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TANGENTIAL BEHAVIOR OF FUNCTIONS
AND CONICAL DENSITIES OF

HAUSDORFF MEASURES

Abstract

We construct a C1-function f : [0, 1] → R such that for almost all
x ∈ (0, 1), there is r > 0 for which f(y) > f(x) + f ′(x)(y − x) when
y ∈ (x, x + r) and f(y) < f(x) + f ′(x)(y − x) when y ∈ (x− r, x). The
existence of such functions is related to a problem concerning conical
density properties of Hausdorff measures on Rn. We also discuss the
tangential behavior of typical C1-functions, using an improvement of
Jarńık’s theorem on essential derived numbers.

1 Introduction and Notation.

Let us begin by introducing some notation. For 0 ≤ s ≤ n, let Hs denote the
s-dimensional Hausdorff measure on Rn, and on the real line, let L stand for
the Lebesgue measure. We use the common notation B(x, r) for open balls
and for the unit sphere on Rn the notation Sn−1 = {x ∈ Rn : |x| = 1} is
used. If x ∈ Rn and A ⊂ Rn, then d(x,A) stands for the Euclidean distance
between x and A. The length of an interval I ⊂ R is denoted by `(I) and the
notion ∂A is used for the boundary of a given set A ⊂ R. The (symmetrical)
upper and lower densities of a measurable set A ⊂ R at x ∈ R are defined as
the upper and lower limits, respectively, of the ratio L((x− r, x+ r)∩A)/(2r)
when r ↓ 0. If f : [0, 1] → R is differentiable at x ∈ (0, 1), the sets A+(f, x)
and A−(f, x) are given by

A+(f, x) = {y ∈ (0, 1) : f(y) > f(x) + f ′(x)(y − x)},
A−(f, x) = {y ∈ (0, 1) : f(y) < f(x) + f ′(x)(y − x)}.
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If x ∈ Rn, θ ∈ Sn−1, and 0 ≤ η < 1, we define the cone H(x, θ, η) by setting
H(x, θ, η) = {y ∈ Rn : (y − x) · θ > η|y − x|}. For half-spaces we use shorter
notation, H(x, θ) = H(x, θ, 0). Finally, we let R = R ∪ {−∞,∞} denote the
set of extended real numbers.

Given a set A ⊂ Rn, it is often of interest to know how it is distributed near
a “generic” point. This paper was inspired by the following conical density
theorem of Marstrand [5, pp. 293–297].

Theorem 1.1. Let 0 ≤ s < 2 and A ⊂ R2 with Hs(A) < ∞.

1. If 0 ≤ s < 1 and θ ∈ S1, then lim inf
r↓0

Hs(B(x, r) ∩H(x, θ) ∩ A)/rs = 0

for Hs-almost all x ∈ A.

2. If 1 < s < 2, then for Hs-almost all x ∈ A, there is θ ∈ S1 such that
lim inf

r↓0
Hs(B(x, r) ∩H(x, θ) ∩A)/rs = 0.

It seems that 1-sets (sets A with 0 < H1(A) < ∞) play a special role in
connection with the above theorem. Marstrand’s proof yields that claim (2) is
valid also for 1-sets if half-spaces H(x, θ) are replaced by cones H(x, θ, η) for
any η > 0. On the other hand, Besicovitch [1, Theorem 13] had shown before
that even (1) holds for purely unrectifiable 1-sets, that is, for 1-sets which
intersect every rectifiable curve only in a set of zero H1-measure. A question
arises whether (2) actually holds for all 1-sets.

However, the answer to the above question is negative: Consider a Cantor
set C ⊂ [0, 1] with L(C) > 0 and define f(x) =

∫ x

0
dist(t, C) dt. Then the

graph of f gives us a counterexample, see §3. In Section 2.1 we construct a
C1-function f : [0, 1] → R whose graph does not satisfy claim (2) of Theorem
1.1 anywhere except a set of zero length. In Section 2.2, inspired by our
examples, we study the distribution of the sets A+(f, x) and A−(f, x) for
functions f ∈ Ck[0, 1], k ∈ N. We show among other things that for a typical
f ∈ C1[0, 1], both of the sets A+(f, x) and A−(f, x) have zero lower density and
unit upper density at x for all x ∈ (0, 1) except a set of Hausdorff dimension
zero. This is a corollary to an extension of Jarńık’s theorem on essential
derived numbers, Theorem 2.5, which is essentially due to Zaj́ıček [9].

