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DESCRIPTIVE PROPERTIES OF σ-POROUS
SETS

Abstract

We show that there exists a closed set H ⊂ R such that the set
P (H) of all points x ∈ H at which H is porous can be covered by no
Fσδ σ-porous set. This improves Tkadlec’s result ([T]). We also show
that there exists a perfect nowhere dense non-σ-porous set L ⊂ R such
that the set P (L) is Gδ. This answers a question posed by Zaj́ıček.

1 Introduction.

The notions of porosity and σ-porosity were studied in many papers from
different points of view. We refer the reader to [Z1] and [Z3] for motivations
and applications of these notions. Let us recall their definitions. Let (P, ρ) be
a metric space, M ⊂ P , x ∈ P , and R > 0. Then we define

θ(x,R,M) = sup{r > 0; there exists an open ball B(z, r)
such that ρ(x, z) < R and B(z, r) ∩M = ∅},

p(x,M) = lim sup
R→0+

θ(x,R,M)
R

.

We say that M ⊂ P is porous if p(x,M) > 0 whenever x ∈ M . A set
M ⊂ P is said to be σ-porous if it is a countable union of porous sets.

Let M ⊂ P . We say that x ∈ P is a point of porosity of M if p(x,M) > 0.
We denote

P (M) = {x ∈M ; p(x,M) > 0}.
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It is known that each σ-porous set can be covered by a Gδσ σ-porous
set (see [FH]). On the other hand Foran – Humke ([FH]) and Tkadlec ([T])
showed that there exists a porous subset of R which can be covered by no Fσ
σ-porous set and by no Gδ σ-porous set respectively. The problem whether
each σ-porous set can be covered by an Fσδ σ-porous set is implicitly posed
in [Z1]. We show that this is not the case. Namely, we prove the following
theorem in Section 3.

Theorem 1.1. There exists a closed set H ⊂ R such that the set P (H) can
be covered by no Fσδ σ-porous set.

Tkadlec’s porous set with no Gδ σ-porous envelope is of the form P (H),
where H ⊂ R is a suitable perfect nowhere dense non-σ-porous set. Zaj́ıček
asked a question whether P (H) has no Gδ σ-porous envelope whenever H ⊂ R
is a perfect nowhere dense non-σ-porous set. In Section 4 we prove that this
is not the case as the next theorem says.

Theorem 1.2. There exists a non-σ-porous perfect nowhere dense set L ⊂ R
such that P (L) is Gδ.

2 Several Lemmas.

We use the technique of construction of non-σ-porous sets developed in [ZP]
to prove Theorem 1.1.

Notation 2.1. The symbols N and N0 stand for the sets of positive integers
and non-negative integers respectively.

Let M ⊂ R. Then the complement of M in R is denoted by M c. Any set
of the form M ∩G, where G is an open subset of R intersecting M , is called
a portion of M .

Open ball and closed ball in R with center x and radius s > 0 are denoted
by B(x, s) and B(x, s) respectively. Let B ⊂ R be an open ball and ω > 1.
Then ω ? B denotes the open ball with the same center and with ω times
greater radius. The symbol ω ? B has an analogical meaning when B is a
closed ball. The center of a ball B is denoted by c(B).

Let V be a system of closed balls in R. Then c(V) denotes the set of all
centers of balls from V. Let S ⊂ R. The set of all points of accumulation of S
is denoted by S′.

The following definitions and lemmas can be found in [ZP]. In [ZP], they
are introduced in nonempty complete metric spaces without isolated points.
However, from now on we will work on R with the usual metric.
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Definition 2.2. (cf. [ZP, Definitions 2.3 and 2.5])

(i) Let V be a system of closed balls in R. Then the symbol ap(V) stands
for the set of all points x ∈ R such that for every ε > 0 there exist
infinitely many B ∈ V with B ∩B(x, ε) 6= ∅.

(ii) Let V be a nonempty system of closed balls in R satisfying

(a) V is point finite, i.e., each x ∈ R is contained at most in finitely
many balls from V,

(b) ap(V) ⊂ c(V).

Then we say that V is a B-system.

(iii) Let M ⊂ R, x ∈ R and B1, B2 be two closed balls in R with x ∈ B2 ⊂
B1. Then we denote

Γ(x,B1, B2,M) = sup{r/ρ(x, z); z ∈ B1 \B2, B(z, r) ⊂ B1 \M}.

Lemma 2.3. ([ZP, Lemma 2.4(i)]) Let V be a B-system and, for every B ∈ V,
let V(B) be a B-system such that

⋃
V(B) ⊂ B and c(B) ∈ c(V(B)). Then

U =
⋃
{V(B); B ∈ V} is a B-system.

The next two notions are quite technical but we will use mainly their
properties described in Lemmas 2.8 – 2.10.

Definition 2.4. ([ZP, Definition 2.6]) Let B ⊂ R be a closed ball, S be a
closed nonempty subset of B, and n ∈ N, δ, κ, α ∈ (0, 1). We say that S
has the C(0, δ, κ, α)-property in B if S = {c(B)}. We say that S has the
C(n, δ, κ, α)-property in B if

(C1)n ∀x ∈ S : dist(x,Bc) > δn diamB,

(C2)n sup{r/ρ(y, z); B(z, r) ⊂ B \ S, y 6= z} ≤ κ whenever y ∈ S′,

(C3)n ∀x ∈ S′ : p(x, S) < ακ,

(C4)n S′ has the C(n− 1, δ, κ, α)-property in B.

