
Real Analysis Exchange
ISSN:0147-1937

Vol. 31(1), 2005/2006, pp. 73–96

Artur Bartoszewicz, Institute of Mathematics,  Lódź Technical University, ul.
Wólczańska 215, 93-005  Lódź, Poland. email: arturbar@p.lodz.pl
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RELATIONSHIPS BETWEEN CONTINUITY
AND ABSTRACT MEASURABILITY OF

FUNCTIONS

Abstract

Making use of ideas of Marczewski and Sierpiński we propose a gen-
eral approach to studies on connections between measurability, continu-
ity and relative continuity of functions. Theorem 2.1 shows that a well-
known characterization of (s)-measurable Marczewski functions can be
extended to the case of functions measurable with respect to a wide
class of algebras involved with a topology. Theorem 2.2 generalizes the
Denjoy-Stepanoff theorem and shows that the Denjoy-Stepanoff prop-
erty stating the continuity of A-measurable functions at all points of a
co-negligible set is quite common while an algebra A and an ideal J
are the results of operations S and S0 on τ \ I for a given topology τ .
Also from the obtained results we conclude new theorems concerning
the algebras associated with product ideals (Theorems 3.12 and 3.13).

1 Introduction.

There are well-known theorems on equivalence between measurability of
functions with respect to some σ-algebras of sets and relative continuity or
continuity on “large” sets. Let us recall the most important of these facts.
Denote by L and B the σ-algebras of Lebesgue measurable sets and of sets
with the Baire property on R, and by N and M, the σ-ideals of sets of
measure zero and of sets of first category, respectively. Let us quote some
known characterizations of Lebesgue measurable functions and functions with
the Baire property:
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Theorem 1.1 (Lusin). A function f : R → R is L-measurable if and only
if for any positive ε there exists a set E ⊂ R such that µ(Ec) ≤ ε, where µ
denotes Lebesgue measure, and the restriction of f to E, f | E is continuous.

Theorem 1.2 (Nikodym). A function f : R → R is B-measurable if and only
if there exists a set E ⊂ R such that Ec ∈M and f | E is continuous.

Theorem 1.3 (Denjoy, Stepanoff). A function f : R → R is L-measurable if
and only if there exists a set E ⊂ R such that Ec ∈ N and f is approximately
continuous at every point of E.

Theorem 1.4 (Wilczyński [20]). A function f : R → R is B-measurable if and
only if there exists a set E ⊂ R such that Ec ∈M and f is M-approximately
continuous at every point of E.

(By M-approximate continuity we mean the category analogue of approximate
continuity introduced by Wilczyński.)

Let us also recall some type of measurability connected with perfect sets,
due to Sierpiński and Marczewski. Sierpiński introduced in [18] the class of
real functions with the following property.

Every perfect setP ⊂ R has a perfect subset Q such that f | Q is continuous.
(Si)

Marczewski [19] invented the class of (s)-sets defined as follows.

E ∈ (s) ⇔ ∀P∈F ∃Q∈F (Q ⊂ P ∩ E or Q ⊂ P \ E)

where F denotes the collection of all perfect sets on the real line. He showed
that the (s)-sets form a σ-algebra and that the (s0)-sets defined by

E ∈ (s0) ⇔ ∀P∈F ∃Q∈F (Q ⊂ P \ E)

form a σ-ideal contained in (s). Marczewski proved the following theorem.

Theorem 1.5. A function f : R → R is (s)-measurable if and only if every
perfect set P ⊂ R has a perfect subset Q such that f | Q is continuous; i.e.,
iff f has property (Si).

Theorems 1.1–1.5 can be extended to more general cases. For example, in
Theorems 1.1, 1.2 and 1.5 we can consider functions defined on a Polish space
with values in a separable metric space. In turn Theorems 1.3 and 1.4 are
special cases of the following result.
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Theorem 1.6 ([12, Thm 6.39 and Exercise 6.E.16]). Let A be a σ-algebra of
subsets of X and let I ⊂ A be a σ-ideal. Let moreover τd ⊂ A be a topol-
ogy determined by a lower density operator from A into A. Then a function
f : X → R is A-measurable if and only if there exists a set E ⊂ X such that
Ec ∈ I and f is τd-continuous on E.

Notice that the property equivalent to measurability in Theorem 1.5 is
slightly different from the conditions of Theorems 1.1–1.4. Here we don’t have
continuity on a “large” set but on some subset of any set from a fixed collection
of sets (in this case, of perfect sets). Recently in several papers, the Marczewski
construction has been applied to an arbitrary family F of nonempty subsets
of some set X. It is easy to observe ([4],[15]) that the collections of sets

S(F) = {E ⊂ X : (∀P ∈ F)(∃Q ∈ F)(Q ⊂ P ∩ E or Q ⊂ P \ E)}

and
S0(F) = {E ⊂ X : (∀P ∈ F)(∃Q ∈ F)(Q ⊂ P \ E)}

constitute an algebra and an ideal of subsets of X, respectively. An old result
of Burstin [9] states that the pair 〈L,N〉 is of the form 〈S(F), S0(F)〉 where
F consists of perfect sets with positive measure.

We say that the pair 〈A, I〉, where A is an algebra and I an ideal of sets,
has Marczewski-Burstin representation (MB-representation) if there exists a
family of sets F such that 〈A, I〉 = 〈S(F), S0(F)〉. The representation is
called inner if F ⊂ S(F). (For results concerning MB-representations see
[2, 3, 4, 8, 10, 16].) Brown and Elalaoui-Talibi [8] observed that the pair
〈B,M〉 has inner MB-representation given by the family F of all Gδ-sets of the
second category. They obtained results, similar to the Marczewski theorem,
for Lebesgue measurable sets and for sets with the Baire property:

Theorem 1.7. A function f : R → R is L-measurable if and only if every
perfect set P ∈ L \ N has a perfect subset Q ∈ L \ N such that f | Q is
continuous.

Theorem 1.8. A function f : R → R is B-measurable if and only if every
P ∈ F has a subset Q ∈ F such that f | Q is continuous, where F is the
family of Gδ-sets of the second category.

More precisely, Brown and Elalaoui-Talibi proved Theorems 1.7–1.8 in the
more general case of a function f : X → Y with a Polish space X and a
separable metric space Y .