Finally, in Section 3, we discuss the above conical density problem in higher
dimensions.

Acknowledgements. I am grateful to Mika Leikas, Pertti Mattila, Jouni
Parkkonen, Juhani Takkinen, Luděk Zaj́ıček, and Clifford Weil for useful dis-
cussions, comments, and suggestions. I also thank the referees for many cor-
rections and improvements.
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2 Tangential Behavior of Functions.

2.1 An Example.

Our goal in this section is to prove that there are functions f ∈ C1[0, 1] so
that both A+(f, x) and A−(f, x) have positive lower density at x for almost
every x ∈ (0, 1). This is an easy consequence of the following result. The
proof given here is due to one of the referees. Though resulting to a somewhat
similar function, it is much easier than the authors original construction.

Theorem 2.1. There is a continuous function g : [0, 1] → R which is non-
constant on any non-degenerate interval I ⊂ [0, 1] but has a local minimum
almost everywhere.

Proof. Let C,D ⊂ [0, 1] be Cantor sets with L(C) = 0 and L(D) > 0.
Moreover, let ϕ : [0, 1] → [0, 1] be a Cantor function associated to the set C,
that is, ϕ is continuous, nondecreasing, and it is constant on any component
of [0, 1] \ C. We also assume that ϕ(t) = 0 if and only if t = 0. For any non-
degenerate interval I = (a, b) ⊂ [0, 1], put ϕI(x) = `(I)ϕ

(
2 dist(x, {a, b})/`(I)

)
for x ∈ I and ϕI(x) = 0 if x /∈ I. Moreover, for any open interval J = (c, d)
put DJ = {c}+ (d− c)D and let

J \DJ =
∞⋃

i=1

Ii (2.1)

where intervals I1, I2, . . . are open and disjoint. Define ΦJ =
∑∞

i=1 ϕIi
.

We can now define g by an inductive process as follows: Let g1 = Φ(0,1). If
gk has been defined for k ∈ N, let Ji, i ∈ N denote its intervals of constancy and
put gk+1 = gk+

∑∞
i=1 ΦJi . Since ||gk+1−gk|| ≤ `k+1 where ` is the length of the

longest complementary interval of D, the sequence gk is uniformly convergent
and thus g = limk→∞ gk ∈ C[0, 1]. It is easy to see that g is non-constant on
any non-degenerate interval, and has local minimum almost everywhere.

Corollary 2.2. There is a continuously differentiable function f : [0, 1] → R
such that for almost all x ∈ (0, 1), there is r > 0 for which

(x, x + r) ⊂ A+(f, x), (2.2)

(x− r, x) ⊂ A−(f, x). (2.3)

Proof. Let g : [0, 1] → R be the function of Theorem 2.1. Defining f(x) =∫ x

0
g(t) dt for x ∈ [0, 1] gives what we want.
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Remarks. 1. It is easy to construct functions f ∈ C∞[0, 1] so that (2.2) and
(2.3) are valid in a set of positive measure: Define g ∈ C∞[0, 1] so that g = 0
on some Cantor set C with L(C) > 0, and g > 0 outside this set. If f is given
by f(x) =

∫ x

0
g(t)dt, then (2.2) and (2.3) hold for f in the set C. However,

for any C2-function, these conditions can not hold almost everywhere, see
Proposition 2.3 (1).
2. It is not very hard, though it becomes more technical, to prove that g
in Theorem 2.1 may have local minimum everywhere except a set of small
Hausdorff dimension. In fact, given any nondecreasing h : (0,∞) → (0,∞)
with limr↓0 h(r) = 0 we can construct g which is nowhere constant and has
local minimum everywhere except a set of zero h-Hausdorff measure. The idea
is as follows: Given gk as in the proof of Theorem 2.1, let Ji, i ∈ N denote its
intervals of constancy. Choose Cantor sets Di ⊂ Ji so that

∑
i,j h(`ij) < 2−k,

where {`ij}j∈N denote the lengths of the complementary intervals of Di. For
any such complementary interval I, define a Cantor bump, ϕI , such that it
does all its increasing and decreasing in a set of h-measure zero. Now proceed
as in the proof of Theorem 2.1.