Definition 2.5. ([ZP, Definition 2.7]) Let B ⊂ R be a closed ball, V be a
B-system, n ∈ N, δ, β, ε ∈ (0, 1). We say that V has the P(0, δ, β, ε)-property
in B if V = {B0}, c(B0) = c(B), and B0 ⊂ B. We say that V has the
P(n, δ, β, ε)-property in B if

(P1)n ∀V ∈ V : dist(V,Bc) > diamV ,
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(P2)n ∀V ∈ V : dist(V,Bc) > δn diamB,

(P3)n ∀V ∈ V : diamV ≤ 1
2 diamB,

(P4)n there exists a B-system R ⊂ V with the P(n − 1, δ, β, ε)-property in B
such that, for an arbitrary set J intersecting each ball from V, we have

∀R ∈ R ∀x ∈ R : dist(x,Rc) > β diamR⇒ Γ(x,B,R, J) < ε.

We will need the following easy observation later.

Observation 2.6. ([ZP, Observation 2.8]) If B ⊂ R is a closed ball and S ⊂ R
is a set with the C(n, δ, κ, α)-property in B for some n ∈ N0, δ, κ, α ∈ (0, 1),
then S is countable.

Definition 2.7. (cf. [ZP, Definition 3.2]) Let ω > 1, r > 0, n ∈ N, and A ⊂ R.
Then we define

Dω,r(A) = A \
⋃
{B(x, ωs); B(x, s) ∩A = ∅ and s ≤ r},

Dn
ω,r(A) = Dω,r ◦ · · · ◦Dω,r︸ ︷︷ ︸

n-times

(A).

Using [ZP, Lemma 2.12] we easily get the following lemma.

Lemma 2.8. Let x ∈ R, r > 0, m ∈ N0, δ, κ, α ∈ (0, 1), ω > 1, 40δ < κ,
1/ω < ακ/10, and P0 ⊂ P1 ⊂ · · · ⊂ Pm be subsets of R such that x ∈ P0 and
Pj ⊂ Dω,r(Pj+1), j = 0, . . . ,m − 1. Then there exists a set S ⊂ Pm with the
C(m, δ, κ, α)-property in B(x, r).

Lemma 2.9. ([ZP, Lemma 2.13]) Let B ⊂ R be a closed ball, m ∈ N,
δ, κ, α, ε ∈ (0, 1), 10κ < ε, and Sm ⊂ B be a set with the C(m, δ, κ, α)-property
in B. Then there exists a function s : Sm → (0,+∞) such that, for every func-
tion r : Sm → (0,+∞) with r ≤ s, we have that Vm = {B(x, r(x)); x ∈ Sm}
forms a B-system with the P(m, δ, α, ε)-property in B.

Lemma 2.10. ([ZP, Lemma 2.22]) Let ε ∈ (0, 1/8), αn, δn ∈ (0, 1) for every
n ∈ N, B ⊂ R be a closed ball, and let (Un)∞n=0 be a sequence of B-systems
such that

(i) U0 = {B},

(ii) Un+1 =
⋃
{Un+1(C); C ∈ Un}, where Un+1(C) has the

P(n+ 1, δn+1, αn+1, ε)-property in C, n ∈ N0,
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(iii) for every n ∈ N we have αn < (δn+1)n+1.

Then the set
⋂∞
n=0

⋃
Un is a closed non-σ-porous set.

Definition 2.11. Let A ⊂ R. Then we define W (A) by

x ∈W (A) def⇐⇒ ∀ω ∈ R, ω > 1∀k ∈ N ∃r ∈ R, r > 0 : x ∈ Dk
ω,r(A).

Lemma 2.12. Let A ⊂ R be a closed set such that each portion of A is
non-σ-porous. Then W (A) is dense in A.

Proof. It is easy to see that it is sufficient to prove that W (A) 6= ∅. We
may and do assume that A is compact. Observe that if F ⊂ R is closed then
Dω,r(F ) is closed as well. Observe also that if ω > 1 and F ⊂ R is non-σ-
porous, then there exists r > 0 such that Dω,r(A) is non-σ-porous. Indeed,
the set F \

⋃∞
n=1Dω,1/n(F ) is porous, hence there exists n0 ∈ N such that

Dω,1/n0(F ) is non-σ-porous. These observations enable us to find a sequence
{rn}∞n=1 of positive real numbers such that

{Dn+1,rn ◦ · · · ◦D2,r1(A)}∞n=1

is a decreasing sequence of compact non-σ-porous sets. Thus there exists x ∈ R
such that

x ∈ Dn+1,rn ◦ · · · ◦D2,r1(A)

for every n ∈ N. To show that x ∈ W (A) take ω > 1 and k ∈ N. Choosing
n > ω + k we have

x ∈ Dn+1,rn
◦ · · · ◦D2,r1(A) ⊂ Dω,rn

◦ · · · ◦Dω,rn−k+1(A).

Setting r := min{rn, . . . , rn−k+1} we obtain

x ∈ Dω,rn
◦ · · · ◦Dω,rn−k+1(A) ⊂ Dω,r ◦ · · · ◦Dω,r︸ ︷︷ ︸

k-times

(A) = Dk
ω,r(A).

