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ON THE RIGHT PREPONDERANT LIMIT

Abstract

In article [4] D. N. Sarkhel investigates the right preponderant limit
of a function and he proves that a such finite limit is of Baire 1 class.
In this article I generalize this Sarkhel’s result.

Let R be the set of all reals. Denote by µ the Lebesgue measure in R and
by µe the outer Lebesgue measure in R. For a set A ⊂ R and a point x we
define the upper (lower) outer right density D+

u (A, x) (D+
l (A, x)) of the set A

at the point x as

lim sup
h→0+

µe(A ∩ [x, x + h])
h

(lim inf
h→0+

µe(A ∩ [x, x + h])
h

respectively).

In [4] D. N. Sarkhel investigates the following notion:
A function F : R → R is said to have finite right preponderant limit p at

a point c ∈ R, if there is a number r ∈ [0, 1
2 ) so that for each η > 0 the upper

right density
D+

u ({x ∈ (c,∞); |F (x)− p| ≥ η}, c) ≤ r

Moreover in [4] Sarkhel proves that if F : [a, b] → R has finite right pre-
ponderant limit f(x) at each point x ∈ [a, b) then f is Baire one on [a, b).

In this article I consider a more general property of f which imply that f
is Baire 1.

Remark 1. Firstly we observe that each function F : [a, b] → R having finite
right preponderant limit at each point x ∈ [a, b) is measurable (in the Lebesgue
sense).
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Proof. Assume, to a contrary that F is not measurable. Then there are reals
c, d and a measurable set A ⊂ [a, b) such that c < d, µ(A) > 0 and

µ(A) = µe(A1 = {x ∈ A;F (x) < c}) = µe(A2 = {x ∈ A;F (x) > d}).

There is a point y ∈ A1 with D+
l (A1, y) = D+

l (A2, y) = 1. So for η = d−c
3 and

for each real p ∈ R we have

D+
u ({x; |F (x)− p| ≥ η}, y) = 1 >

1
2
,

and F does not have any finite right preponderant limit at y. This finishes
the proof.

Let F : R → R be a measurable function and let c ∈ R be a point. We
will say that a real p ∈ Lr(F, c) if for each real η > 0 there is a positive real
rc such that for each real h ∈ (0, rc] the inequalities

µ([c, c + h] ∩ F−1((p− η,∞)))
h

>
1
2

and
µ([c, c + h] ∩ F−1((−∞, p + η)))

h
>

1
2
.

are true.
Evidently if a real p ∈ R is a right preponderant limit of a function F :

R → R at a point c then p ∈ Lr(F, c). The following example shows that the
inverse implication is not true.

Example. For n ≥ 1 there are closed intervals

In = [
1

n + 1
,
1
n

], Jn = [an, bn] and Kn = [cn, dn]

such that
Kn ⊂ int(Jn) ⊂ Jn ⊂ int(In)

and
D+

l (
⋃
n

[
1

n + 1
, an], 0) = D+

l (
⋃
n

[bn,
1
n

], 0) =
1
2
,

and for each real h > 0 the inequalities

µ([0, h] ∩
⋃

n([ 1
n+1 , an] ∪Kn))
h

>
1
2
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and
µ([0, h] ∩

⋃
n([bn, 1

n ] ∪Kn))
h

>
1
2

are true.
Let

F (x) = 0 for x ∈ (−∞, 0] ∪
⋃
n

Kn,

F (x) = −1 for x ∈ [
1

n + 1
, an], n ≥ 1,

F (x) = 1 for x ∈ [1,∞) ∪
⋃
n

[bn,
1
n

],

and F is linear on the intervals [an, cn] and [dn, bn], where n ≥ 1. Then the
values F (x) ∈ Lr(F, x) for each point x ∈ R, but F does not have any right
preponderant limit at 0.

Theorem 1. Let F : R → R be a measurable function. If a function f : R → R
is such that f(x) ∈ Lr(F, x) for all x ∈ R then f is Baire one class.

