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NEW TESTS FOR POSITIVE ITERATION
SERIES

Abstract

We give new tests for series whose terms are defined by iteration of
a positive map. Several known results are generalized and unified.

1 Introduction.

Let f :]0,00[ —]0, 00[ be a map, such that f(z) < z for every > 0. For each
n e N, let fI" denote the nth iterate of f, that is,

£l = id0, o0 It = o 17 for every n € N.

A standard question is: when the functions series ) -, f ("] converges point-
wise ? The ratio test decides on the matter whenever limsup,\ @ < 1, but
the study is much more delicate if this upper limit equals the unit. Obviously,
for every xg > 0 the sequence (Z,)neny = (f[”] (20))nen is strictly decreasing.
A necessary condition for pointwise convergence of Y _, fI" is

lim f(z) =0 for every z > 0. (1)

n—oo

Note that (1) holds whenever f is continuous to the right on ]0,c0]. Let us
briefly recall several known related results, all involving the auxiliary map

X

= Ty

wy :]0,00[—10, 0],

Assume one of the following conditions holds for some a > 0:
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1. wy is decreasing on 0,a] (Altman(1]),

2.10,a] > =z — @ €10,1[ is decreasing (equivalent to Altman’s con-
dition) and flyg ) is differentiable, with inf,c)o ) f/'(x) > 0 (Fort and
Schuster|[6]),

@) 4

3. fljo,q] is Lipschitzian and increasing, with lim,\ o 22 = 1 (Svarcman(7]),

4. flo,q) is Lipschitzian (Brauer|[2, 3]).
If in addition

/Oa wp(t)dt < oo, 2)

then >, -, £ converges pointwise on ]0,a]. Convergence and (2) are equiva-

lent under the more restrictive assumptions of the Fort-Schuster and Svarcman
tests. Nevertheless, none of these applies to the pointwise convergent series

defined by
v

fa) == 2 4 x + sin(w/x) (3)
(see Example 10), since for every a > 0 we have inf,cjg 4 f'(z) = —00 and wy
is not monotone on |0, a]. For such problems, local conditions on f (near 0)
seem to be more natural than monotony or Lipschitz restrictions if (1) holds.
Our main result (Theorem 1) provides a test without monotony or Lipschitz
conditions. Its corollaries from Section 3.1 generalize the above cited results.
Section 3.2 presents a sequence of tests with local conditions (upper/lower
limits) and of strictly increasing strength. Examples are discussed in the last
section.

2 A General Principle.

Let f :]0,00[—]0,00[ be a map, such that f(z) < z for every > 0. Let us
also consider a map ¢ € L] (]0, 00[) (locally Lebesgue integrable), with ¢ > 0.

Theorem 1 (¢-test). (i) >, f" converges pointwise if (1) holds and

1 T
/ to(t)dt < oo and liminf p(t)dt > 0.
0 N0 ()

(ii) ano f" diverges everywhere if

1 T
/ to(t)dt = co and lim sup/ (t)dt < oo.
0 eN\0 S f(2)
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PROOF. Since ¢ € L{ (]0,00[), we can define the map

:10,00[— R, ®(f) :—/xgo(t)dt.

Let us note that ® is strictly decreasing and locally absolutely continuous,
with ® = —¢ almost everywhere. Its range J := ®(]0, oo]) is an open interval
containing 0, and its inverse ® ! : J —]0, oo[ is a decreasing homeomorphism.
Fix 2o > 0 and (z,)nen = (fI™(20))nen. If lim, .o , = 0, then applying
the Stolz-Cesaro theorem to the sequences (®(x,))n>1 and (n),>1 yields

lim inf (n) > liminf/ ’ p(t)dt > hmlnf/ p(t)de, (4)
f f

D(xy,)

lim sup < lim sup/ p(t)dt < lim sup/ p(t)dt.  (5)

(1). Assume that (1) holds, and that liminf,\ o f;(m) p(t)dt > 0. By (4), there

exists A €]0, oo[, such that % > ) for sufficiently large n (that is, for n >
no € N*). For such n we have ®(z,,) > An > 0 = ®(1) (hence lim,~ o ®(x) =
o), and consequently An € J and z,, < ®71(An). The assertion follows if

we prove that the series Zn>no L(An) converges. According to the integral

criterion, this is equivalent to fo ®~1(As)ds < co. An easy computation
gives for this integral

P (x) 1

o0 1 1 1
/ d~1(\s)ds = lim ’ P~ (\s)ds = X lim [ tp(t)dt = 7/ to(t)dt.
0 g T 0

N0 Jo

The conclusion is now evident.