The proofs of implications “measurability” ⇒ “relative continuity” make
use of Theorems 1.1, 1.2. The proofs of the reverse implications are more
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complicated and they are only slightly connected with MB-representations of
〈L,N〉 and 〈B,M〉.

The aim of our paper is to propose a general approach to the problem of
connections between MB-representability and such properties as measurability,
relative continuity and continuity. From the main results presented in the next
section, we derive Theorems 1.3–1.8 as well as new theorems concerning the
algebras generated by Borel subsets of the plane and the product idealsN ⊗̃M
and M⊗̃N (see Section 3). In particular, Theorem 3.13 gives the solution of
the problem posed in [5].

2 General Results.

Let us consider topological spaces (X, τ), (Y, τY ), an algebra A of subsets
of X, an ideal I ⊂ A, and a collection F of nonempty subsets of X. Let f be
a function defined on X with values in Y .

Definition 2.1. We say that a function f is A-measurable if, for any U ∈ τY ,
the set f−1(U) belongs to A.

Note that in our definition of measurability we use an algebra of sets which
need not be a σ-algebra. So we can not equivalently say that for any Borel set
B ⊂ Y we have f−1(B) ∈ A.

Definition 2.2. We say that a function f satisfies the Sierpiński condition
with respect to the collection of sets F if for any P ∈ F there exists Q ∈ F
such that Q ⊂ P and f | Q is continuous. Denote the class of such functions
by S(X, Y,F).

The main purpose of this part of the paper is to discuss the following
problems:

Problem 2.1. When does the A-measurability of f imply the Sierpiński con-
dition and vice versa?

Problem 2.2. When is the A-measurability of f equivalent to the continuity
of f at each point of some large set; i.e., of a set belonging to A\I, for a given
ideal I contained in an algebra A?

Let us introduce some definitions.

Definition 2.3. Let A be an algebra of subsets of X, let F be a fixed
nonempty collection of nonempty subsets of X, and let τ be a topology in
X. Let κ be an infinite cardinal number. We say that 〈A,F , τ〉 has the Mar-
czewski property for κ (in short 〈A,F , τ〉 ∈ M(κ)) if for any family of sets
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E ⊂ A of cardinality |E| < κ and for any set P ∈ F there exists a set Q ∈ F
such that Q ⊂ P and, for any E ∈ E , the set Q ∩ E is relatively open in Q.
Formally it means that

∀α<κ ∀{Eγ :γ<α}⊂A ∀P∈F ∃Q∈F, Q⊂P ∃{Gγ :γ<α}⊂τ ∀γ<α (Q ∩Eγ = Q ∩Gγ).
M(κ)

Definition 2.4. Let A be an algebra and I ⊂ A be an ideal of subsets of
X. Let moreover τ ⊂ A be a topology in X. We say that 〈A, I, τ〉 satisfies
the Denjoy-Stepanoff condition with respect to a topological space (Y, τY ) (in
short, 〈A, I, τ〉 ∈ D(Y )) if for any function f : X → Y the following conditions
are equivalent:

(∗) f is A-measurable,
(∗∗) there exists a set E ⊂ X such that Ec ∈ I and f is continuous at every

point of E.

If 〈A, I, τ〉 ∈ D(Y ) for every (Y, τY ) with weight smaller than κ, we say that
〈A, I, τ〉 satisfies the Denjoy-Stepanoff condition with respect to the cardinal
κ (in short, 〈A, I, τ〉 ∈ D(κ)).

Now, we are in a position to formulate the main results of this section
being the (partial) solutions of Problems 2.1 and 2.2.

Theorem 2.1. Let 〈A,F , τ〉 have the Marczewski property for κ ≥ ω1, A =
S(F), τ ⊂ A and τY have a weight smaller than κ. Then the following condi-
tions are equivalent:

(i) f : X → Y is A-measurable,

(ii) f−1(B) ∈ A for any Borel set B,

(iii) f satisfies the Sierpiński condition with respect to F .

Theorem 2.2. Let A be an algebra of subsets of X, and let I ⊂ A be an
ideal. Moreover let τ ⊂ A be a topology in X, and let κ be a cardinal number.
Consider the following conditions:

(a) 〈A, I, τ〉 satisfies the Denjoy-Stepanoff condition with respect to some non-
trivial topological space (Y, τY ),

(b) Int E 6= ∅ for each E ∈ A \ I,

(c) 〈A, I〉 = 〈S(τ \ I), S0(τ \ I)〉,

(d) E ∈ A if and only if E = U ∪N for some U ∈ τ and N ∈ I,
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(e) 〈A, I, τ〉 satisfies the Denjoy-Stepanoff condition with respect to the car-
dinal κ,

(f) S0(τ∗) ⊂ I and S(τ∗) ⊂ A ⊂ S(A \ S0(τ∗)), where τ∗ = τ \ {∅}.

Then (a)⇒(b)⇔(c)⇔(d)⇒(f). Moreover, if I is κ-additive, then (b)⇒(e).

We divide our considerations into several steps which lead to the above
theorems. Some propositions may be of independent interest.

Definition 2.5. We say that E ∈ S(F , τ) if and only if for any set P ∈ F
there exists Q ∈ F such that Q ⊂ P and the set Q ∩ E is relatively open in
Q. Formally

S(F , τ) = {E : (∀P ∈ F)(∃Q ∈ F)(∃G ∈ τ)(Q ⊂ P and Q ∩ E = Q ∩G)}.

We use the same symbol S for S(F) and S(F , τ) which however will not
cause confusion since they depend on one and two variables, respectively. The
same remark concerns Definition 2.2.

Proposition 2.3. Assume that τ ⊂ S(F). Then S(F) = S(F , τ).

Proof. Let E ∈ S(F). Pick an arbitrary P ∈ F . Then there exists a set
Q ∈ F such that either Q ⊂ E ∩ P or Q ⊂ P \ E. In the first case we have
Q ∩ E = Q ∩ X = Q, and in the second one, Q ∩ E = Q ∩ ∅ = ∅. Hence
S(F) ⊂ S(F , τ).

On the other hand, consider an E ∈ S(F , τ) and an arbitrary P ∈ F .
Then for some Q1 ∈ F and Q1 ⊂ P there exists a G ∈ τ such that Q1 ∩G =
Q1 ∩ E. By τ ⊂ S(F) we can find Q ∈ F such that either Q ⊂ Q1 ∩ G or
Q ⊂ Q1 \G. Then either Q ⊂ Q1 ∩E ⊂ P ∩E or Q ⊂ Q1 \E ⊂ P \E. Hence
S(F , τ) ⊂ S(F).

