
2 ))∩S = ∅; hence

S is purely unrectifiable.
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Theorem 3.6. There is a compact, totally disconnected set S in the plane
of positive 2-dimensional Lebesgue measure such that for any local Lipschitz
quotient f : S → R the image f(S) is finite.

Proof. The proof of this theorem is similar to the proof of Theorem 3.5.
We construct sets Sk in the same way, but when defining Sk+1 instead of
condition (A), we impose the following restriction on positive real numbers
aj , dj (1 ≤ j ≤ 4N2

k ).

(A1)
aj

aj+dj
= 1− 1

(k+1)2 .

Then λ(Sk)
λ(Sk+1)

= (1 − 1
(k+1)2 )2, so that λ(S) = 1

4 . The other properties of S

can be verified in the same way as in Theorem 3.5.

Remark 3.7. The rather technical construction in Section 3 of purely un-
rectifiable (or totally disconnected in case D = 2) planar sets S of Hausdorff
dimension D ∈ (1, 2] such that any local Lipschitz quotient map f : S → R
has finite image, can be generalized to the case of arbitrary dimension. There
exist sets S ⊂ Rm of Hausdorff dimension D ∈ (1,m] with the same property.

Below we state without proof two important changes one has to make in
Lemmas 3.2–3.4 and Theorems 3.5 and 3.6 in order to construct such sets.

First, one has to find a higher dimensional analogue of “Peano curve” (3)
from Lemma 3.2.

γn,(m) : {1, . . . , (2n)m} → {0, . . . , 2n− 1} × · · · × {0, . . . , 2n− 1}︸ ︷︷ ︸
m times

,

such that

1.
∑m

i=1 |γ
n,(m)
i (k)− γ

n,(m)
i (k + 1)| = 1 for every 1 ≤ k ≤ (2n)m − 1,

2. γn,(m) is injective,

3. the image of {1, . . . , (2n)m

2 } under γn,(m) is one half of {0, . . . , 2n− 1}m

in the same sense as it was for γn in Lemma 3.2,

4.
∑m

i=1 |γ
n,(m)
i ((2n)m)− γ

n,(m)
i (1)| = 1.

Here by γ
n,(m)
i (k) we denote the ith coordinate of γn,(m)(k).

Such maps γn,(m) are easily constructed by induction. Let γn,(2) = γn

be as in (3). If γn,(m) is already constructed, then for 0 ≤ s ≤ 2n − 1,
1 ≤ k ≤ N = (2n)m

2 , s′ = 2n− 1− s and k′ = (2n)m

2 + 1− k define γn,(m+1) by
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γn,(m+1)(sN + k) =

{
(γn,(m)(k), s) if s is even
(γn,(m)(k′), s) if s is odd

γn,(m+1)((2n)N + sN + k) =

{
(γn,(m)(N + k′), s′) if s is even
(γn,(m)(N + k), s′) if s is odd

The other important change should be made in conditions (A)–(D) (proof
of Theorem 3.5). We replace them by Nk = 10(m + 3)k,

(A′) (2Nknj)maD
j =

(
2Nknj(aj + dj)

)D,

(B′) s(Qk
i ) = 2Nknj(aj + dj),

(C′) aj+1 < aj , dj+1 < dj ,

(D′) dj

2
√

m
≥ kδj+1 = k

√
(m− 1)(aj+1)2 + (2aj+1 + dj+1)2.
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