Zbigniew Grande, Institute of Mathematics, Bydgoszcz Academy, Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. email: grande@ab.edu.pl

ON THE RIGHT PREPONDERANT LIMIT

Abstract

In article [4] D. N. Sarkhel investigates the right preponderant limit of a function and he proves that a such finite limit is of Baire 1 class. In this article I generalize this Sarkhel's result.

Let \mathbb{R} be the set of all reals. Denote by μ the Lebesgue measure in \mathbb{R} and by μ_{e} the outer Lebesgue measure in \mathbb{R}. For a set $A \subset \mathbb{R}$ and a point x we define the upper (lower) outer right density $D_{u}^{+}(A, x)\left(D_{l}^{+}(A, x)\right)$ of the set A at the point x as

$$
\begin{gathered}
\limsup _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x, x+h])}{h} \\
\left(\liminf _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x, x+h])}{h} \text { respectively }\right) .
\end{gathered}
$$

In [4] D. N. Sarkhel investigates the following notion:
A function $F: \mathbb{R} \rightarrow \mathbb{R}$ is said to have finite right preponderant limit p at a point $c \in \mathbb{R}$, if there is a number $r \in\left[0, \frac{1}{2}\right)$ so that for each $\eta>0$ the upper right density

$$
D_{u}^{+}(\{x \in(c, \infty) ;|F(x)-p| \geq \eta\}, c) \leq r
$$

Moreover in [4] Sarkhel proves that if $F:[a, b] \rightarrow \mathbb{R}$ has finite right preponderant limit $f(x)$ at each point $x \in[a, b)$ then f is Baire one on $[a, b)$.

In this article I consider a more general property of f which imply that f is Baire 1 .

Remark 1. Firstly we observe that each function $F:[a, b] \rightarrow \mathbb{R}$ having finite right preponderant limit at each point $x \in[a, b)$ is measurable (in the Lebesgue sense).

[^0]Proof. Assume, to a contrary that F is not measurable. Then there are reals c, d and a measurable set $A \subset[a, b)$ such that $c<d, \mu(A)>0$ and

$$
\mu(A)=\mu_{e}\left(A_{1}=\{x \in A ; F(x)<c\}\right)=\mu_{e}\left(A_{2}=\{x \in A ; F(x)>d\}\right)
$$

There is a point $y \in A_{1}$ with $D_{l}^{+}\left(A_{1}, y\right)=D_{l}^{+}\left(A_{2}, y\right)=1$. So for $\eta=\frac{d-c}{3}$ and for each real $p \in \mathbb{R}$ we have

$$
D_{u}^{+}(\{x ;|F(x)-p| \geq \eta\}, y)=1>\frac{1}{2}
$$

and F does not have any finite right preponderant limit at y. This finishes the proof.

Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function and let $c \in \mathbb{R}$ be a point. We will say that a real $p \in L_{r}(F, c)$ if for each real $\eta>0$ there is a positive real r_{c} such that for each real $h \in\left(0, r_{c}\right]$ the inequalities

$$
\frac{\mu\left([c, c+h] \cap F^{-1}((p-\eta, \infty))\right)}{h}>\frac{1}{2}
$$

and

$$
\frac{\mu\left([c, c+h] \cap F^{-1}((-\infty, p+\eta))\right)}{h}>\frac{1}{2} .
$$

are true.
Evidently if a real $p \in \mathbb{R}$ is a right preponderant limit of a function F : $\mathbb{R} \rightarrow \mathbb{R}$ at a point c then $p \in L_{r}(F, c)$. The following example shows that the inverse implication is not true.