3 Proof of Theorem 1.1.

Set ak = 2k + 1 for k ∈ N. Let I = [a, b] be a nondegenerate closed bounded
interval. The system Hk(I) of closed intervals is defined by

Hk(I) =
{[
a+ (j − 1) · b− a

ak
, a+ j · b− a

ak

]
; j = 1, . . . , ak

}
.



662 Miroslav Zelený

The interval J ∈ Hk(I) containing the center of I is denoted by C(I, k).
We define further systems of intervals by H0 = J0 = {[n, n + 1]; n ∈ Z},
Hk =

⋃
{Hk(I); I ∈ Hk−1}, and Jk =

⋃
{Hk(I) \ {C(I, k)}; I ∈ Jk−1},

k ∈ N.

Notation 3.1. (i) The symbol S stands for the set of all sequences D =
{Dn}∞n=0 of systems of intervals, such that for every n ∈ N0 we have

• ∅ 6= Dn ⊂ Jn,
• ∀I ∈ Dn ∃J ∈ Dn+1 : J ⊂ I,

• ∀I ∈ Dn+1 ∃J ∈ Dn : I ⊂ J .

(ii) If D1 = {D1
n}∞n=0 ∈ S, D2 = {D2

n}∞n=0 ∈ S, then the symbol D1 ≺ D2

means that D1
n ⊂ D2

n for every n ∈ N0.

(iii) Let S be a system of intervals and I be an interval. Then cardinality of
the set {J ∈ S; J ⊂ I} is denoted by α(S, I).

(iv) Let D = {Dn}∞n=0 ∈ S and m ∈ N. Then we denote q(D,m) =
min{α(Dm, J); J ∈ Dm−1}.

(v) Let D = {Dn}∞n=0 ∈ S. Then we denote F(D) =
⋂∞
n=0

⋃
Dn.

The next observation is obvious.

Observation 3.2. Let D = {Dn}∞n=0 ∈ S and j ∈ N. If an interval I contains
an element of Dj, then F(D) ∩ I 6= ∅.

The desired set H is defined by H =
⋂∞
n=0

⋃
Jn, i.e., H = F(J ), where

J = {Jn}∞n=0. It is obvious that H is a nonempty perfect nowhere dense
subset of R. To prove that P (H) can be covered by no Fσδ σ-porous set we
need the following auxiliary notions.

Definition 3.3. We say that D ∈ S is good with constant c ∈ R if there exists
n0 ∈ N such that q(D,m) ≥ am − c for every m ≥ n0. We say that D ∈ S is
good if there exists c ∈ R such that D is good with the constant c.

Lemma 3.4. Let D ∈ S be good. Then the set F(D) ∩ P (H) is residual in
F(D).

Proof. We employ the symbol IntX to denote the interior of X ⊂ R. Since
D is good we can clearly find c ∈ N and n0 ∈ N such that q(D,m) ≥ am−c > 3
for every m ≥ n0. The set

Ak :=
⋃
{(c+ 3) ? IntC(I, j); I ∈ Hj−1, j ≥ k} ∩ F(D), k ∈ N,
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is clearly open in F(D). Let k ∈ N. Take j ≥ max{k, n0} and I ∈ Dj . Since
(c + 3) ? C(I, j + 1) ⊂ I and aj+1 ≥ α(Dj+1, I) ≥ q(D, j + 1) ≥ aj+1 − c,
the interval (c + 3) ? IntC(I, j + 1) necessarily contains at least one interval
from Dj+1. Thus Ak intersects F(D) ∩ I by Observation 3.2. It implies that
Ak is dense in F(D). Thus A :=

⋂∞
n=1An is residual in F(D). We have

IntC(I, j) ∩H = ∅ for every j ∈ N and I ∈ Hj−1. Thus p(x,H) ≥ 1/(c+ 3)
whenever x ∈ A. Hence A ⊂ P (H) and we get the conclusion.

The next lemma relates the operation Dω,r to good systems.

Lemma 3.5. Let c ≥ 1, ω > 1, r > 0, and ψ ≥ 9cω. Let D ∈ S be good with
the constant c. Then there exist r∗ ∈ (0, r) and Y ∈ S such that Y ≺ D, Y is
good with the constant 2cψ, and Dψ,r(F(D)) ⊂ F(Y) ⊂ Dω,r∗(F(D)).

Proof. The intervals from Hj , j ∈ N0, are of the same length, which we
denote by bj . Let n0 ∈ N be such that q(D,m) ≥ am − c > 0 for every
m ≥ n0. Choose k ∈ N, k ≥ n0, such that ak−2cψ > 0 and bk < r. We define
Y = {Yj}∞j=0 ∈ S by

Yj = Dj , j = 0, . . . , k − 1,
D∗j = {I ∈ Dj ; ∃J ∈ Yj−1 : I ⊂ J}, j ≥ k,

Yj = D∗j \ {I ∈ D∗j ; ∃K ∈ Hj \ Dj : I ⊂ ψ ? K}, j ≥ k.

We have Yj 6= ∅, j = 0, . . . , k − 1. Suppose that Ym−1 6= ∅ and m ≥ k.
Let J ∈ Ym−1. If K ∈ Hm, then at most [ψ] intervals from Hm are contained
in ψ ? K. (The symbol [x] stands for the integer part of x.) So at most
[ψ][c] intervals from Hm(J) are covered by an interval of the form ψ ?I, where
I ∈ Hm \Dm, I ⊂ J . At most [ψ]− 1 intervals from Hm(J) are covered by an
interval ψ ? I, where I ∈ Hm, I 6⊂ J . Thus we have

α(Ym, J) ≥ am − ψc− ψ = am − ψ(c+ 1) ≥ am − 2cψ ≥ ak − 2cψ > 0.