However small, the set of local minima for g ∈ C[0, 1] which is nowhere
constant is always a first category set. This follows from Proposition 2.3 (5)
by considering f =

∫
g.

3. It might be an interesting question whether there are functions f ∈ C1[0, 1]
so that both of the one-sided lower densities,

lim inf
r↓0

L((x, x + r) ∩A+(f, x))/r,

lim inf
r↓0

L((x, x + r) ∩A−(f, x))/r,

are strictly positive in a set of positive measure. Similar questions may be
posed when intervals (x, x + r) are replaced by some other sets.

2.2 Typical Behavior.

Given a property for functions, it is natural to ask if this property is typical on
a function class in question. The theme of this section is to study the typicality
of some properties related to the above examples. For k ∈ N ∪ {0,∞}, the
space Ck[0, 1] is given the norm ||f || = sup{|f j(x)| : x ∈ (0, 1), j = 0, . . . , k}
where f0 = f . When we say that some property holds for a typical f ∈ Ck[0, 1]
we mean that this property is valid on a residual set of functions on Ck[0, 1].

Some very basic facts are listed in the proposition below. To help discus-
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sion, we write for f ∈ C1[0, 1],

Af = {x ∈ (0, 1) : x ∈ A+(f, x)
⋂

A−(f, x)},

B+
f = {x ∈ (0, 1) : conditions (2.2) and (2.3) hold for some r > 0}, and

B−
f = B+

−f .

Proposition 2.3. 1. For any f ∈ C2[0, 1], the set Af is nowhere dense.

2. If 2 ≤ k ∈ N ∪ {∞}, then L(Af ) = 0 for a typical f ∈ Ck[0, 1].

3. The set (0, 1) \Af is dense for any f ∈ C1[0, 1].

4. The sets B+
f and B−

f are dense for a typical f ∈ C1[0, 1].

5. For any f ∈ C1[0, 1], the sets B+
f and B−

f are first category sets.

Proof. All five claims may be proved in an elementary manner and thus we
give only the main lines. If f ∈ C2[0, 1] and x ∈ (0, 1) is such that both of
the sets (x − r, x + r) ∩ A+(f, x) and (x − r, x + r) ∩ A−(f, x) are nonempty
for any r > 0, then f ′′(x) = 0. This implies (1). Also (2) follows since
L({x : f ′′(x) = 0}) = 0 for a typical f ∈ Ck[0, 1] when k ≥ 2. To see this
consider j ∈ N and the set

Ej = {f ∈ Ck[0, 1] : L({x ∈ (0, 1) : f ′′(x) = 0}) > 1/j}.

Fix f ∈ Ck[0, 1], and r > 0. Then we may find c ∈ (−r/2, r/2) and 0 < δ < r
such that

L({x ∈ (0, 1) : f ′′(x) ∈ (c− δ, c + δ)}) ≤ 1/j.

If g(x) = f(x) − cx2/2, then B(g, δ/2) ⊂ B(f, r) \ Ej . Thus Ej is nowhere
dense and consequently

⋃
j Ej is a first category set.

Claim (3) is geometrically obvious: Given 0 ≤ a < b ≤ 1, choose c ∈ (a, b)
so that the point (c, f(c)) maximizes the distance to the line segment joining
(a, f(a)) and (b, f(b)) among all the points on the graph of f |(a,b). Then
c /∈ Af .

Claim (4) follows using a similar argument as in Corollary 2.2 since the
derivative of a typical C1-function has a dense set of minima and maxima, see
[2, Theorem 10.20] for example.