(ii). Assume that limsup, f;(x) p(t)dt < oo = fol to(t)dt. We also can
assume that lim, .. x, = 0, since otherwise Zn>0 x, diverges. We have
[0, 00[ C J, since limg\ o ®(z fo p(t)dt > fo to(t)dt = co. By (5), there

exists A €10, o[, such that (b(w") < A for sufficiently large n. For such n we
have ®(z,) < An, and consequently r, > ®71(\n). Now using again the
integral test together with (6) shows that the series > -, z, diverges. O

Remark 2. (a) In Theorem 1 we can replace fo to(t)dt by [i te(t)dt, for
any a > 0. All our results also work for maps f :]0,a] —]0,a] and
¢ € Li (]0,a]) with similar properties.
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(b) The above proof is based on a comparison of the series 3, - f7(z) with
the integral fol tot)dt = [;° £/ 4¢. The same integral characterizes

13
the nature of the series >, -, ‘p(ié") , if the latter integrand is monotone
for large ¢t > 1. In Section 3.2 this will allow for an interpretation of the

p-test.

3 Consequences.

3.1 Integral Tests.

In Theorem 1, the connection between the given map f and the integrand
¢ € L _(]0,00[) is ensured by the limits (upper and lower) of f;(z) p(t)dt.
The results of this section are based on the choice ¢(z) = #(z), which gives
good chances for suitable limits. Other possible choices will be explored in
Section 3.2. Our first corollary generalizes both Altman and Fort-Schuster

tests.

Corollary 3 (monotone test). Let u :]0,00[—]0,00[ be a monotone map,

with liminf,\ o % > 0. Assume the auxiliary map

Qﬁu :]0700[_>]0’OO[’ Qﬁu(l‘) Zu(x)(x—f(a:))

to be increasing. Then

1
t
dt < oo = ™ converges pointwise. (7)
=0 2
If flio,a) is differentiable for some a >0 and if inf,c0q) f'(x) > 0, then
Lt ()
———dt =00 = f™ diverges everywhere. (8)
= 2

PROOF. If u is decreasing, then the map ]0,00[> z +— Qi'&()x) =z — f(z) €
10, oo[ is increasing, and the problem reduces to the case when w is constant.
Thus we can assume u to be increasing. For abbreviation, we write () instead
of Q¢ .. We first show that (1) holds. Let zo > 0 and the strictly decreasing

sequence (T )neny = (1 (20))nen. If & :=limy, o0 z, > 0, we get

0< Q) < lim Qzy) = lim w(xy)(@n — Tnt1) <u(zo)-0=0, (9)

n—oo n—oo
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a contradiction. We conclude that £ = 0, and consequently that (1) holds.

Let us define the map ¢ = & :]0,00[—]0,00[. As Q and u are increasing, we
deduce that » € LL _(]0,00[). Let us note that fol to(t)dt = fol %dt. For

loc

x>0 and Z := max{f(z), §} we have x — f(z) < 2(xz — z), and so

* “ u(t) u(@)(z—2) _u(z/2) xz-=z u(z/2)
LﬁmwﬁﬂtZLla@d“f 0l ) 7 f@)  2u(x)

Hence liminf,~ o f;(r) (t)dt > 0. Thus (7) follows by applying Theorem 1(i).

Now assume [l to be differentiable, with inf,c)o.q f/ () > 5 for some
a > 0 and some p € N. For z €]0,a] we have f(x) > 5, and so

v u(z) o f(x uz) oz — f(z) 2Pu(x)
Am“WRSMﬂmﬁ Te) < ey Fa) = fG @) = ul@/z)

Hence limsup, o [, ¢(t)dt < 27 (liminf, o 26%) " < oo, Thus (8) fol-

lows by applying Theorem 1(ii). O

Altman’s result follows from the above corollary by taking u(z) = 1.
Stronger tests are obtained for increasing u, since €, is increasing when-
ever wy is decreasing (Altman’s hypothesis). Our next corollary generalizes

Brauer’s test.