This shows that Y is good with the constant 2cψ. Clearly Y ≺ D. The
inclusion Dψ,r(F(D)) ⊂ F(Y) follows by the definition. Indeed, if x ∈ F(D) \
F(Y), then there exist m ≥ k, I ∈ Dm\Ym, K ∈ Hm\Dm with x ∈ I ⊂ ψ?K.
It gives IntK ∩ F(D) = ∅, diamK = bm ≤ bk < r, and x ∈ ψ ? K. Thus
x /∈ Dψ,r(F(D)).

Set r∗ = 1
2bk. To prove the second inclusion choose an open ball B(z, s)

such that s ≤ r∗ and B(z, s) ∩ F(D) = ∅. Let y ∈ F(Y) and let j ∈ N be
the smallest number such that B(z, s) contains an interval from Hj . Clearly
j > k. The ball B(z, s) intersects at most two elements of Hj−1. We find
O1, O2 ∈ Hj−1 with B(z, s) ⊂ O1 ∪O2. We distinguish two possibilities.
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1) The intervals O1, O2 are in Dj−1. Since aj ≥ α(Dj , Oi) ≥ aj−c, i = 1, 2,
we have 2s ≤ (c+ 2)bj . Take K ∈ Hj with K ⊂ B(z, s) such that dist(y,K)
is minimal. Find I ∈ Yj with y ∈ I. We have I 6⊂ ψ ? K by the definition of
Y. An easy computation gives |z − y| ≥ dist(K, I) ≥ 1

2 (ψ − 3)bj . We get

s

|z − y|
≤

1
2 (c+ 2)bj
1
2 (ψ − 3)bj

≤ c+ 2
9cω − 3

<
1
ω
.

2) There is i ∈ {1, 2} with Oi /∈ Dj−1. Find I ∈ Yj−1 with y ∈ I. We
have s ≤ bj−1 and I 6⊂ ψ ? Oi. It gives

|z − y| ≥ dist(Oi, I)− |Oi| >
1
2
(ψ − 3)bj−1 − bj−1 =

1
2
(ψ − 5)bj−1

and
s

|z − y|
≤ bj−1

1
2 (ψ − 5)bj−1

≤ 2
ψ − 5

≤ 2
9cω − 5

<
1
ω
.

In both cases, we have y /∈ B(z, ωs). Since F(Y) ⊂ F(D), we obtain
F(Y) ⊂ Dω,r∗(F(D)).

Now suppose that P (H) is contained in an Fσδ set M . Our aim is to prove
that M is non-σ-porous. The set M can be written as follows

M =
∞⋂
n=1

∞⋃
m=1

M(n,m),

where

• M(n,m) is closed for every n,m ∈ N,

• for every n,m ∈ N, n > 1, there exists m′ ∈ N with M(n,m) ⊂ M(n −
1,m′).

Definition 3.6. Let n ∈ N and D ∈ S. The symbol Z(n,D) stands for the
set of all points y ∈ F(D) such that there exist D∗ ∈ S, s > 0, and m ∈ N
such that

• D∗ is good and D∗ ≺ D,

• y ∈W (F(D∗)),

• B(y, s) ∩ F(D∗) ⊂M(n,m).

Lemma 3.7. Let n ∈ N and D,D∗ ∈ S be good. If D∗ ≺ D, then Z(n,D) ∩
F(D∗) is dense in F(D∗).



Descriptive Properties of σ-Porous Sets 665

Proof. Lemma 3.4 and the Baire Category Theorem show that the set

O := {y ∈ F(D∗); ∃m ∈ N ∃s > 0 : B(y, s) ∩ F(D∗) ⊂M(n,m)}

is open and dense in F(D∗). An easy computation yields that each portion of
F(D∗) has positive Lebesgue measure, in particular, each portion of F(D∗) is
not σ-porous. Lemma 2.12 gives that O∩W (F(D∗)) is dense in F(D∗). Since
O ∩W (F(D∗)) ⊂ Z(n,D), we get the conclusion.

Setting 3.8. Now we fix real numbers ε, κ, αn, δ ∈ (0, 1), ωn > 1 (n ∈ N)
such that 10κ < ε < 1/8, 40δ < κ, αn < δn+1, and 1/ωn < αnκ/10.

Lemma 3.9. Let n ∈ N, r > 0, D ∈ S be good, and x ∈W (F(D)). Then there
exists r∗ ∈ (0, r) and a set S ⊂ R such that S has the C(n, δ, κ, αn)-property
in B(x, r∗) and S \ {x} ⊂ Z(n+ 1,D).

Proof. We may and do assume that D ∈ S is good with a constant c ∈ N.
Set c0 := c, ψ0 := 9c0ωn, cj := 2cj−1ψj−1, and ψj := 9cjωn, where j =
1, . . . , n. Using x ∈W (F(D)) we find r̃ ∈ (0, r) such that x ∈ Dn

ψn−1,r̃
(F(D)).