For (5) we give some details: Suppose on the contrary that there is for
example an f ∈ C1[0, 1] so that B+

f is a second category set. Since B+
f =⋃∞

k=1 Bk, where Bk = {x ∈ (0, 1) : (x, x + 1/k) ⊂ A+(f, x) and (x− 1/k, x) ⊂
A−(f, x)} it follows that there is k ∈ N and a nonempty open interval I ⊂ (0, 1)
with `(I) < 1/k so that Bk is dense on I. It follows that f is both convex and
concave on I which forces f to be linear on I, a contradiction.
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A natural question arising from our examples is the following: Is it true that
for a typical f ∈ C1[0, 1], both of the sets A+(f, x) and A−(f, x) have strictly
positive lower density at x for almost every x ∈ (0, 1). This is, however, not
the case; as we shall see, both of these sets have typically unit upper density
and thus also zero lower density for almost every x. We shall prove this by
using a generalization of a well known theorem of Jarńık [3]. We start by
proving a simple special case and then discuss a more general result using
Zaj́ıček’s notion of [g]-porosity. We say that c ∈ R is a symmetrical essential
derived number of f : [0, 1] → R at x ∈ (0, 1), denote c ∈ SEDN(f, x), if there
is a set E = E(x, c) ⊂ R such that E has unit upper density at x and

lim
y∈E
y→x

f(y)− f(x)
y − x

= c. (2.4)

To avoid confusion, we note that in this context the term “symmetrical” does
not refer to symmetric differentiation but to symmetrical upper density.

Theorem 2.4. For a typical f ∈ C[0, 1], we have SEDN(f, x) = R for almost
every x ∈ (0, 1).

Remarks. A number c ∈ R is called a right essential derived number of f at x
if there is E ⊂ R satisfying (2.4) with lim supr↓0 L((x, x + r)∩E)/r = 1. Left
essential derived numbers are defined in an analogous way. A point x ∈ (0, 1)
is an essential knot point of f if every c ∈ R is simultaneously left and right
essential derived number of f at x. Jarńık [3] proved that almost all points
are essential knot points for a typical function f ∈ C[0, 1]. The above theorem
is stronger than Jarńık’s result since it allows us to choose E such that it is
simultaneously big at both sides of x for some small scales, and not only big
at left for some scales and big at right for some (possibly different) scales.

If w ∈ R2, c ∈ R, and α > 0, we denote by `w,c the line through w with
slope c and put X(w, c, α) = {v ∈ R2 : d(v−w, `w,c) ≤ α|v−w|}. These cones
are useful since c ∈ SEDN(f, x) if and only if

x ∈
⋂

ε,α,r0

{z ∈ (0, 1) : ∃ 0 < r < r0 such that

L({y ∈ (z − r, z + r) : (y, f(y)) ∈ X((z, f(z)), c, α)}) > (2− ε)r}
(2.5)

where the intersection is taken over all positive rationals ε, α and r0, see also
[10, Lemma 1].

Proof of Theorem 2.4. For f ∈ C[0, 1], let

F = F (f) = {x ∈ (0, 1) : SEDN(f, x) 6= R}.
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It follows from (2.5) that

F =
⋃

c,ε,α,r0

{x ∈ (0, 1) : L({y ∈ (x− r, x + r) :

(y, f(y)) /∈ X((x, f(x)), c, α)}) > εr for all 0 < r < r0}

where the union is taken over all c ∈ Q, and 0 < ε, α, r0 ∈ Q. Thus

{f ∈ C[0, 1] : L(F (f)) > 0} =
⋃

δ,c,ε,α,r0

A(δ, c, ε, α, r0)

where c ∈ Q, 0 < δ, ε, α, r0 ∈ Q, and A(δ, c, ε, α, r0) ⊂ C[0, 1] is given by

A(δ, c, ε, α, r0) ={f ∈ C[0, 1] : L({x ∈ (0, 1) : L({y ∈ (x− r, x + r) :
(y, f(y)) /∈ X((x, f(x)), c, α)}) > εr for all 0 < r < r0}) > δ}.

Fix numbers c ∈ R, and δ, ε, α, r0 > 0. It suffices to prove that the set
A(δ, c, ε, α, r0) is nowhere dense on C[0, 1]. Take f ∈ C[0, 1] and let 0 < r < r0.
Let g ∈ C[0, 1] be piecewise linear with ||f − g|| < r/2 so that (see [9, Lemma
1]) there are disjoint intervals I1, . . . , Ik ⊂ (0, 1) with