We say that the families of sets F1,F2 are mutually coinitial if for any F1 ∈ F1

there exists F2 ∈ F2 such that F2 ⊂ F1, and vice versa. Recall [4] that for
mutually coinitial families F1,F2 we have 〈S(F1), S0(F1)〉 = 〈S(F2), S0(F2)〉.
We obtain some more consequences.

Remark 2.4. Assume that F1,F2 are mutually coinitial families of sets, and a
topology τ is contained in S(F1) (or, equivalently, in S(F2)). Then S(F1, τ) =
S(F2, τ). The same concerns the Sierpiński condition and the Marczewski
property. More precisely f ∈ S(X, Y,F1) ⇔ f ∈ S(X, Y,F2) and 〈A,F1, τ〉 ∈
M(κ) ⇔ 〈A,F2, τ〉 ∈ M(κ).
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Recall that a pair 〈A, I〉 of an algebra and an ideal is said to satisfy the
hull property if for every A ⊂ X there is a B ∈ A such that A ⊂ B, and
whenever C ∈ A is such that A ⊂ C, we have B \C ∈ I (or equivalently, there
is a B ∈ A such that A ⊃ B, and whenever C ∈ A is such that A ⊃ C, we
have C \B ∈ I).

In the sequel we shall need the following theorem concerning conditions
sufficient for the existence of the canonical MB-representation of a pair 〈A, I〉.
Recall that for a given topology τ , by τ∗ we will mean the family τ \ {∅}.

Proposition 2.5. Let I be an ideal of sets contained in an algebra A. Con-
sider the following conditions:

(I) 〈A, I〉 has the inner MB-representation,

(II) 〈A, I〉 has the hull property,

(III) there exists a topology τ ⊂ A such that τ∗ is coinitial with A \ I,

(IV) there exists a topology τ ⊂ A such that

∀A∈A (A ∈ A \ I ⇒ Int A 6= ∅). (1)

If one of the conditions (I)–(IV) holds, then 〈A, I〉 = 〈S(A \ I), S0(A \ I)〉.

Proof. The first and the second sufficiencies were proved in [3] and [6], re-
spectively. It is easy to check that condition (IV) follows from (III). So, to
complete the proof we show that (IV) implies (II).

Let us take any set A ⊂ X. Then Int A (with respect to topology τ) belongs
to A. Consider a set C ∈ A such that C ⊂ A. One can see that C \ Int A
does not contain any nonempty set open in τ . Hence using assumption (1) we
obtain that C \ Int A ∈ I.

Proposition 2.6. Let F be a collection of nonempty subsets of X. Then we
have:

(i) if τY is a nontrivial topology and any function f satisfying the Sierpiński
condition with respect to F is A-measurable, then S(F) ⊂ A;

(ii) if τ ⊂ S(F), then any function f satisfying the Sierpiński condition with
respect to F is S(F)-measurable.
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Proof. (i) Suppose that S(F) 6⊂ A. Then there exists a set E ∈ S(F) such
that E 6∈ A. Consider a function f defined by

f(x) =

{
y1 for x ∈ E,

y2 for x 6∈ E

where y1, y2 are two different points of Y such that there exists U ∈ τY for
which y1 ∈ U and y2 6∈ U . Hence f−1(U) 6∈ A and f is not A-measurable.
On the other hand E ∈ S(F); so for any P ∈ F there exists Q ∈ F contained
either in P ∩ E or in P \ E. Hence f | Q = y1 or f | Q = y2 and f | Q is a
continuous constant function. This is a contradiction, so we have S(F) ⊂ A.

(ii) Take an open set U ⊂ Y . Let f ∈ S(X, Y,F). Consider E = f−1(U)
and an arbitrary P ∈ F . Then there exists Q ∈ F such that Q ⊂ P and f | Q
is continuous. Hence (f | Q)−1(U) is open in Q. So (f | Q)−1(U) = G∩Q for
some G ∈ τ . Thus we have

Q ∩ E = Q ∩ f−1(U) = (f | Q)−1(U) = Q ∩G,

which means that E ∈ S(F , τ). By the assumption τ ⊂ S(F) and Proposition
2.3, we have S(F , τ) = S(F) and consequently, f is S(F)-measurable.

Remark 2.7. Condition (ii) can not be reversed. Indeed, consider the fol-
lowing example. Let X = X1 ∪ X2, X1 ∩ X2 = ∅, A = {X1, X2, X, ∅},
τ = {X, ∅, G} where G∩X1 6= ∅ 6= G∩X2 and G 6= X. Let F = {X1, X2, X}.
Then S(F) = A. A real function f belongs to S(X, R,F) if and only if f
is constant on X1 and constant on X2. Hence if f ∈ S(X, R,F) then f is
S(F)-measurable but τ 6⊂ S(F).

Remark 2.8. If we assume that F is coinitial with A \ I (for some ideal
I ⊂ A), τ ⊂ S(F) and τY is nontrivial, then 〈A, I〉 = 〈S(A \ I), S0(A \ I)〉
if and only if every f ∈ S(X, Y,F) is S(A)-measurable. Indeed, we have
S(F) = S(A \ I) and A is always contained in S(A \ I). So Remark 2.8
follows from Proposition 2.6.

Remark 2.9. The proof of (ii) is a bit simpler than the proofs of implications
“relative continuity” ⇒ “measurability” in particular cases of Lebesgue mea-
surable sets and sets with the Baire property, due to Brown and Elalaoui-Talibi
[8].

It is interesting to establish whether the A-measurability of f can be equiv-
alent to f ∈ S(X, Y,F) for some collection F . An example presented below
witnesses that conditions considered in Remark 2.8 are not sufficient for the
reverse implication “measurability” ⇒ “relative continuity”.
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Example 2.10. Let A be an algebra of all sets of nowhere dense boundary
with respect to τ1, where τ1 stands for the natural topology in R (we write
A = NDB(τ1)). By H(A) we will denote the ideal of hereditary sets in A.
Since H(A) equals the collection of nowhere dense sets ND(τ1) and the family
τ∗1 is coinitial with A \H(A), we get

〈A,H(A)〉 = 〈S(τ∗1 ), S0(τ∗1 )〉 = 〈S(A \H(A)), S0(A \H(A))〉.