According to Lemma 3.5 we find Y0, Y1, Y2, . . . , Yn from S and positive real
numbers r∗0 > r∗1 > · · · > r∗n such that

• Y0 = D, r∗0 = r̃,

• Yj is good with the constant cj , j = 0, . . . , n− 1,

• Yj+1 ≺ Yj , j = 0, . . . , n− 1,

• Dψj ,r∗j
(F(Yj)) ⊂ F(Yj+1) ⊂ Dωn,r∗j+1

(F(Yj)), j = 0, . . . , n− 1.

Using the inequalities ψ0 < ψ1 < · · · < ψn−1 and r̃ = r∗0 > r∗1 > · · · > r∗n
we get

x ∈ Dn
ψn−1,r̃(F(D)) ⊂ Dψn−1,r̃ ◦Dψn−2,r̃ ◦ · · · ◦Dψ1,r̃ ◦Dψ0,r̃(F(D))

⊂ Dψn−1,r̃ ◦Dψn−2,r̃ ◦ · · · ◦Dψ1,r̃(F(Y1))
...

⊂ Dψn−1,r̃(F(Yn−1)) ⊂ F(Yn).

Hence we have x ∈ F(Yj) for j = 0, . . . , n. Set r∗ := r∗n and Pj := (F(Yn−j)∩
Z(n+ 1,D)) ∪ {x}, j = 0, . . . , n. Then we have

Pj ⊂ F(Yn−j) ⊂ Dωn,r∗n−j
(F(Yn−j−1))

⊂ Dωn,r∗(F(Yn−j−1)), j = 0, . . . , n− 1.
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This and the inclusion Pj ⊂ Pj+1 give Pj ⊂ Dωn,r∗(Pj+1), since Pj+1 is dense
in F(Yn−j−1) by Lemma 3.7. We see that the assumptions of Lemma 2.8 are
satisfied and so we get the desired set S with the C(n, δ, κ, αn)-property in
B(x, r∗) and with S \ {x} ⊂ Pn \ {x} ⊂ Z(n+ 1,D).

Now we will construct inductively a sequence {Un}∞n=0 of countable B-
systems such that

(i) U0 = {U0}, where U0 ⊂ R is a closed ball,

(ii) Un =
⋃
{Un(C); C ∈ Un−1}, where Un(C) has the P(n, δ, αn, ε)-property

in C, n ∈ N.

Moreover, for every n ∈ N and C ∈ Un−1, we will construct a set Sn(C)
and a good sequence D(n,C) ∈ S such that

(iii) c(C) ∈W (F(D(n,C))),

(iv) ∀C∗ ∈ Un(C) : D(n+ 1, C∗) ≺ D(n,C),

(v) ∀C∗ ∈ Un(C), c(C∗) 6= c(C)∃m ∈ N : F(D(n + 1, C∗)) ∩ C∗ ⊂ M(n +
1,m),

(vi) Sn(C) has the C(n, δ, κ, αn)-property in C,

(vii) Sn(C) \ {c(C)} ⊂ Z(n+ 1,D(n,C)).

Using Lemma 3.7 we have W (F(J )) = W (H) 6= ∅. Choose x0 ∈ W (H).
According to Lemma 3.9 there exist r0 > 0 and a set S1 ⊂ R such that

• S1 has the C(1, δ, κ, α1)-property in B(x0, r0),

• S1 \ {x0} ⊂ Z(2,J ).

We set U0 = B(x0, r0), U0 = {U0}, D(1, U0) = J , S1(U0) = S1. Assume
that we have constructed a countable B-system Un−1 and the corresponding
Sn(C) and D(n,C) for C ∈ Un−1. We will construct Un and the corresponding
Sn+1(C)’s and D(n+ 1, C)’s.

Take C ∈ Un−1. Using (vi) and Lemma 2.9 we find a function r1 : Sn(C) →
(0,+∞) such that, for every function r : Sn(C) → (0,+∞) with r ≤ r1, we
have that the set {B(z, r(z)); z ∈ Sn(C)} is a B-system with the P(n, δ, αn, ε)-
property in C. Take y ∈ Sn(C) \ {c(C)}. Since y ∈ Z(n+1,D(n,C)) by (vii),
we can find t(y) ∈ (0, r1(y)), a good sequence Dy ∈ S, and m ∈ N such that
Dy ≺ D(n,C), y ∈W (F(Dy)), and B(y, t(y)) ∩ F(Dy) ⊂M(n+ 1,m). Using
Lemma 3.9 we find r(y) ∈ (0, t(y)) and a set Sy such that



Descriptive Properties of σ-Porous Sets 667

• Sy has the C(n+ 1, δ, κ, αn+1)-property in B(y, r(y)),

• Sy \ {y} ⊂ Z(n+ 2,Dy).

For y = c(C) we have y ∈ W (F(D(n,C))) by (iii). Using Lemma 3.9 we
find r(y) ∈ (0, r1(y)), Sy with the C(n + 1, δ, κ, αn+1)-property in B(y, r(y)),
and Sy \ {y} ⊂ Z(n+ 2,D(n,C)). Set Dy = D(n,C).

We set Un(C) = {B(y, r(y)); y ∈ Sn(C)} and Sn+1(C∗) = Sy, D(n +
1, C∗) = Dy, where y = c(C∗), C∗ ∈ Un(C). The system Un(C) is a B-system
with the P(n, δ, αn, ε)-property in C by Lemma 2.9. Set

Un =
⋃
{Un(C); C ∈ Un−1}.

The system Un is a B-system according to Lemma 2.3. The sets Sn(C), C ∈
Un−1, are countable (Observation 2.6) and Un−1 is also countable, thus Un is
countable as well. This finishes the construction of Un’s. Conditions (i) – (vii)
are clearly satisfied.