∑k
i=1 `(Ii) > 1 − δ/2

such that g has slope c on each interval Ii. Let 0 < ` < mini=1,...,k `(Ii),
0 < t < min{δ/4, r0}, and 0 < s < min{αεt/4, r/2}. Take h ∈ B(g, s`). It is
easy to see that if x ∈ Ii with d(x, ∂Ii) > t`, then (y, h(y)) ∈ X((x, h(x)), c, α)
for all y ∈ (x− t`, x + t`) \ (x− 2s`/α, x + 2s`/α). It follows that for such x,
we have

L({y ∈ (x− t`, x + t`) : (y, h(y)) /∈ X((x, h(x)), c, α)}) < 4s`/α < t`ε. (2.6)

Since (2.6) holds in a measurable set whose measure is greater than 1− δ/2−
k2t` > 1− δ, we conclude that h /∈ A(δ, c, ε, α, r0). Thus B(g, s`) ⊂ B(f, r) \
A(δ, c, ε, α, r0) and the claim follows.

Zaj́ıček [9] strengthened Jarńık’s result using porosity notions. His result
is also in a sense one-sided and does not seem to imply Theorem 2.4. However,
only a minor change in his method gives even stronger theorem. The following
notation is from [9]. If A ⊂ R and I ⊂ R is an interval, the number p(A, I)
denotes the length of the largest subinterval I ′ ⊂ I \ A. We denote by G
the collection of all strictly increasing continuous functions g on (0,∞) for
which g(x) > x for all 0 < x < ∞. If g ∈ G, we say that E ⊂ R is [g]-
porous from the right (left) at x ∈ R if there is a sequence ri ↓ 0 such that
g(p(E, (x, x + ri))) > ri (g(p(E, (x − ri, x))) > ri) for all i ∈ N. A number
c ∈ R is a right (left) [g]-derived number of f at x if there is a set E ⊂ R for
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which R\E is [g]-porous from the right (left) at x such that (2.4) holds for E.
A point x is a [g]-knot point of f if every c ∈ R is both left and right [g]-derived
number of f at x. Zaj́ıček [9, Theorem 2] showed that for a typical f ∈ C[0, 1],
the set of points from (0, 1) which are not [g]-knot points of f is σ-[g]-totally
porous. A set A ⊂ R is called totally [g]-porous if for any ε > 0, we can find a
point a ∈ R and a number 0 < δ < ε so that g(p(A, [a+nδ, a+(n+1)δ])) > δ
for all n ∈ Z. A set A is σ-[g]-totally porous if it is a countable union of
[g]-totally porous sets. To compare [g]-porosity with other notions of porosity,
see [8] and [9].

Modifying the above notation, we say that A ⊂ R is symmetrically [g]-
porous at x if there is a sequence ri ↓ 0 so that

min{g(p(A, (x− ri, x))), g(p(A, (x, x + ri)))} > ri

for each i ∈ N. A number c ∈ R is a symmetrical [g]-derived number of f at
x if there is a set E ⊂ R such that R \E is symmetrically [g]-porous at x and
(2.4) holds for E. A point x is a symmetrical [g]-knot point of f if each c ∈ R
is a symmetrical [g]-derived number of f at x.

Theorem 2.5. Let g ∈ G. Then for a typical f ∈ C[0, 1], the set of points
x ∈ (0, 1) which are not symmetrical [g]-knot points of f is σ-[g]-totally porous.

This theorem can be proved by modifying Zaj́ıček’s method only slightly
and thus we shall not repeat the argument. For the convenience of an inter-
ested reader we comment that the main point is that in [9, Lemma 2(b)] one
may assert: For any h ∈ U(a, b, s, δ) and x ∈ ∪n−1

k=0 [k/n + 2v, (k + 1)/n − 2v]
the inequalities g(p({y : (h(y) − h(x))/(y − x) /∈ [a, b]}, [x, x + v])) > v and
g(p({y : (h(y)− h(x))/(y − x) /∈ [a, b]}, [x− v, x])) > v hold.

We now turn our attention back to our original question related to the
distribution of the sets A+(f, x) and A−(f, x) for typical functions f ∈ C1[0, 1].

Theorem 2.6. Let g ∈ G. For a typical f ∈ C1[0, 1], both of the sets R \
A+(f, x) and R\A−(f, x) are symmetrically [g]-porous at x for all x ∈ (0, 1)\A
where A is a σ-[g]-totally porous set (depending on f).