On the other hand, there exists an A-measurable real function f which does
not satisfy the Sierpiński condition with respect to A \H(A). (More exactly,
f does not satisfy the Sierpiński condition with respect to τ∗1 , but according to
Remark 2.4 the both statements are equivalent.) Namely, let {qn : 1 ≤ n < ω}
stand for the set of all rational numbers. Put f(x) =

∑
n∈N(x)

1
2n where

N(x) = {k < ω : qk < x} for x ∈ R. It is easy to check that such a function
has the desired properties. Indeed, the A-measurability of f follows from
monotonicity and failure of the Sierpiński condition due to the discontinuity
on a dense set (the set of rationals).

Proposition 2.11. If 〈A,F , τ〉 ∈ M(κ), A = S(F) and τ ⊂ A, then A is
κ-additive. In particular for κ ≥ ω1, A is a σ-algebra.

Proof. Take E = {Eγ : γ < α} ⊂ A with α < κ and P ∈ F . Then there
exists Q ∈ F such that Q ⊂ P and for every Eγ ∈ E we have Q∩Eγ = Q∩Gγ

for some open set Gγ . Define G =
⋃

γ<α Gγ . We have

Q ∩
⋃
E =

⋃
γ<α

(Q ∩ Eγ) =
⋃

γ<α

(Q ∩Gγ) = Q ∩G.

Hence
⋃
E ∈ S(F , τ) = S(F) = A.

Proposition 2.12. Assume that 〈A,F , τ〉 ∈ M(κ) and a topology τY has a
base U such that |U| < κ. Then every A-measurable function g : X → Y
satisfies the Sierpiński condition with respect to F .

Proof. Consider E = {E : (∃U ∈ U)(E = f−1(U))}. By the measurability
of f we have E ⊂ A. Take an arbitrary P ∈ F . Then there exists Q ∈ F
such that Q ⊂ P and all the sets Q ∩ E for E ∈ E are open in Q. So f | Q is
continuous.

Some kind of a reverse proposition is the following.
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Proposition 2.13. Assume that for any cardinal β < κ there exists a family
G of disjoint, nonempty open sets in Y such that |G| = β. Moreover, let A be
κ-additive and every A-measurable function f : X → Y satisfy the Sierpiński
condition with respect to a family F . Then for any family E, with cardinality
|E| < κ, of disjoint sets in A, and for an arbitrary P ∈ F there exists a subset
Q of P , Q ∈ F , such that Q ∩ E is open in Q for all E ∈ E.

Proof. Let α < κ and E = {Eξ : ξ < α}. Let G = {Uξ : ξ < α} be a family
of disjoint open nonempty sets in Y such that

⋃
G 6= Y . Choose yξ ∈ Uξ,

ξ < α, and define f(x) = yξ for x ∈ Eξ. (To define f for all x ∈ X we
can take f(x) = y for x 6∈

⋃
E where y 6∈

⋃
G.) Thus f is A-measurable, so

for any P ∈ F there exists Q ∈ F , Q ⊂ P , such that f | Q is continuous.
Hence every set of the form (f | Q)−1(Uξ) is open in Q. It means that
Eξ ∩Q = f−1(Uξ) ∩Q = (f | Q)−1(Uξ) is open in Q.

Now, let us prove our first main theorem.

Proof of Theorem 2.1.
(i) ⇒ (ii) This follows from the fact that A is a σ-algebra (Proposition 2.11).
(ii) ⇒ (i) Obvious.
(i) ⇒ (iii) By Proposition 2.12.
(iii) ⇒ (i) By Proposition 2.6.

Applying Theorem 2.1 and Proposition 2.5 with F = A \ I we conclude
the following

Corollary 2.14. Assume that a pair 〈A, I〉 of an algebra A and an ideal I has
the hull property. Let τ be a topology contained in A, such that 〈A,A\I, τ〉 ∈
M(κ), and let τY have a weight smaller than κ. Then the following conditions
are equivalent:

(i) f : X → Y is A-measurable,

(ii) f ∈ S(X, Y,A \ I).

Proposition 2.15. Let A be one of the following algebras:

(1) algebra (s) of Marczewski sets,

(2) algebra B of the sets with Baire property,

(3) algebra L of Lebesgue measurable sets.
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Then 〈A,A \ H(A), τ1〉 ∈ M(ω1) where τ1 is the natural topology in R and
H(A) denotes the ideal of hereditary sets in A.

Proof. (1) Marczewski in [19] proved that 〈(s),F , τ1〉 ∈ M(ω1) where F is
the collection of all perfect sets in R. By Remark 2.4, 〈(s), (s) \ (s0), τ1〉 ∈
M(ω1) because F and (s) \ (s0) are coinitial. It is known that H(s) = (s0).

(2) Let E = {En : n < ω} be a countable family of sets with the Baire
property. Then En = Un4Bn where Un is open in τ1 and Bn is of the first
category. Let P be a set of the second category with the Baire property. Define
B =

⋃
n<ω Bn and Q = P \B. Then we have

Q∩En = Q∩(Un4Bn) = Q∩((Un\Bn)∪(Bn\Un)) = (Q∩Un)\Bn = Q∩Un.

(3) Let E = {En : n < ω} be a family of Lebesgue measurable sets. Let
P be an arbitrary set with positive Lebesgue measure. Take ε < µ(P )

2 . Then
there exists a family G = {Gn : n < ω} of open sets such that En ⊂ Gn and
µ(Gn \ En) < ε

2n . Define Q = P \
⋃

n<ω(Gn \ En). Then µ(Q) > 0 and:

Q ∩ En = Q ∩ (En \
⋃

k<ω

(Gk \ Ek))

= Q ∩ ((Gn \
⋃

k<ω

(Gk \ Ek))

= (Q \
⋃

k<ω

(Gk \ Ek)) ∩Gn = Q ∩Gn.

The next corollary is a generalization of Theorem 1.4 of Marczewski and
Theorems 1.5–1.6 of Brown and Elalaoui-Talibi.