Using Theorem 2.10 we have that the set

L0 =
∞⋂
n=0

⋃
Un

is a closed non-σ-porous set.
Set L1 = L0 \

⋃∞
n=0 c(Un). The set

⋃∞
n=0 c(Un) is countable and therefore

L1 is non-σ-porous.
Take x ∈ L1 and consider the following tree of sequences of balls

T = {(U1, . . . , Uk); x ∈ Ui ∈ Ui(Ui−1), i = 1, . . . , k} ∪ {∅}.

The tree T is clearly infinite. Since the Un’s are point finite, the tree T is finite
splitting. Using König’s Lemma ([K, 4.12]), we get a sequence {Uk}∞k=1 such
that x ∈ Uk ∈ Uk(Uk−1) for every k ∈ N. Choose n ∈ N. Since x /∈

⋃∞
j=0 c(Uj)

and limj→∞ diamUj = 0, there exists k0 ∈ N, k0 ≥ n, with c(Uk0−1) 6=
c(Uk0). Using (v) we find m ∈ N such that F(D(k0 + 1, Uk0))∩Uk0 ⊂M(k0 +
1,m). Since D(j + 1, Uj) ≺ D(j, Uj−1) by (iv), we have F(D(j + 1, Uj)) ⊂
F(D(j, Uj−1)). This and limj→∞ diamUj = 0 imply that x ∈ F(D(k0 +
1, Uk0)). Thus x ∈M(k0 +1,m) and therefore x ∈M(n,m′) for some m′ ∈ N.
This shows that L1 ⊂ M . Hence M is a non-σ-porous set and the proof is
complete.
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4 Proof of Theorem 1.2.

To prove Theorem 1.2 we employ the technique of construction of non-σ-porous
sets developed by Zaj́ıček in [Z2].

Definition 4.1. Let ε ∈ (0, 1) and G ⊂ R, ∅ 6= G 6= R, be an open set. We say
that a system B of open nonempty intervals is a [G, ε]-system if the following
conditions hold:

(a) the system {B; B ∈ B} does not cover G and is discrete in G (i.e., for
each x ∈ G there exists a neighborhood of x which intersects at most
one member of {B; B ∈ B}),

(b) if y ∈ G, r > 0, and B(y, 1
εr) \ G 6= ∅, then B(y, r) contains a member

of B,

(c) if x ∈ ∂G and J is a set intersecting each member of B, then p(x, J ∪
(R \G)) = 0,

(d) for every B ∈ B we have (2 ? B \B) ∩ (
⋃
B) = ∅,

(e) for every B ∈ B we have dist(B,Gc) > diamB.

The next lemma relates the quantity Γ(x,B1, B2,M) (Definition 2.2(iii))
to the porosity index p(x,M).

Lemma 4.2. ([ZP, Lemma 2.15]) Let ε ∈ (0, 1), M ⊂ R, x ∈M , and (Bn)∞n=1

be a sequence of closed balls in R such that for every n ∈ N we have

(i) x ∈ Bn,

(ii) dist(Bn+1, B
c
n) ≥ diamBn+1,

(iii) Γ(x,Bn, Bn+1,M) < ε,

(iv) diamBn+1 ≤ 1
2 diamBn.

Then p(x,M) < 4ε.

The following observation, which can be verified by an easy calculation,
enables us to use Zaj́ıček’s result from [Z2].

Observation 4.3. Let ε ∈ (0, 1) and G ⊂ R, ∅ 6= G 6= R, be an open set. If
B is a G-system (see [Z2] for the definition) with respect to the function

g(t) = max{
√
t, 1
ε t}, t ∈ [0,+∞), then B satisfies (a) – (c) of Definition

4.1.
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Lemma 4.4. Let η > 0, ε ∈ (0, 1), and G ⊂ R, ∅ 6= G 6= R, be an open set.
Then there exists a [G, ε]-system B such that diamB < η for every B ∈ B.

Proof. Using Lemma 2 in [Z2] and Observation 4.3 we find a G-system B0

satisfying (a) – (c) of the definition of [G, ε]-system. Then for every B ∈
B0 we find a nonempty open interval C(B) ⊂ B such that 2 ? C(B) ⊂ B,
diamC(B) < η, and dist(C(B), Bc) > diamC(B). We set B := {C(B);B ∈
B}. Using [Z2, Note 1(iii)] we see that B has the desired properties.

Observation 4.5. Let B be a [G, ε]-system.

(i) We have ∂(
⋃
B) = ∂G ∪

⋃
{∂B; B ∈ B}.

(ii) If B ∈ B, then diamB < 1
2 diamG.

Lemma 4.4 makes the following constructions possible.

Construction 4.6. (cf. [Z2, Construction 1]) Let m ∈ N and let G ⊂ R,
∅ 6= G 6= R, be an open set. Then we choose a system D̃(G,m) such that

• D̃(G,m) is a [G, 1/(m+ 1)]-system,

• if B ∈ D̃(G,m), then diamB < 1/m.

Further set

• R̃(G,m) = G \
⋃
{B; B ∈ D̃(G,m)}.