Corollary 4 (Lipschitz test). Let u,v :]0,00[—]0, 00[ be continuous maps,
such that u and the auxiliary map

Qpuw :]0,00[—= R, Qpuo(z) = ul@)(v(z) — f(2))

are both increasing. Assume that on some |0, a] the following two conditions
hold:

(u) w is convex or concave, with liminf,~ o % > 0, or alternatively, u is
Lipschitzian, with liminf~ o @ >0,

(v) v is Lipschitzian, with lim,~ o v(z) = 0.

If foa %dt < o0, then ano f"l converges pointwise.

PRroor. For abbreviation, we write {2 instead of Q¢ ,, ,. Since ) is increasing

and limg~ o Q(z) = 0, we have Q > 0. As in the proof of Corollary 3, with the
argument from (9) replaced by

Q) < lim Q(zn) = lm u(zn)(0(@n) = Tng1) = u(€)(0(E) — &) < Q(E),

n—oo n—oo
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we deduce that (1) holds. Let us define the map

m, if x S a,
¢ :]0,00[—]0,00[, @(x)= L.
m, if » Z a.
On 0, a] we have p(z) = m, where w(z) := v(z) — 2. As Qis
increasing, we deduce that ¢ is measurable. That ¢ € LIOC (]0, o) follows from

Jo te(t)dt < co. Fix x €]0,a] and 2 := max{f(z), £}. For every t € [Z,x],
we have

L _ 90 —w —— —w(t) =
Let A > 0 be a Lipschitz constant for wlg 4). Thus

u(z)w(z) — u(@)w(t) = u(z)(w(z) —w(t)) +w(t)(uw(z) —u(@))

< Mz — thu(z) + At(u(z) — u(@)) < Az — 2)(u(z) + 20u(z, 7)),

where d,(y, z) == % for y # z. Since x — f(z) < 2(x — ), it follows
that

1 (x —2)[(2+ Nu(z) + A\xdy(z, 7))
u(x/2)
(

[ ewarz [ oz U2 ! . B,
f z

(x) u(®) 24 N4 \Zulz) ((;)I)

for every t € [T, z],

As [ to(t)dt < oo, the conclusion will follow by Theorem 1(i) if we prove
that liminf,\ o E(z) > 0. Set u(0) := limy\ou(z) > 0. According to the
properties of u[jg 4], we shall analyze three cases.

Case 1. Assume uljg o to be p-Lipschitzian (¢ > 0), with liminf, o @ > 0.
1

Then
dulz, T .
limsup 2227 < i sup A5 = < .
\.0 u() o0 u(T) liminfx\()@

We also have liminf ~ o ;‘((272) > 0. Indeed, if w(0) = 0 (otherwise the claimed

property is obvious), then

lim inf ﬂ = lim inf % > lim inf u(z) = 1 lim inf L(m) > 0.
N0 u(2x) a0 u(2z) — u(0) eNO p2x 24 a\O0 T
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We conclude that liminf,~ o E(x) > 0.
Case 2. Assume ujg ) to be convex, with liminfg\ o uu((;;)) > 0. Convexity

yields 8, (z, %) < 6,(2z,x) = “C20) for 5 €10, 2], which leads to

— 1< o0.

lim sup ———= < limsup
\,0 U(l‘

26y (2, T) 0y (22, 2) 1
) W)

We conclude that liminf,\ o E(z) > 0.
Case 3. Assume ul)g 4) to be concave. Then 2u(z) > u(2x) +u(0) > u(2z) for

r €]0, §], and consequently liminf,\ o % > % > 0. Also by concavity we

have
— U 5u ’ X
Oy (z,7) < u(z) — u(0) < u(x)’ limsupw <1< oo.
x x 20 u(x)
We conclude that liminfg~ o E(z) > 0. The proof is complete. O

Brauer’s result follows from the above corollary by taking u = 1 and v = f.

3.2 Sequence of Tests with Limits. Iterative Condensation.

The results of this section are based on other possible choices for the integrand
¢. For all p € Nand a € R, let us consider the map ¢, o :]0, m] —10, o0f,

defined by!
SDP’Q("E) = ! a
22 ( ?_ %) (ln[p] %)

1

= ;1;2(111 %) (111[2] %) (ln[”] %) (111[”] %)a

(where exp(z) = ¢*). Here In*l denotes the kth iteration, defined on the
interval ] exp*=11(0), oo[, of the logarithm map. We have

1 1
Pral®) = iy gy
B 1

~ 22(—Inz)[In(—Inz)]ite’ T

900701(1‘) = xz_a )

802,(1(33)

Our next result provides a test for each p € N. The proof will show that its
strength is increasing with p.