Example. For $n \geq 1$ there are closed intervals

$$
I_{n}=\left[\frac{1}{n+1}, \frac{1}{n}\right], \quad J_{n}=\left[a_{n}, b_{n}\right] \text { and } K_{n}=\left[c_{n}, d_{n}\right]
$$

such that

$$
K_{n} \subset \operatorname{int}\left(J_{n}\right) \subset J_{n} \subset \operatorname{int}\left(I_{n}\right)
$$

and

$$
D_{l}^{+}\left(\bigcup_{n}\left[\frac{1}{n+1}, a_{n}\right], 0\right)=D_{l}^{+}\left(\bigcup_{n}\left[b_{n}, \frac{1}{n}\right], 0\right)=\frac{1}{2},
$$

and for each real $h>0$ the inequalities

$$
\frac{\mu\left([0, h] \cap \bigcup_{n}\left(\left[\frac{1}{n+1}, a_{n}\right] \cup K_{n}\right)\right)}{h}>\frac{1}{2}
$$

and

$$
\frac{\mu\left([0, h] \cap \bigcup_{n}\left(\left[b_{n}, \frac{1}{n}\right] \cup K_{n}\right)\right)}{h}>\frac{1}{2}
$$

are true
Let

$$
\begin{gathered}
F(x)=0 \text { for } x \in(-\infty, 0] \cup \bigcup_{n} K_{n}, \\
F(x)=-1 \text { for } x \in\left[\frac{1}{n+1}, a_{n}\right], n \geq 1, \\
F(x)=1 \text { for } x \in[1, \infty) \cup \bigcup_{n}\left[b_{n}, \frac{1}{n}\right],
\end{gathered}
$$

and F is linear on the intervals $\left[a_{n}, c_{n}\right]$ and $\left[d_{n}, b_{n}\right]$, where $n \geq 1$. Then the values $F(x) \in L_{r}(F, x)$ for each point $x \in \mathbb{R}$, but F does not have any right preponderant limit at 0 .

Theorem 1. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function. If a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that $f(x) \in L_{r}(F, x)$ for all $x \in \mathbb{R}$ then f is Baire one class.

Proof. Assume, to a contradiction that f is not Baire one class. Then there is a nonempty perfect set A such that $\operatorname{osc}(f / A)(x)>0$ at each point $x \in A$. So for each point $x \in A$ there is a pair $(u(x), v(x))$ of rationals such that

$$
u(x)<v(x) \text { and } x \in c l(\{t \in A ; f(t) \leq u(x)\}) \cap c l(\{t \in A ; f(t) \geq v(x)\})
$$

$(\operatorname{cl}(X)$ denotes the closure of $X)$. Let $\left(\left(u_{n}, v_{n}\right)\right)$ be an enumeration of all pairs of rationals with $u_{n}<v_{n}$ for $n \geq 1$ and let $A_{n}=\{x \in A ;(u(x), v(x))=$ $\left.\left(u_{n}, v_{n}\right)\right\}$. Observe that each set A_{n} is closed and

$$
A=\bigcup_{n} A_{n}
$$

Since A is a complete metric space, it is of the second category in itself and consequently there is a positive integer k such that A_{k} is of the second category in A. There is an open interval I such that $\emptyset \neq I \cap A \subset A_{k}$. Let t, z be reals such that $u_{k}<t<z<v_{k}$. Since

$$
I \cap A=\{x \in I \cap A ; f(x)>t\} \cup\{x \in I \cap A ; f(x)<z\},
$$

at least one of the sets

$$
E_{1}=\{x \in I \cap A ; f(x)>t\} \text { and } E_{2}=\{x \in I \cap A ; f(x)<z\}
$$

is of the second category in A. Without loss of the generality we may assume that the set E_{1} is of the second category in A.

For each point $x \in E_{1}$ there is a rational $r(x)>0$ such that for each real $h \in(0, r(x)]$ the inequality

$$
\frac{\mu([x, x+h] \cap\{y ; F(y)>t\})}{h}>\frac{1}{2}
$$

is true. Enumerate all positive rationals in a sequence $\left(r_{n}\right)$ and put

$$
H_{n}=\left\{t \in E_{1} ; r(x)=r_{n}\right\} \text { for } n \geq 1
$$

Since

$$
E_{1}=\bigcup_{n} H_{n}
$$

there is a positive integer i such that the set H_{i} is of the second category in $I \cap A$. There is an open interval $J \subset I$ such that $\emptyset \neq J \cap A \subset c l\left(J \cap H_{i}\right)$. Since the intersection $J \cap A_{k}=J \cap A$, there is a point $b \in A \cap J$ with $f(b) \leq u_{k}<t$. But $f(b) \in L_{r}(F, b)$, so there is an interval $K \subset J$ of the form $\left[b, b+h_{1}\right]$ such that $h_{1}<r_{i}$ and