Construction 4.7. (cf. [Z2, Construction 2]) Let m ∈ N and let G ⊂ R,
∅ 6= G 6= R, be an open set. Then we define a sequence of nonempty systems
of nonempty open intervals

S̃1(G,m), S̃2(G,m), . . .

and a sequence of nonempty open sets

G ⊃ R̃1(G,m) ⊃ R̃2(G,m) ⊃ . . .

inductively in the following way:

(i) S̃1(G,m) = D̃(G,m) and R̃1(G,m) = R̃(G,m),

(ii) if S̃k(G,m) and R̃k(G,m) are defined, then we set

S̃k+1(G,m) = D̃(R̃k(G,m),m) and R̃k+1(G,m) = R̃(R̃k(G,m),m).
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Construction 4.8. (cf. [Z2, Construction 3])

(i) Set U = (−1, 1) and K̃0 = K̃0
0 = {U}.

(ii) If K̃n is defined, then we set

K̃kn+1 =
⋃
{S̃k(B,n+ 1); B ∈ K̃n}, k ∈ N, and K̃n+1 =

n+1⋃
k=1

K̃kn+1.

We set L =
⋂∞
n=1

⋃
K̃n. Lemma 5 of [Z2] shows that the set

⋂∞
n=1

⋃
K̃n

is nowhere dense since
⋂∞
n=1

⋃
K̃n = A(U, {n}∞n=1) (see [Z2] for the definition

of A(U, {n}∞n=1)). Thus the set L is a closed nowhere dense set.
By definition we have that each [G, 1/(m + 1)]-system, m ∈ N, is a G-

system with respect to the function g(t) = 2t, t ∈ [0,∞). According to
Lemma 1 and Proposition from [Z2], we have that

⋂∞
n=1

⋃
K̃n is a non-σ-〈g〉-

porous set, hence L is a non-σ-〈g〉-porous. Since the notions of σ-porosity and
σ-〈g〉-porosity coincides ([Z4, Lemma E]), we have that L is not σ-porous.

The next lemmas summarize properties of the systems K̃n’s, which we
will need in the sequel. The first lemma deals with topological and metric
properties and the second one captures some properties related to porosity.

Lemma 4.9. (i) For every n ∈ N0 we have

⋃
K̃n =

⋃
K̃n ∪

n⋃
j=0

⋃
{∂B; B ∈ K̃j}.

(ii) For every n ∈ N0, B1 ∈ K̃n, and B2 ∈ K̃n+1 with B2 ⊂ B1, we have
diamB2 <

1
2 diamB1.

(iii) The set L intersects each interval from
⋃∞
j=0 K̃j.

(iv) We have L =
⋂∞
n=0

⋃
K̃n.

(v) For every n ∈ N0, B1 ∈ K̃n, and B2 ∈ K̃n+1 with B2 ⊂ B1, we have
dist(B2, B

c
1) ≥ diamB2.

Proof. (i) Using Observation 4.5(i) we see that for every C ∈ K̃j , j ∈ N0,
we have

∂C ⊂
⋃
{∂B; B ∈ K̃j+1}.
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This yields ⋃
{∂C; C ∈ K̃j} ⊂

⋃
{∂B; B ∈ K̃j+1}, j ∈ N0.

Then we get

n⋃
j=0

⋃
{∂B; B ∈ K̃j} ⊂

⋃
{∂B; B ∈ K̃n} ⊂

⋃
K̃n.

Thus we have ⋃
K̃n ∪

n⋃
j=0

⋃
{∂B; B ∈ K̃j} ⊂

⋃
K̃n.

To prove the inverse inclusion we proceed by induction over n. For n = 0
the assertion clearly holds. Assume that the assertion holds for n. Using
Observation 4.5(i) we have for every C ∈ K̃n⋃

K̃n+1 ∩ C =
⋃
{B; B ∈ K̃n+1, B ⊂ C}.

It implies ⋃
K̃n+1 ∩

⋃
K̃n =

⋃
{∂B; B ∈ K̃n+1} ∪

⋃
K̃n+1.

Since ⋃
K̃n \

⋃
K̃n ⊂

n⋃
j=0

⋃
{∂B; B ∈ K̃j},

(by the induction hypothesis) and⋃
K̃n+1 ⊂

⋃
K̃n,

we conclude⋃
K̃n+1 =

(⋃
K̃n+1 ∩

⋃
K̃n

)
∪

(⋃
K̃n+1 ∩

(⋃
K̃n \

⋃
K̃n

))
⊂

⋃
K̃n+1 ∪

n+1⋃
j=0

⋃
{∂B; B ∈ K̃j}.

(ii) The construction and Observation 4.5(ii) give (ii).
(iii) Let B ∈ K̃n, n ∈ N0. Then there are intervals B1, B2, . . . such

that Bj ∈ K̃n+j , B ⊃ B1, and Bj ⊃ Bj+1 for every j ∈ N. Then we have
∅ 6=

⋂∞
j=1Bj ⊂ L ∩B.
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(iv) The inclusion L ⊂
⋂∞
n=0

⋃
K̃n obviously holds. To prove the inverse

inclusion consider x ∈
⋂∞
n=0

⋃
K̃n and ε > 0. Using Lemma 4.9(ii) we find

n ∈ N and B ∈ K̃n such that B(x, ε) ∩ B 6= ∅ and diamB < ε. According to
(iii) we have ∅ 6= B ∩ L ⊂ B(x, 2ε) ∩ L. It gives x ∈ L = L, since ε can be
chosen arbitrarily small.

(v) This property follows directly from the construction and from the def-
inition of [G, ε]-system.