IWe adhere to the convention that an empty product of real numbers equals 1.
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Corollary 5 (p-test). Let p € N. Then
(1) >0 f1" converges pointwise if (1) holds and

lim\i(r)lf[(ppya(x)(x — f(x)] >0 for some o > 0. (10)

(i) .50 " diverges everywhere if

lim sgp[@p,a(x)(x — f(2))] < 0o for some a < 0. (11)

xT
PROOF. Let us first observe that

lim M — lim

y* _Joo ifa>0,
a0 @p () y—oo (Iny)at!

0 ifa<oO.

Therefore, if one of (10) and (11) holds for ¢, , then it holds for ¢,4+1,4 too.
An easy computation shows that

1
explPl(1) 1 if o > 0,
to, o(t)dt =< @
/o #pall) {oo if a <0.

We thus can assume that p € N*| for if not, we replace p by p+1. Consequently,
©p,a is decreasing on a sufficiently small interval |0, ¢]. For x €]0,¢] we have

x

Pp.alr)(z—f(r)) < /f( )wp,a(t)dt S @palf(@)(@—f(z).  (12)

(i). Assume (10) to hold. The conclusion follows by Theorem 1(i), since (12)
yields

lim inf o(t)dt > liminf|y, (z)(z — > 0.
mint [ )3 2 limipflgy0(0)(e — 1)

(ii). Assume (11) to hold. As limg~ o(zpp o () = 00, we have

1—f“ﬂ=nmwp@m4mu—fw»lcw)za

lim sup .
x z\,0 x@p,a

z\,0

f(x)
x

follows by Theorem 1(ii), since (12) yields

#p.a(f(x)

= 1. The conclusion
Wp,a(x)

and so limg\ o = 1. It follows that lim,\ o

liril\sgp /f; Ppa(t)dt < hlf\s}}p <<Pp,a(l’)(l’ - f(@)) - W) <oc. O
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Some comments are needed for a better understanding of p-tests. It is
easily seen that the map [expl/(1),00[3 2 w =: gp.a(x) €]0,00] is
monotone for large z. If a p-test succeeds, the answer (pointwise convergence
or divergence everywhere) is given by the nature of the series

1
gy = al\n) = )
p Z 9p, ( ) Z : n(HZ:l ln[k] n) (ln[p] n)a

n>explrl(1) n>explPl(1

according to Remark 2(b). But g, o(n) = €"gp+1.q(e") for every n > explPl(1),
and so the series 0, can be obtained from 0,11 by Cauchy condensation?. Op
and 0,41 have the same nature, but the latter converges or diverges slower,
thus giving more chances for a successful comparison. Our interpretation is
that the difference between successive p-tests is near to Cauchy condensation.

The main difficulty in applying the p-test is that of finding a suitable «.
This problem is solved by the following equivalent test.

Corollary 6 (equivalent p-test). Let p € N. Then

1) X0 " converges pointwise if (1) holds and

In(z — f(x)) + In(epo(x))

h;n\l(r)lf InP+1 1 > 0. (13)
(i) > .50 fl diverges everywhere if
lim suplipp o () (@ — ()] < oo (14)
PROOF. For all & € R and z €]0, i1, set
xplPl(1)
_ _ In(ue(x)) _ In(z — f(z)) + In(ppo(z))
ua(x) - (pp,a(x)(x - f(x))v ’U(:C) - ln[p+1] 1 ln[erl] 1 :
identiti 1) In(u, (2))
We have the identities uq(z) = (ln ;) and v(x) = o + T T

(i). It suffices to prove the equivalence (10) <(13).

(10) =(13). Assume (10) to hold. Thus there is A > 0, such that uy(z) > A,
and so v(x) > oz—l—ﬁ, for sufficiently small z > 0. Thus liminf,\ o v(z) >
a > 0.

(10) «<(13). Assume (13) to hold. Thus there exists a > 0, such that v(z) > «a,

2This is possible with the exponential €™, since the map gp+1,a is defined on an interval.
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and so uq(z) > 1, for sufficiently small x > 0. Therefore liminf,\ o uqa(z) >
1>0.

(ii). For all aw < 0, we have the inequality lim sup, o uo(®) < limsup,\ o ua(z).
This proves the equivalence (11) <(14).