Corollary 2.16. Let τY have a countable base. For any algebra described in
the previous proposition, the following conditions are equivalent:

(a) f : X → Y is A-measurable,

(b) for any F coinitial with A \H(A) we have f ∈ S(R, Y,F),

(c) for some F coinitial with A \H(A) we have f ∈ S(R, Y,F).

Proof. The assertion follows immediately from the previous proposition and
Theorem 2.1.

Let us turn to our second main result, Theorem 2.2. Note that it generalizes
Theorem 1.3 (of Denjoy and Stepanoff) as well as Theorems 1.5 and 1.6.
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Proof of Theorem 2.2.
(a)⇒(b) Assume that for some space Y with a nontrivial topology τY we have
〈A, I, τ〉 ∈ D(Y ). Suppose that for some E0 ∈ A \ I the set Int E0 is empty.
Let y1, y2 be points in Y for which there exists U ∈ τY such that y1 ∈ U and
y2 ∈ U c. Define f : X → Y by

f(x) =

{
y1 for x ∈ E0,

y2 for x ∈ Ec
0.

(2)

Evidently, f is A-measurable, so there exists a set E ⊂ X such that Ec ∈ I
and f is continuous on E. On the other hand, f is not continuous at any point
of E0. Thus E0 ⊂ Ec which means that E0 ∈ I – a contradiction.
(b)⇒(c). By (b) and Theorem 2.3 (IV) we have 〈A, I〉 = 〈S(A\I), S0(A\I)〉.
Observe that the families A\I and τ \I are mutually coinitial. Indeed, every
set from τ \ I belongs to A \ I. On the other hand, for E ∈ A \ I, we
have Int E ∈ τ \ I because E \ Int E ∈ I. Hence 〈S(A \ I), S0(A \ I)〉 =
〈S(τ \ I), S0(τ \ I)〉.
(c)⇒(b) Let E ∈ A\I. Then E ∈ S(τ \I)\S0(τ \I) and consequently, there
exists a set U ∈ τ \ I such that U ⊂ E. Hence Int E 6= ∅.
(b)⇒(d) It is enough to show that any E ∈ A is of the form E = U ∪N for
some E ∈ τ and N ∈ I. We have E = Int E ∪ (E \ Int E) and E \ Int E ∈ I.
(d)⇒(b) Let E ∈ A\I. Then U in the representation E = U∪N is nonempty.
(b)⇒(f) Note that S0(τ∗) = NWD(τ). Observe that S0(τ∗)∩A ⊂ I because
every set E ∈ S0(τ∗) has empty interior. Hence if E ∈ S0(τ∗) and E is closed,
then E ∈ I. Let now E ∈ S0(τ∗). Then E is nowhere dense and E is nowhere
dense too. So E ∈ I and consequently, E ∈ I. Thus S0(τ∗) ⊂ I.

Let E ∈ S(τ∗). Then E is a set with nowhere dense boundary and E is of
the form E = U∪N where U ∈ τ and N ∈ S0(τ∗) = NWD(τ). By S0(τ∗) ⊂ I
and (d) we have E ∈ A. Thus S(τ∗) ⊂ A = S(A \ I) ⊂ S(A \ S0(τ∗)). The
last inclusion holds by [2, Lemma 6].
(b)⇒(e)

Proof of (∗)⇒(∗∗). Assume now that an ideal I is κ-additive.
First we show that 〈A,A\I, τ〉 ∈ M(κ). Let α < κ and let E = {Eγ : γ < α}
be a family of sets contained in A. Then any Eγ is of the form Eγ = Uγ ∪Nγ

where Uγ ∈ τ , Nγ ∈ I. Let P be an arbitrary set from A \ I. Define
N =

⋃
γ<α Nγ and Q = P \N . By κ-additivity of I we have N ∈ I and hence

Q ∈ A \ I. Since

Q ∩ Eγ = Q ∩ (Uγ ∪Nγ) = (Q ∩ Uγ) ∪ (Q ∩Nγ) = Q ∩ Uγ ,

〈A,A \ I, τ〉 ∈ M(κ) and consequently, 〈A, τ \ I, τ〉 ∈ M(κ). Let the weight
of τY be smaller than κ. Hence, by Proposition 2.12, every A-measurable
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function f : X → Y satisfies the Sierpiński condition with respect to τ \ I.
Thus for each nonempty set U ∈ τ \ I there exists V ∈ τ \ I such that V ⊂ U
and f | V is continuous in τ . Equivalently f is continuous at every point of
V. Let G be a family of all sets V ∈ τ such that f is continuous on V. Put
E =

⋃
G. One can see that Ec does not belong to A \ I because Ec has no

nonempty open subset in A \ I. Hence Ec ∈ I. The function f is obviously
continuous at every point of E.

Proof of (∗∗) ⇒ (∗).
This implication always holds. Indeed, let U ∈ τY . Then f−1(U) = (f−1(U)∩
E) ∪ (f−1(U) ∩ Ec). It is clear that f−1(U) ∩ Ec ∈ I. Since f is continuous
at every point of E, we have f−1(U) ∩ E = G ∩ E for some G ∈ τ ⊂ A.
Consequently f−1(U) ∈ A.

Corollary 2.17. Assume that, for a topology τ in X, the ideal S0(τ∗) has
additivity κ. Then 〈S(τ∗), S0(τ∗), τ〉 ∈ D(κ).

Corollary 2.18. Let I be a σ-ideal contained in an algebra A and let τY have
a countable base. Assume that τ ⊂ A is a topology such that τ∗ is coinitial
with A \ I (which means that any set E ∈ A has nonempty interior if and
only if E ∈ A \ I). Then A is a σ-algebra and the following conditions are
equivalent:

(i) f : X → Y is A-measurable,

(ii) there exists a set E ⊂ X such that Ec ∈ I and f is continuous at every
point of E.