Lemma 4.10. (i) Let n ∈ N0, B1 ∈ K̃n, j ∈ {1, . . . , n}, B2 ∈ K̃jn+1,
B2 ⊂ B1, and x ∈ B2. Then Γ(x,B1, B2, L) ≤ 1/(n+ 2).

(ii) If n ∈ N, n > 1, j ∈ {1, . . . , n − 1}, B ∈ K̃jn, and x ∈ ∂B, then
p(x, L) = 0.

(iii) If n ∈ N0 and B ∈ K̃nn, then (2 ? B \B) ∩ L = ∅.

Proof. (i) Take an interval B(y, r) ⊂ B1 such that B(y, r) ∩ L = ∅ and
y ∈ B1 \ B2. The set L intersects each interval from K̃j+1

n+1 (Lemma 4.9(iii))
and it implies B(y, (n+ 2)r) ∩B2 = ∅. Thus we have

r

dist(y, x)
<

r

(n+ 2)r
=

1
n+ 2

.

Consequently, Γ(x,B1, B2, L) ≤ 1/(n+ 2).
(ii) There exists C ∈ K̃n−1 with B ⊂ C. By Lemma 4.9(iii) the set

L intersects each interval of S̃j+1(C, n). We have also x ∈ ∂R̃j(C, n) (Ob-
servation 4.5(i)). Bearing property (c) of Definition 4.1 in mind, we get
p(x, L ∪ (R \ R̃j(C, n))) = 0. There exists a neighborhood U of x such that
U ∩ (R\ R̃j(C, n)) = U ∩B. Thus we have p(x, L∪B) = 0. We have that L in-
tersects each element of S̃1(B,n+1). Since x ∈ ∂B we get p(x, L∪(R\B)) = 0.
The set B is an interval and therefore we can conclude that p(x, L) = 0.

(iii) This property is obvious for n = 0. For n > 0 it easily follows by the
construction using properties (d) and (e) of Definition 4.1.

To finish the proof of Theorem 1.2 it remains to show that P (L) is Gδ. We
define

Qn =
∞⋃
j=n

⋃
{B; B ∈ K̃jj} ∪

n−1⋃
j=0

⋃
{∂B; B ∈ K̃jj}, n ∈ N.

We claim that

(i) P (L) =
⋂∞
n=1Qn,
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(ii) Qn ∩ L is Gδ for every n ∈ N.

These two facts imply that P (L) is Gδ.
Proof of (i). Since Qn ⊂

⋃
K̃n by Lemma 4.9(i), we have

⋂∞
n=1Qn ⊂ L

by Lemma 4.9(iv). Suppose that x ∈
⋂∞
n=1Qn. If moreover x ∈ ∂B for some

B ∈ K̃j0j0 , j0 ∈ N0, then (2?B\B)∩L = ∅ by Lemma 4.10(iii) and so x is clearly
a point of porosity of L. Now assume that x ∈

⋂∞
n=1Qn \

⋃∞
j=0

⋃
{∂B; B ∈

K̃jj}. Then there is an increasing sequence {jk}∞k=1 of natural numbers and a
sequence {Bk}∞k=1 of open intervals such that x ∈ Bk ∈ K̃jkjk for every k ∈ N.
We have (2 ? Bk \ Bk) ∩ L = ∅ for every k ∈ N by Lemma 4.10(iii). Since
limk→∞ diamBk = ∅ (Lemma 4.9(ii)), we get x ∈ P (L). Thus

⋂∞
n=1Qn ⊂

P (L).
Now suppose that x ∈ L \

⋂∞
n=1Qn. Thus there exists n0 ∈ N such that

x ∈ L \Qn0 . It implies that x /∈
⋃∞
j=0

⋃
{∂B; B ∈ K̃jj}. Using (i) and (iv) of

Lemma 4.9 we see that there are two possibilities.
1) There exist n ∈ N, n > 1, j ∈ {1, . . . , n − 1}, and B ∈ K̃jn such that

x ∈ ∂B. Then Lemma 4.10 (ii) gives p(x, L) = 0.
2) There exists a sequence {Bn}∞n=n0+1 of open intervals and a sequence

{jn}∞n=n0+1 of natural numbers such that x ∈ Bn ∈ K̃jnn and jn < n. Then we
have for every n > n0:

• dist(Bn+1, B
c
n) ≥ diamBn+1 (Lemma 4.9(v)),

• Γ(x,Bn, Bn+1, L) ≤ 1/(n+ 2) (Lemma 4.10(i)),

• diamBn+1 <
1
2 diamBn (Lemma 4.9(ii)).

Now Lemma 4.2 gives p(x, L) = 0. This finishes the proof of (i).

Proof of (ii). If B ∈ K̃jj , j ∈ N, then the set B ∩ L is open in L (Lemma

4.10 (iii)). Thus the set
(⋃∞

j=n

⋃
{B; B ∈ K̃jj}

)
∩L is open in L. The system

{∂B; B ∈ K̃jj} is discrete in some open set. Thus the set
⋃n−1
j=0

⋃
{∂B; B ∈

K̃jj} is Gδ. Consequently, Qn ∩ L is Gδ for every n ∈ N.

References

[FH] J. Foran and P. Humke, Some set-theoretic properties of σ-porous sets,
Real Analysis Exchange, 6 (1980-81), 114–119.

[K] A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag (1995),
New York.



674 Miroslav Zelený
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