The beginning of the proof of Corollary 5 and the following example show
that each p-test is strictly weaker than the (p + 1)-test.

Example 7. Let p € N. Choose a > 0, such that z¢,11,0(x) > 1 on |0,al.
Thus the map

1

f:}ova]ﬂ]()?a]a f('r):‘riiv

Pp+1.0(2)

is well defined, continuous, and f(z) < x on ]0,a]. For the series 3 -, f"
the p-test fails, but the (p + 1)-test proves pointwise convergence, since

i{%[%’pﬂ,o(ﬂﬁ)(ﬂﬂ - f(x)] =1, ii{r%)[gop,a(l")(x —fl@)l = oo ifa<O.

{o if o > 0,

Even the 0-test (p = 0) suffices in many “decent” cases (see the examples
from Section 4). Therefore we find it useful to write down both of its equivalent
forms:

Corollary 8 (0-test). (i) >, f" converges pointwise if (1) holds and

lim inf A /()

>0 < 2.
mir e for some 3

(ii) ano fl diverges everywhere if

— f(=)

) T
lim sup 3
z\,0 z

< oo for some 3 > 2.

In [4] it is shown that if f is concave and § > 1, then the limits from the
above corollary are both in ]0, oo if and only if

0 < lim inf(nﬁ M (z)) < lim sup(nﬁ fM(z)) < 0o for every x > 0.

n—oo n—00

In this particular case, the series >, -, f"!(zo) and 3", -, —7t5— have the
same nature.
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Corollary 9 (equivalent O-test). (i) >, f1" converges pointwise if (1)

holds and |
lim sup 7n(x — f(=))

< 2.
2\,0 Inz

(i) ano fl diverges everywhere if

4 Examples.

Example 10. Let f be the map defined in (3). Then > -, f" converges

pointwise. The tests of Altman, Fort-Schuster, Svarcman, and Brauer cannot
be applied.

PROOF. f is continuous and f(x) < = for z > 0. As W =3
W yields limg~ o w = % < 2, the conclusion follows by
Corollary 9(i). O

Example 11. Let p,q > 0. Define the sequence (z,)nen by
x0 €]0,1], zp41 = (sin(a?))? for every n € N.

Then >, -, converges if and only if
1
pg>1or 2<qg=-.
p

PROOF. Define f :]0,1] —10,1], f(z) = (sin(2?))?. Thus f is a continuous
map and z,, = fI")(2¢) for n € N*. We have

0 ifpg>1
. P q ’
tim L) i (Sm(x)) 2P =1 ifpg =1,

N0 T N0 P .
oo if pg < 1.

Therefore ) ., cannot converge if pg < 1 (even if lim, .o z, = 0).

Now assume that pg > 1. Hence f(x) < 2P? < z for every z €]0,1]. By the
ratio test, we deduce that ) ., x, converges if pg > 1. Let us finally consider
the case pg = 1. For every § € R, we have

sin(z?) g
v g () e enen)
e - 1— sin(zP) (xp)?’ r '

P
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Taking here 3 = 2p + 1 leads to limg g %ﬁm = % €]0,00[. The proof is
completed by using Corollary 8. O
Example 12. Let p > 0. Define the sequence (z,,)nen by

2o €]0,00[, ni1 = (arctan(z?))/P for every n € N.
Then ano x,, converges if and only if p < %
PROOF. Define f :]0,00[—]0,00][, f(z) = (arctan(x?))'/?. Thus f is contin-

uous, f(z) < z for x > 0, and z,, = f"(zq) for n € N*. For every 3 € R, we
have

1 arctan(z?) 1/p
r—flz) 7 P xP —arctan(aP) o 1 g
B - 1_ arcta.n(zp) ' (xp)3 " :
Taking here § = 2p + 1 leads to limg o %ﬁ(z) = % €]0,00[. The proof is
completed by using Corollary 8. O

Example 13. Let p > 0. Define the sequence (z,,)nen by
zo €]0,00[, Zpyp1 = (In(1 4 22))Y/? for every n € N.
Then ), -, x, converges if and only if p < 1.

PROOF. The reasoning is similar to that from Example 12, and uses the equal-
ity

In(1+aP) 1/p
_ ip 11— =5 p_ P
x— (In(1 +2P))/? ( P ) 2 —In(1+2aP) . 5
] =) ' (27)2 T
for z > 0 and 3 € R, as well as the limit lim, .o y_h;#;“/) =1 O
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