Remark 2.19. Implication (b)⇒(e) in Theorem 2.2 (under the assumption
that an ideal I is ω1-additive) is stronger than Theorem 1.6. Indeed, the
assumptions of Theorem 1.6 are equivalent to the fact that I is the ideal
of nowhere dense sets in τ and simultaneously of sets of the first category
in τ , and the sets from I are closed. Even Corollary 2.18 is a bit stronger;
the sets belonging to I need not be closed. (See for example [12, Exercise
62(b)].) Observe that 〈L,N , τd〉 and 〈B,M, τM−d〉, where τd and τM−d stand
respectively for density and M-density topologies [20], satisfy Theorem 1.6
and our Corollary 2.18. However, the triple 〈L,N , τ0〉, where τ0 is a topology
described in [12, Exercise 62(b)], satisfies Corollary 2.18 but not Theorem
1.6. Note also that there exists a topology τ for which 〈(s), (s0), τ〉 fulfills
assumptions of Corollary 2.18 [7] whereas it is not clear whether it satisfies
assumptions of Theorem 1.6. Finally, notice that in the case of all triples
mentioned above, we have applied Theorem 2.2 with κ = ω1. One can show
that for any regular κ > ω1 there exists 〈A, I, τ〉 ∈ D(κ), where I is κ-additive
and any set E ∈ A \ I has nonempty interior [7].
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The following example shows that Theorem 2.2 is essentially stronger than
Corollary 2.18.

Example 2.20. Let X0 = R×{0}, X1 = R×{1} and X = X0 ∪X1. Denote
by τd, τ1 the density topology and the natural topology in R, respectively.
Define A, I and τ by

A = {(A× {0}) ∪ (B × {1}) : A ∈ L, B ∈ P(R)},
I = {(A× {0}) ∪ (B × {1}) : A ∈ N , B ∈ P(R)},
τ = {(A× {0}) ∪ (B × {1}) : A ∈ τd, B ∈ τ1}.

One can check that the triple of 〈A, I, τ〉 (I is a σ-ideal) satisfies condition
(b) in Theorem 2.2 but does not satisfy assumptions of Corollary 2.18.

3 New Applications.

Let (X, τ) be a topological space and let Bor(X) stand for the family of
all Borel subsets of X. For a fixed ideal I of subsets of X by ΣI we denote
the algebra generated by Bor(X) ∪ I. In this section we are going to apply
general results obtained in the previous section for A = ΣI and F = ΣI \ I
when I is equal to the intersection of two given ideals or I is the product of
ideals.

At first however, let us define a condition which, in the case of the con-
sidered algebras, seems more convenient to be checked than condition M(κ)
defined in Section 2.

Definition 3.1. Let A be an algebra of subsets of X and let F be a fixed
nonempty collection of nonempty subsets of X. We say that 〈A,F , τ〉 ∈
M∗(κ), where κ is any cardinal number, if

∀α<κ ∀ {Eγ :γ<α}⊂A ∀P∈F ∃ {Gγ :γ<α}⊂τ (P \
⋃

γ<α

(Eγ 4Gγ) ∈ F). M∗(κ)

As the following lemmas show, condition M∗(κ) (in general stronger than
M(κ)) turns out to be equivalent to M(κ) for F = A \ I where I ⊂ A is any
ideal.

Lemma 3.1. If 〈A,F , τ〉 ∈ M∗(κ), then 〈A,F , τ〉 ∈ M(κ).
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Proof. Let α < κ. By assumption, for any family {Eγ : γ < α} ⊂ A and
P ∈ F , there exists a family {Gγ : γ < α} ⊂ τ such that P \

⋃
γ<α

(Eγ4Gγ) ∈ F .

Put Q = P \
⋃

γ<α
(Eγ 4Gγ). It is obvious that Q ∈ F and Q ⊂ P . Moreover,

for any γ < α, we have Q ∩ (Eγ 4Gγ) = ∅ and hence Q ∩ Eγ = Q ∩Gγ .

Lemma 3.2. If a κ-additive algebra A contains a topology τ and I ⊂ A is a
fixed ideal of subsets of X, then the following conditions are equivalent:

(i) 〈A,A \ I, τ〉 ∈ M(κ),

(ii) 〈A,A \ I, τ〉 ∈ M∗(κ).

Proof. By virtue of the previous lemma, it is enough to prove implication
(i) ⇒ (ii).

Let α < κ. Consider a family {Eγ : γ < α} ⊂ A and P ∈ A \ I. By
assumption (i), we can find a family {Gγ : γ < α} ⊂ τ and a set Q ∈ A \ I
such that Q ⊂ P and

∀ γ<α (Q ∩ Eγ = Q ∩Gγ). (3)

Because τ ⊂ A, it is clear that P \
⋃

γ<α
(Eγ 4Gγ) ∈ A.

Suppose now that P \
⋃

γ<α
(Eγ 4 Gγ) ∈ I. From (3) we derive that Q ∩

(Eγ 4Gγ) = ∅ for any γ < α. Hence

P \
⋃

γ<α

(Eγ 4Gγ) ⊃ Q \
⋃

γ<α

(Eγ 4Gγ)

=
⋂

γ<α

(Q \ (Eγ 4Gγ)) = Q

and consequently, Q ∈ I which is a contradiction.

Lemma 3.3. Assume that a σ-algebra A contains Bor(X). Let I ⊂ A be a
fixed σ-ideal of subsets of X such that

∀A∈A ∃B∈Bor(X) (B ⊂ A and A \B ∈ I). (4)

Then the following conditions are equivalent:

(i) 〈A,A \ I, τ〉 ∈ M∗(ω1),

(ii) 〈Bor(X),Bor(X) \ I, τ〉 ∈ M∗(ω1).
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Proof. (i) ⇒ (ii) Obvious, because τ ⊂ Bor(X).
(ii) ⇒ (i) Let us start with the observation which will be useful in the sequel.

For any sets E,G ⊂ X if Ẽ ⊂ E, then E 4G ⊂ (Ẽ 4G) ∪ (E \ Ẽ). (5)

Take a family {Eγ : γ < α} ⊂ A with α < ω1, and P ∈ A \ I. By (4),
for a fixed γ < α, there exists a Borel set Ẽγ ⊂ Eγ such that Eγ \ Ẽγ ∈
I. Similarly we can pick a set P̃ ⊂ P satisfying P̃ ∈ Bor(X) \ I. Then
assumption (ii) implies the existence of a family {Gγ : γ < α} ⊂ τ such that
P̃ \

⋃
γ<α

(Ẽγ 4Gγ) ∈ Bor(X) \ I. Making use of observation (5) we obtain

P \
⋃

γ<α

(Eγ 4Gγ) ⊃ P̃ \
⋃

γ<α

(Eγ 4Gγ)

⊃ P̃ \
⋃

γ<α

((Ẽγ 4Gγ) ∪ (Eγ \ Ẽγ))

= (P̃ \
⋃

γ<α

(Ẽγ4Gγ)) \
⋃

γ<α

(Eγ \ Ẽγ).