Proof. Assume, to a contradiction that f is not Baire one class. Then there
is a nonempty perfect set A such that osc(f/A)(x) > 0 at each point x ∈ A.
So for each point x ∈ A there is a pair (u(x), v(x)) of rationals such that

u(x) < v(x) and x ∈ cl({t ∈ A; f(t) ≤ u(x)}) ∩ cl({t ∈ A; f(t) ≥ v(x)}),

(cl(X) denotes the closure of X). Let ((un, vn)) be an enumeration of all pairs
of rationals with un < vn for n ≥ 1 and let An = {x ∈ A; (u(x), v(x)) =
(un, vn)}. Observe that each set An is closed and

A =
⋃
n

An.

Since A is a complete metric space, it is of the second category in itself and
consequently there is a positive integer k such that Ak is of the second category
in A. There is an open interval I such that ∅ 6= I ∩A ⊂ Ak. Let t, z be reals
such that uk < t < z < vk. Since

I ∩A = {x ∈ I ∩A; f(x) > t} ∪ {x ∈ I ∩A; f(x) < z},

at least one of the sets

E1 = {x ∈ I ∩A; f(x) > t} and E2 = {x ∈ I ∩A; f(x) < z}
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is of the second category in A. Without loss of the generality we may assume
that the set E1 is of the second category in A.

For each point x ∈ E1 there is a rational r(x) > 0 such that for each real
h ∈ (0, r(x)] the inequality

µ([x, x + h] ∩ {y;F (y) > t})
h

>
1
2

is true. Enumerate all positive rationals in a sequence (rn) and put

Hn = {t ∈ E1; r(x) = rn} for n ≥ 1.

Since
E1 =

⋃
n

Hn,

there is a positive integer i such that the set Hi is of the second category in
I ∩A. There is an open interval J ⊂ I such that ∅ 6= J ∩A ⊂ cl(J ∩Hi). Since
the intersection J ∩Ak = J ∩A, there is a point b ∈ A∩J with f(b) ≤ uk < t.
But f(b) ∈ Lr(F, b), so there is an interval K ⊂ J of the form [b, b + h1] such
that h1 < ri and

µ(K ∩ {y;F (y) < t})
h1

>
1
2
.

Consider two cases:

(1) b is not isolated on the right hand in A ∩ J ;

(2) b is isolated on the right hand in A ∩ J .

(1) Since the function

0 6= h → µ([h, b + h1] ∩ {y;F (y) < t})
b + h1 − h

is continuous at b, there is a real c ∈ (b, b + h1) ∩Hi such that

µ([c, b + h1] ∩ {y;F (y) < t})
b + h1 − c

>
1
2

and b + h1 − c < ri. Since c ∈ Hi and b + h1 − c < ri, we have

µ([c, b + h1] ∩ {y;F (y) > t})
b + h1 − c

>
1
2
.

On the other hand

µ([c, b + h1] ∩ {y;F (y) < t})
b + h1 − c

>
1
2
.
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Consequently, there is a point y1 with F (y1) < t and F (y1) > t, a contradic-
tion.

(2) Since the function

0 6= h → µ([h, b + h1] ∩ {y;F (y) < t})
b + h1 − h

is continuous at b, there is a real c ∈ (∞, b) ∩Hi such that

µ([c, b + h1] ∩ {y;F (y) < t})
b + h1 − c

>
1
2

and b + h1 − c < ri. Since c ∈ Hi and b + h1 − c < ri, we have

µ([c, b + h1] ∩ {y;F (y) > t})
b + h1 − c

>
1
2
.

On the other hand

µ([c, b + h1] ∩ {y;F (y) < t})
b + h1 − c

>
1
2
.

Consequently, there is a point y1 with F (y1) < t and F (y1) > t, a contradic-
tion.

In the remaining cases we reason similarly. So the proof is finished.

Professor B. S. Thomson observed the following remark.

Remark 2. Since the main argument in the proof of Theorem 1 uses an
intersection condition, Theorem 1 may be deduced from a general Thomson’s
Theorem 33.1 in [5], p. 74.
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[2] A. Denjoy, Sur les fonctions dérivées sommables, Bull. Soc. Math. France,
43 (1915), 161–248.

[3] I. P. Natanson, Theory of Function of a Real Variable, Ungar, New York,
1967.



842 Zbigniew Grande

[4] D. N. Sarkhel, Baire one functions, Bull. Inst. Math., Acad. Sin., 31(2)
(2003), 143–149.

[5] B. S. Thomson, Real Functions, Lecture Notices In Math., 1170, Springer-
Verlag.


