Zbigniew Grande, Institute of Mathematics, Bydgoszcz Academy, Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. email: grande@ab.edu.pl

ON THE RIGHT PREPONDERANT LIMIT

Abstract

In article [4] D. N. Sarkhel investigates the right preponderant limit of a function and he proves that a such finite limit is of Baire 1 class. In this article I generalize this Sarkhel's result.

Let \mathbb{R} be the set of all reals. Denote by μ the Lebesgue measure in \mathbb{R} and by μ_e the outer Lebesgue measure in \mathbb{R} . For a set $A \subset \mathbb{R}$ and a point x we define the upper (lower) outer right density $D_u^+(A, x)$ $(D_l^+(A, x))$ of the set Aat the point x as

$$\limsup_{h \to 0^+} \frac{\mu_e(A \cap [x, x+h])}{h}$$
$$(\liminf_{h \to 0^+} \frac{\mu_e(A \cap [x, x+h])}{h} \text{ respectively})$$

In [4] D. N. Sarkhel investigates the following notion:

A function $F : \mathbb{R} \to \mathbb{R}$ is said to have finite right preponderant limit p at a point $c \in \mathbb{R}$, if there is a number $r \in [0, \frac{1}{2})$ so that for each $\eta > 0$ the upper right density

$$D_u^+(\{x \in (c,\infty); |F(x) - p| \ge \eta\}, c) \le r$$

Moreover in [4] Sarkhel proves that if $F : [a, b] \to \mathbb{R}$ has finite right preponderant limit f(x) at each point $x \in [a, b)$ then f is Baire one on [a, b).

In this article I consider a more general property of f which imply that f is Baire 1.

Remark 1. Firstly we observe that each function $F : [a, b] \to \mathbb{R}$ having finite right preponderant limit at each point $x \in [a, b)$ is measurable (in the Lebesgue sense).

Key Words: Right preponderant limit, Density, Baire 1 class

Mathematical Reviews subject classification: Primary 26A21; Secondary 26A24. Received by the editors August 1, 2004

Communicated by: B. S. Thomson

PROOF. Assume, to a contrary that F is not measurable. Then there are reals c, d and a measurable set $A \subset [a, b)$ such that $c < d, \mu(A) > 0$ and

$$\mu(A) = \mu_e(A_1 = \{x \in A; F(x) < c\}) = \mu_e(A_2 = \{x \in A; F(x) > d\}).$$

There is a point $y \in A_1$ with $D_l^+(A_1, y) = D_l^+(A_2, y) = 1$. So for $\eta = \frac{d-c}{3}$ and for each real $p \in \mathbb{R}$ we have

$$D_u^+(\{x; |F(x) - p| \ge \eta\}, y) = 1 > \frac{1}{2},$$

and F does not have any finite right preponder ant limit at y. This finishes the proof. $\hfill \Box$

Let $F : \mathbb{R} \to \mathbb{R}$ be a measurable function and let $c \in \mathbb{R}$ be a point. We will say that a real $p \in L_r(F, c)$ if for each real $\eta > 0$ there is a positive real r_c such that for each real $h \in (0, r_c]$ the inequalities

$$\frac{\mu([c,c+h] \cap F^{-1}((p-\eta,\infty)))}{h} > \frac{1}{2}$$

and

$$\frac{\mu([c,c+h] \cap F^{-1}((-\infty,p+\eta)))}{h} > \frac{1}{2}$$

are true.

Evidently if a real $p \in \mathbb{R}$ is a right preponderant limit of a function $F : \mathbb{R} \to \mathbb{R}$ at a point c then $p \in L_r(F, c)$. The following example shows that the inverse implication is not true.

Example. For $n \ge 1$ there are closed intervals

$$I_n = [\frac{1}{n+1}, \frac{1}{n}], \ J_n = [a_n, b_n] \text{ and } K_n = [c_n, d_n]$$

such that

$$K_n \subset int(J_n) \subset J_n \subset int(I_n)$$

and

$$D_l^+(\bigcup_n [\frac{1}{n+1}, a_n], 0) = D_l^+(\bigcup_n [b_n, \frac{1}{n}], 0) = \frac{1}{2},$$

and for each real h > 0 the inequalities

$$\frac{\mu([0,h] \cap \bigcup_n([\frac{1}{n+1},a_n] \cup K_n))}{h} > \frac{1}{2}$$

and

$$\frac{\mu([0,h]\cap\bigcup_n([b_n,\frac{1}{n}]\cup K_n))}{h} > \frac{1}{2}$$

are true. Let

$$F(x) = 0 \text{ for } x \in (-\infty, 0] \cup \bigcup_n K_n,$$

$$F(x) = -1 \text{ for } x \in [\frac{1}{n+1}, a_n], n \ge 1,$$

$$F(x) = 1 \text{ for } x \in [1, \infty) \cup \bigcup_n [b_n, \frac{1}{n}],$$

and F is linear on the intervals $[a_n, c_n]$ and $[d_n, b_n]$, where $n \ge 1$. Then the values $F(x) \in L_r(F, x)$ for each point $x \in \mathbb{R}$, but F does not have any right preponderant limit at 0.

Theorem 1. Let $F : \mathbb{R} \to \mathbb{R}$ be a measurable function. If a function $f : \mathbb{R} \to \mathbb{R}$ is such that $f(x) \in L_r(F, x)$ for all $x \in \mathbb{R}$ then f is Baire one class.