Hence P \
⋃

γ<α
(Eγ4Gγ) ∈ A \ I as desired.

Notice that if a σ-ideal I has Borel base (That is, for every set A ∈ I
there exists B ∈ Bor(X) ∩ I such that A ⊂ B.), then the σ-algebra ΣI
consists of sets of the form B ∪ F where B ∈ Bor(X) and F ∈ I. Hence one
can easily conclude that the assumption (4) in Lemma 3.3 is satisfied in the
case of A = ΣI . Thus from Lemmas 3.2 and 3.3 the next assertion follows
immediately.

Proposition 3.4. If a σ-ideal I of subsets of X possesses Borel base then the
following conditions are equivalent:

(i) 〈ΣI , ΣI \ I, τ〉 ∈ M(ω1),

(ii) 〈Bor(X),Bor(X) \ I, τ〉 ∈ M∗(ω1).

3.1 Applications to Algebras ΣJ∩K

Let J ,K be fixed ideals of subsets of X. Note that if the assumptions of
Theorem 2.1 are fulfilled for A = ΣI and F = ΣI \ I where I ∈ {J ,K}, then
the natural question arises, whether the mentioned theorem works also with
I = J ∩ K. As Theorem 3.5 will show, the answer is affirmative assuming
that the both considered ideals have some additional properties.
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Theorem 3.5. Assume that σ-ideals J ,K of subsets of X possess Borel bases,
a topology τ is contained in ΣJ ∩ ΣK and τY has a countable base. If pairs
〈ΣJ ,J 〉, 〈ΣK,K〉 have the hull property and

〈Bor(X),Bor(X) \ J , τ〉, 〈Bor(X),Bor(X) \ K, τ〉 ∈ M∗(ω1),

then the following conditions are equivalent:

(i) f : X → Y is ΣJ∩K-measurable,

(ii) f ∈ S(X, Y, ΣJ∩K \ (J ∩ K)).

Proof. It is fairly easy to show that, under the above assumptions, the ideal
J ∩ K possesses Borel base and 〈Bor(X),Bor(X) \ (J ∩ K), τ〉 ∈ M∗(ω1). If
the pair 〈ΣJ∩K,J ∩ K〉 had the hull property, we would derive the assertion
from Corollary 2.14 and Proposition 3.4. The remaining part of the proof
follows from Lemma 3.6.

Lemma 3.6. If ideals J ,K possess Borel bases and pairs 〈ΣJ ,J 〉, 〈ΣK,K〉
have the hull property, then 〈ΣJ∩K,J ∩ K〉 has the hull property too.

Proof. Take any set A ⊂ X. By the respective assumptions, there are Borel
sets B1, B2 containing A such that

(∀F1∈ΣJ (A ⊂ F1 ⇒ B1 \ F1 ∈ J )) and (∀F2∈ΣK (A ⊂ F2 ⇒ B2 \ F2 ∈ K)).
(6)

Put B = B1 ∩ B2. Then evidently A ⊂ B and B ∈ ΣJ∩K. Let F ∈ ΣJ∩K =
ΣJ ∩ΣK be any superset of A. Then by (6) we get B\F = (B1\F )∩(B2\F ) ∈
J ∩ K.

It is known that the pairs 〈L,N〉, 〈B,M〉 have the hull property, so from
Theorem 3.5 we conclude

Corollary 3.7. A function f : R → R is L-measurable and B-measurable
simultaneously if and only if f satisfies the Sierpiński condition with respect
to (B ∩ L) \ (N ∩M).
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3.2 Applications to Algebras ΣJ e⊗K
Let J ,K be fixed ideals in X.

Definition 3.2. (Cf. [13]) Define the ideal

J ⊗K =
{
A ⊂ X2 : {x : Ax 6∈ K

}
∈ J },

where Ax = {y : (x, y) ∈ A} for x ∈ X. By the product ideal we mean the ideal

J ⊗̃K =
{
A ⊂ X2 : (∃B ∈ Bor(X2) ∩ (J ⊗K)) A ⊂ B

}
.

Remark 3.8. It is easy to observe that J ⊗̃K ⊂ J ⊗ K and Bor(X2) \
J ⊗̃K = Bor(X2) \ J ⊗ K. Moreover, directly from the definition it follows
that product ideals possess Borel bases.

Recall that if J = K = N or J = K = M, then J ⊗̃K is (by the Fubini
theorem and by the Kuratowski-Ulam theorem) equal to the σ-ideal of plane
Lebesgue null sets or plane meager sets, respectively. The mixed product
ideals N ⊗̃M and M⊗̃N form new interesting ideals. In [17] it was observed
that pairs 〈ΣI , I〉, for I ∈ {N ⊗̃M,M⊗̃N}, have inner MB-representation
with F = ΣI \ I. (More precisely this observation follows from the cited
result of Baldwin [6] and the fact that the considered pairs have the hull
property.) So, by Proposition 3.4, to apply Theorem 2.1, it suffices to verify
that 〈Bor(R2),Bor(R2) \ I, τ2〉 ∈ M∗(ω1) where τ2 stands for the natural
topology in R2. To this aim we will need the following structural theorems
due to M. Balcerzak (for some related results, see [11]).

Theorem 3.9. [1, Prop. 2.1, page 63] For each Borel set B ⊂ R2 and for a
fixed base {Un : n < ω} of nonempty open subsets of R2, there is a sequence
{Fn : n < ω} of Fσ sets in R, such that B4

⋃
n<ω

(Fn × Un) ∈ N ⊗̃ M.

Theorem 3.10. [1, Lemma 2.3, page 64] For each Borel set B ⊂ R2 and
every ε > 0, there exist an open set G ⊂ R2 and a meager set C ⊂ R such
that B ⊂ (C × R) ∪G and µ((G \B)x) < ε for each x ∈ R \ C.

Theorem 3.11. If I ∈ {N ⊗̃M,M⊗̃N}, then 〈Bor(R2),Bor(R2) \ I, τ2〉 ∈
M∗(ω1).
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Proof. • The case of I = N ⊗̃ M
Consider a family {En : n < ω} ⊂ Bor(R2) and P ∈ Bor(R2) \ N ⊗̃ M.