Proof. Making g smaller if necessary, we may assume that limr↓0 g(r) = 0.
By symmetry, it suffices to prove that for a typical f ∈ C1[0, 1], the set
R \ A+(f, x) is symmetrically [g]-porous at x for a set of points x ∈ (0, 1)
whose complement is σ-[g]-totally porous. Take g̃ ∈ G so that

lim
r↓0

(
r − g−1(r)

)2

r − g̃−1(r)
= ∞. (2.7)
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One may choose, for example, g̃ for which g̃−1(r) > r
(
1− (r − g−1(r))2

)
for

all (small) r > 0. Since (2.7) implies that g(r) ≥ g̃(r) for small r, using
Theorem 2.5, we see that for typical f ∈ C1[0, 1], there is a set A ⊂ [0, 1] so
that [0, 1] \ A is σ-[g]-totally porous and all points x ∈ A are [g̃]-knot points
of f ′. To see this we use the fact that if B ⊂ C[0, 1] is residual on C[0, 1],
then the set B̃ = {f ∈ C1[0, 1] : f ′ ∈ B} is residual on C1[0, 1]. Fix such a
function f and x ∈ A = A(f). Now there is E ⊂ (0, 1) whose complement is
symmetrically [g̃]-porous at x and for which

lim
t∈E
t→x

f ′(t)− f ′(x)
t− x

= 2. (2.8)

Replacing E by its closure if necessary, we may assume that it is measurable.
Choose 0 < M < ∞ so that |f ′(x)| < M for all x ∈ [0, 1]. Using (2.8) and

(2.7), we may choose 0 < r0 < 1 so that

(f ′(t)− f ′(x))/(t− x) > 1 for all t ∈ (x− r0, x + r0) ∩ E \ {x} and (2.9)

(r − g−1(r))2 > (36M + 9)(r − g̃−1(r)) for all 0 < r < r0. (2.10)

Now we may find arbitrary small radii 0 < r < r0 such that g̃(p(R \E, (x, x +
r))) > r and g̃(p(R \ E, (x − r, x))) > r. For such a radius r we get (x +
(r − g̃−1(r)), x + r − (r − g̃−1(r))) ⊂ E and since x + (r − g̃−1(r)) < x + (r −
g−1(r))/3 < x + r − (r − g−1(r))/3 < x + r − (r − g̃−1(r)) by (2.10), for any
y ∈ (x+(r− g−1(r))/3, x+ r− (r− g−1(r))/3), we get (x+ r− g̃−1(r), y) ⊂ E
and, using (2.9) and (2.10), we estimate

y∫
x

f ′dL =

y∫
x+r−eg−1(r)

f ′dL+

x+r−eg−1(r)∫
x

f ′dL

>

y∫
x+r−eg−1(r)

(f ′(x) + (t− x)) dt−M(r − g̃−1(r))

> f ′(x)(y − x) + 1
2 (y − x)2 − 1

2 (r − g̃−1(r))2 − 2M(r − g̃−1(r))

> f ′(x)(y − x) + 1
18

(
(r − g−1(r)

)2 − (2M + 1
2 )(r − g̃−1(r))

> f ′(x)(y − x).

Thus f(y) = f(x) +
∫ y

x
f ′dL > f(x) + f ′(x)(y − x) giving y ∈ A+(f, x). In a

similar manner, we see that y ∈ A+(f, x) also if y ∈ (x−r+(r−g−1(r))/3, x−
(r − g−1(r))/3). It follows that

g(p(R \A+(f, x), (x, x + r))) ≥ g(r − 2
3 (r − g−1(r))) > g(g−1(r)) = r



852 Ville Suomala

and similarly g(p(R\A+(f, x), (x− r, x))) > r. We conclude that R\A+(f, x)
is symmetrically [g]-porous at x for all x ∈ A.

In terms of densities and dimensions, we get the following corollary.

Corollary 2.7. For a typical f ∈ C1[0, 1], both of the sets A+(f, x) and
A−(f, x) have unit upper density and zero lower density at x for all x ∈ (0, 1)
except a set of Hausdorff dimension zero.

Proof. This follows easily from Theorem 2.6 choosing, for example, g(r) =
r + e−1/r.