$$
\frac{\mu(K \cap\{y ; F(y)<t\})}{h_{1}}>\frac{1}{2}
$$

Consider two cases:
(1) b is not isolated on the right hand in $A \cap J$;
(2) b is isolated on the right hand in $A \cap J$.
(1) Since the function

$$
0 \neq h \rightarrow \frac{\mu\left(\left[h, b+h_{1}\right] \cap\{y ; F(y)<t\}\right)}{b+h_{1}-h}
$$

is continuous at b, there is a real $c \in\left(b, b+h_{1}\right) \cap H_{i}$ such that

$$
\frac{\mu\left(\left[c, b+h_{1}\right] \cap\{y ; F(y)<t\}\right)}{b+h_{1}-c}>\frac{1}{2}
$$

and $b+h_{1}-c<r_{i}$. Since $c \in H_{i}$ and $b+h_{1}-c<r_{i}$, we have

$$
\frac{\mu\left(\left[c, b+h_{1}\right] \cap\{y ; F(y)>t\}\right)}{b+h_{1}-c}>\frac{1}{2} .
$$

On the other hand

$$
\frac{\mu\left(\left[c, b+h_{1}\right] \cap\{y ; F(y)<t\}\right)}{b+h_{1}-c}>\frac{1}{2}
$$

Consequently, there is a point y_{1} with $F\left(y_{1}\right)<t$ and $F\left(y_{1}\right)>t$, a contradiction.
(2) Since the function

$$
0 \neq h \rightarrow \frac{\mu\left(\left[h, b+h_{1}\right] \cap\{y ; F(y)<t\}\right)}{b+h_{1}-h}
$$

is continuous at b, there is a real $c \in(\infty, b) \cap H_{i}$ such that

$$
\frac{\mu\left(\left[c, b+h_{1}\right] \cap\{y ; F(y)<t\}\right)}{b+h_{1}-c}>\frac{1}{2}
$$

and $b+h_{1}-c<r_{i}$. Since $c \in H_{i}$ and $b+h_{1}-c<r_{i}$, we have

$$
\frac{\mu\left(\left[c, b+h_{1}\right] \cap\{y ; F(y)>t\}\right)}{b+h_{1}-c}>\frac{1}{2} .
$$

On the other hand

$$
\frac{\mu\left(\left[c, b+h_{1}\right] \cap\{y ; F(y)<t\}\right)}{b+h_{1}-c}>\frac{1}{2} .
$$

Consequently, there is a point y_{1} with $F\left(y_{1}\right)<t$ and $F\left(y_{1}\right)>t$, a contradiction.

In the remaining cases we reason similarly. So the proof is finished.
Professor B. S. Thomson observed the following remark.
Remark 2. Since the main argument in the proof of Theorem 1 uses an intersection condition, Theorem 1 may be deduced from a general Thomson's Theorem 33.1 in [5], p. 74.

References

[1] A. M. Bruckner, R. J. O'Malley and B. S. Thomson, Path derivatives: a unified view of certain generalized derivatives, Trans. Amer. Math. Soc., 283 (1984), 97-125.
[2] A. Denjoy, Sur les fonctions dérivées sommables, Bull. Soc. Math. France, 43 (1915), 161-248.
[3] I. P. Natanson, Theory of Function of a Real Variable, Ungar, New York, 1967.
[4] D. N. Sarkhel, Baire one functions, Bull. Inst. Math., Acad. Sin., 31(2) (2003), 143-149.
[5] B. S. Thomson, Real Functions, Lecture Notices In Math., 1170, SpringerVerlag.

[^0]: Key Words: Right preponderant limit, Density, Baire 1 class
 Mathematical Reviews subject classification: Primary 26A21; Secondary 26A24.
 Received by the editors August 1, 2004
 Communicated by: B. S. Thomson