Put P̃ = {x ∈ R : P x ∈ B \M}. Being a Borel set (see [14]), P̃ is obviously
Lebesgue measurable. Thus ε = µ(P̃ ) is a positive number. Let {Un : n < ω}
stand for the family of all bounded open intervals with rational endpoints.
By Theorem 3.9, for each n < ω there exists a family {Fn,m : m < ω} of Fσ

subsets of R such that

∀n<ω En 4
⋃

m<ω

(Fn,m × Um) ∈ N ⊗̃M. (7)

For fixed n, m < ω pick open sets Gn,m such that

Fn,m ⊂ Gn,m and µ(Gn,m \ Fn,m) <
ε

2n+m+1
.

Then for any n < ω let Fn =
⋃

m<ω
(Fn,m × Um) and Gn =

⋃
m<ω

(Gn,m × Um).

Clearly, the sets Gn are open in R2 which implies that P \
⋃

n<ω
(En 4Gn) is a

Borel set.
Suppose now that P \

⋃
n<ω

(En 4Gn) ∈ N ⊗M. By (5) we have

P \
⋃

n<ω

(En 4Gn) ⊃ P \
⋃

n<ω

((En 4 Fn) ∪ (Gn \ Fn))

= P \
⋃

n<ω

(Gn \ Fn)) \
⋃

n<ω

(En 4 Fn).

From (7) we conclude that P \
⋃

n<ω
(Gn \ Fn) ∈ N ⊗M, which means that

{x : (P \
⋃

n<ω
(Gn \ Fn))x 6∈ M} ∈ N . To get a contradiction observe that for

all x 6∈
⋃

n<ω

⋃
m<ω

(Gn,m \ Fn,m) we have

(⋃
n<ω

⋃
m<ω

(Gn,m \ Fn,m)× Um

)x

= ∅,

and
µ(
⋃

n<ω

⋃
m<ω

(Gn,m \ Fn,m)) <
∑
n<ω

∑
m<ω

ε

2n+m+1
=

ε

2
.

Thus for each x 6∈
⋃

n<ω

⋃
m<ω

(Gn,m \ Fn,m) we obtain

(P \
⋃

n<ω

(Gn \ Fn))x = P x \ (
⋃

n<ω

⋃
m<ω

(Gn,m \ Fn,m)× Um)x = P x,
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Consequently, µ({x : (P \
⋃

n<ω
(Gn \ Fn))x 6∈ M}) > ε

2 .

By Remark 3.8 we get P \
⋃

n<ω
(En4Gn) ∈ Bor(R2)\(N ⊗̃M) as desired.

• The case of I = M⊗̃ N
Take a family {En : n < ω} ⊂ Bor(R2) and P ∈ Bor(R2) \ (M⊗̃ N ). For

k < ω we define the sets Pk = {x : µ(P x) > 2
k}. From [14] it follows that

all Pk, k < ω, are Borel subsets of R. Moreover, we can choose k0 < ω
such that Pk0 6∈ M. Put εn = 1

2nk0
for any n < ω. According to Theorem

3.10, there exist families {Gn : n < ω} ⊂ τ2 and {Cn : n < ω} ⊂ M such that
En ⊂ Gn ∪ (Cn × R) and µ([Gn \ En]x) < εn for all x ∈ R \ Cn and n < ω.
Let C =

⋃
n<ω

Cn. Then C ∈M and C × R ∈M⊗N .

As in the previous case, suppose that P \
⋃

n<ω
(En 4Gn) ∈M⊗N . From

P \
⋃

n<ω

(En 4Gn) = (P \
⋃

n<ω

(Gn \ En)) \
⋃

n<ω

(En \Gn)

it follows that P \
⋃

n<ω
(Gn \ En) ∈M⊗N . On the other hand

µ((P \
⋃

n<ω

(Gn \ En))x) = µ(P x \
⋃

n<ω

(Gn \ En)x)

> µ(P x)−
∑
n<ω

µ((Gn \ En)x) >
1
k0

> 0

for each x ∈ (R \ C) ∩ Pk0 6∈ M, which is a contradiction.

Now from Theorems 2.1, 3.5 and 3.11 we derive

Theorem 3.12. Let I ∈ {N ⊗̃M, M⊗̃N , (N ⊗̃M) ∩ (M⊗̃N )}. Then
every function f : R2 → R is ΣI-measurable if and only if f satisfies the
Sierpiński condition with respect to the family ΣI \ I.

In the case of product ideals, as for the ideals of all Lebesgue null sets
and meager sets in R, one can introduce the notion of a density point of
a measurable set (which lead to the notion of a density-type topology) as
follows.

Definition 3.3. [5, Def. 2.2] Assume that J and K are σ-ideals of subsets of
R, invariant with respect to translation. A point (x0, y0) ∈ R2 is an J ⊗̃K-
density point of E ∈ ΣJ e⊗K if for each increasing sequence (ni) of positive
integers there are a subsequence (nik

) and a set A ∈ J such that

∀x∈(−1,1)\A lim sup
k→∞

[(−1, 1) \ (((nik
, nik

) · E)x+x0 − y0)] ∈ K
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where (t, t) · E = {(tx, ty) : (x, y) ∈ E)} for t ∈ R.

Let I ∈ {N ⊗̃M,M⊗̃N}. Denote by ϕI(E) the set of all I-density points
of E ∈ ΣI . It was proved in [5] that the family τI = {E ∈ ΣI : E ⊂ ϕI(E)}
forms a topology in R2. From [5, Prop. 3.3 and 4.3] it follows that the
respective version of the Lebesgue density theorem holds for the operator ϕI
in both cases. Thus we are in a position to apply Corollary 2.18 (or Theorem
1.6 from [12]) and formulate the following Denjoy-Stepanoff type result.

Theorem 3.13. For I ∈ {N ⊗̃M,M⊗̃N} the following conditions are
equivalent:

(i) f : R2 → R is ΣI-measurable,

(ii) there exists a set E ⊂ R2 such that Ec ∈ I and f is continuous on E
with respect to the topology τI .

This solves a problem posed in [5].

Added in Proof. Some similar problems were considered in the paper, Re-
strictions to continuous function and Boolean algebras, Proc. Amer. Math.
Soc., 118, no. 3 (1993), 791–796, by I. Rec law, who obtained several theorems
which however go in a different direction in comparison to ours.
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