Remarks. One can not use Theorem 2.4 to deduce information about the
densities lim supr↓0 L(A+(f, x)∩ (x− r, x+ r))/(2r), etc. If we argue as in the
proof of Theorem 2.6 and try to prove that

lim sup
r↓0

L(A+(f, x) ∩ (x− r, x + r))/(2r) = 1

assuming lim supr↓0 L(E ∩ (x− r, x + r))/(2r) = 1 where

lim
y∈E,y→x

(f ′(y)− f ′(x))/(y − x) = 2,

we end up with problems. We need to know that the set E can be chosen so
that lim infr↓0 L((x− r, x + r) \E)/r2 = 0. We could prove this by modifying
the proof of Theorem 2.4, but as we can see, using Theorem 2.5 gives a much
stronger result with the same effort.

3 Conical Densities.

In this section we discuss briefly what do our examples tell about possible
generalizations of Theorem 1.1 and what is still unknown.

Let f be as in Corollary 2.2 and let C ⊂ (0, 1) denote the set where
conditions (2.2) and (2.3) hold. Define G = {(t, f(t)) : t ∈ (0, 1)} and GC =
{(t, f(t)) : t ∈ C}.

Fix x = (t, f(t)) ∈ GC . It is clear that

lim inf
r↓0

H1(B(x, r) ∩ G ∩H(x, θ))/r > 0 (3.1)

whenever θ ∈ S1 is not perpendicular to the tangent of G at x. Therefore we
consider only directions of the form θ = ±(−f ′(t), 1)/(1+f ′(t)2)1/2. If r > 0 is
small, then (s, f(s)) ∈ B(x, r) for s ∈ (t− cr, t+ cr) and c = (1+2f ′(t)2)−1/2.
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It follows from (2.2)–(2.3) that H1(B(x, r) ∩ G ∩H(x, θ)) ≥ cr. We conclude
that (3.1) holds for all x ∈ GC and θ ∈ S1. In particular, it holds H1-almost
everywhere on the curve G.

By modifying the above example, one can easily construct m-rectifiable
surfaces S on Rn, for any integer 1 < m < n, so that

lim inf
r↓0

r−mHm(B(x, r) ∩H(x, θ) ∩ S) > 0 (3.2)

for any θ ∈ Sn−1 and for Hm-almost all x ∈ S. One can take, for example, S
to be the graph of the function

g : (0, 1)× Rm−1 → Rn−m : (x1, . . . , xm) 7→ (f(x1), . . . , f(x1)),

where f is as above.
Marstrand’s argument from [5, pp. 293–297] can be generalized to prove

that in Rn claim (1) of Theorem 1.1 holds for 0 < s < 1, and claim (2) for
n − 1 < s < n, see also [6, Theorem 11.11]. For general 0 < s < n, the
following is known, see Lorent [4] and Suomala [7]. If m ∈ N, then a set
A ⊂ Rn is called m-rectifiable if Hm-almost all of it can be covered with a
countable union of C1-images of Rm. A set A is called purely m-unrectifiable,
if it intersects every C1-image of Rm only in a set of Hm measure zero.

Theorem 3.1. Let A ⊂ Rn with Hs(A) < ∞ and let V be an m-dimensional
linear subspace of Rn. If either 0 < s < m or if s = m and A is purely
m-unrectifiable, then for Hs almost every x ∈ A, there is θ ∈ V ∩ Sn−1 such
that

lim inf
r↓0

r−sHs(B(x, r) ∩H(x, θ, η) ∩A) = 0 (3.3)

for any η > 0.

The examples discussed above show that one cannot always take η = 0
in (3.3) when s ∈ [1,m) ∩ N and A is s-rectifiable. On the other hand, Besi-
covitch’s argument from [1, pp. 317–320] can be modified to prove that even
claim (1) of Theorem 1.1 holds for any purely 1-unrectifiable set A ⊂ Rn with
H1(A) < ∞. It remains unknown if Theorem 3.1 holds with η = 0 when
either s ∈ (1, n − 1) is non-integral, or s ∈ [2, n− 1] ∩ N and A is purely
s-unrectifiable.
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[10] L. Zaj́ıček, On essential derived numbers of typical continuous functions,
Tatra Mt. Math. Publ., 2 (1993), 123–125.