PROOF. Assume, to a contradiction that f is not Baire one class. Then there is a nonempty perfect set A such that osc(f/A)(x) > 0 at each point $x \in A$. So for each point $x \in A$ there is a pair (u(x), v(x)) of rationals such that

 $u(x) < v(x) \text{ and } x \in cl(\{t \in A; f(t) \le u(x)\}) \cap cl(\{t \in A; f(t) \ge v(x)\}),$

(cl(X) denotes the closure of X). Let $((u_n, v_n))$ be an enumeration of all pairs of rationals with $u_n < v_n$ for $n \ge 1$ and let $A_n = \{x \in A; (u(x), v(x)) = (u_n, v_n)\}$. Observe that each set A_n is closed and

$$A = \bigcup_n A_n.$$

Since A is a complete metric space, it is of the second category in itself and consequently there is a positive integer k such that A_k is of the second category in A. There is an open interval I such that $\emptyset \neq I \cap A \subset A_k$. Let t, z be reals such that $u_k < t < z < v_k$. Since

$$I \cap A = \{ x \in I \cap A; f(x) > t \} \cup \{ x \in I \cap A; f(x) < z \},\$$

at least one of the sets

$$E_1 = \{x \in I \cap A; f(x) > t\}$$
 and $E_2 = \{x \in I \cap A; f(x) < z\}$

is of the second category in A. Without loss of the generality we may assume that the set E_1 is of the second category in A.

For each point $x \in E_1$ there is a rational r(x) > 0 such that for each real $h \in (0, r(x)]$ the inequality

$$\frac{\mu([x,x+h] \cap \{y;F(y) > t\})}{h} > \frac{1}{2}$$

is true. Enumerate all positive rationals in a sequence (r_n) and put

$$H_n = \{t \in E_1; r(x) = r_n\}$$
 for $n \ge 1$.

Since

$$E_1 = \bigcup_n H_n$$

there is a positive integer i such that the set H_i is of the second category in $I \cap A$. There is an open interval $J \subset I$ such that $\emptyset \neq J \cap A \subset cl(J \cap H_i)$. Since the intersection $J \cap A_k = J \cap A$, there is a point $b \in A \cap J$ with $f(b) \leq u_k < t$. But $f(b) \in L_r(F, b)$, so there is an interval $K \subset J$ of the form $[b, b + h_1]$ such that $h_1 < r_i$ and

$$\frac{\mu(K \cap \{y; F(y) < t\})}{h_1} > \frac{1}{2}.$$

Consider two cases:

- (1) b is not isolated on the right hand in $A \cap J$;
- (2) b is isolated on the right hand in $A \cap J$.
 - (1) Since the function

$$0 \neq h \to \frac{\mu([h, b+h_1] \cap \{y; F(y) < t\})}{b+h_1 - h}$$

is continuous at b, there is a real $c \in (b, b + h_1) \cap H_i$ such that

$$\frac{\mu([c,b+h_1] \cap \{y;F(y) < t\})}{b+h_1-c} > \frac{1}{2}$$

and $b + h_1 - c < r_i$. Since $c \in H_i$ and $b + h_1 - c < r_i$, we have

$$\frac{\mu([c,b+h_1] \cap \{y; F(y) > t\})}{b+h_1 - c} > \frac{1}{2}.$$

On the other hand

$$\frac{\mu([c,b+h_1] \cap \{y;F(y) < t\})}{b+h_1-c} > \frac{1}{2}$$

Consequently, there is a point y_1 with $F(y_1) < t$ and $F(y_1) > t$, a contradiction.

(2) Since the function

$$0 \neq h \rightarrow \frac{\mu([h, b+h_1] \cap \{y; F(y) < t\})}{b+h_1 - h}$$

is continuous at b, there is a real $c \in (\infty, b) \cap H_i$ such that

$$\frac{\mu([c,b+h_1] \cap \{y;F(y) < t\})}{b+h_1-c} > \frac{1}{2}$$

and $b + h_1 - c < r_i$. Since $c \in H_i$ and $b + h_1 - c < r_i$, we have

$$\frac{\mu([c,b+h_1] \cap \{y; F(y) > t\})}{b+h_1 - c} > \frac{1}{2}.$$

On the other hand

$$\frac{\mu([c, b+h_1] \cap \{y; F(y) < t\})}{b+h_1 - c} > \frac{1}{2}.$$

Consequently, there is a point y_1 with $F(y_1) < t$ and $F(y_1) > t$, a contradiction.

In the remaining cases we reason similarly. So the proof is finished. \Box

Professor B. S. Thomson observed the following remark.

Remark 2. Since the main argument in the proof of Theorem 1 uses an intersection condition, Theorem 1 may be deduced from a general Thomson's Theorem 33.1 in [5], p. 74.

References

- A. M. Bruckner, R. J. O'Malley and B. S. Thomson, *Path derivatives: a unified view of certain generalized derivatives*, Trans. Amer. Math. Soc., 283 (1984), 97–125.
- [2] A. Denjoy, Sur les fonctions dérivées sommables, Bull. Soc. Math. France, 43 (1915), 161–248.
- [3] I. P. Natanson, Theory of Function of a Real Variable, Ungar, New York, 1967.

- [4] D. N. Sarkhel, Baire one functions, Bull. Inst. Math., Acad. Sin., 31(2) (2003), 143–149.
- [5] B. S. Thomson, *Real Functions*, Lecture Notices In Math., 1170, Springer-Verlag.