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ON THE CONVERGENCE OF SEQUENCES
OF INTEGRALLY QUASICONTINUOUS

FUNCTIONS

Abstract

A function f : Rn → R satisfies condition (Qi(x)) (resp. (Qs(x)),
[Qo(x)]) at a point x if for each real r > 0 and for each set U 3 x
belonging to the Euclidean topology in Rn (resp. to the strong density
topology [to the ordinary density topology]) there is an open set I such
that I ∩ U 6= ∅, f is Lebesgue integrable on I ∩ U and˛̨̨̨

1

µ(U ∩ I)

Z
U∩I

f(t)dt− f(x)

˛̨̨̨
< r.

These notions are modifications of quasicontinuity or approximate qua-
sicontinuity. In this article we investigate the limits of sequences of such
functions.

Let R be the set of all reals and let Rn be the n-dimensional product space.
For a point x = (x1, . . . , xn) ∈ Rn and positive reals r1, . . . , rn put

Ii = (xi − ri, xi + ri) for i = 1, 2, . . . , n,

and
P (x; r1, . . . , rn) = I1 × . . .× In.

The symbol Q(x, r) denotes the cube P (x; r1, . . . , rn), where r1 = · · · = rn = r.
Denote Lebesgue measure in Rn by µ. For a Lebesgue measurable set

A ⊂ Rn and a point x ∈ Rn we define the lower strong density Dl(A, x) of the
set A at the point x by

lim inf
h1,...,hn→0+

µ(A ∩ P (x; h1, . . . , hn))
µ(P (x; h1, . . . , hn))

.
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Similarly for a Lebesgue measurable set A ⊂ Rn and a point x ∈ Rn we define
the lower ordinary density dl(A, x) of the set A at the point x by

lim inf
h→0+

µ(A ∩Q(x, h))
µ(Q(x, h))

.

A point x is said to be a strong density point of a measurable set A if
Dl(A, x) = 1.

Similarly we define the notions of an ordinary density point.
The family Tsd (Tod) of all Lebesgue measurable sets A for which the

implication

x ∈ A =⇒ x is a strong (resp. an ordinary) density point of A

is true, is a topology called the strong (resp. ordinary) density topology ([2,
3, 14]).

If Te denotes the Euclidean topology in Rn, then evidently Te ⊂ Tsd ⊂ Tod.
The continuity of mappings f from (Rn, Tsd) (resp. from (Rn, Tod)) to

(R, Te) is called the strong (ordinary) approximate continuity ([2, 3, 14]).
For an arbitrary function f : Rn → R denote by C(f) the set of all conti-

nuity points of f . Moreover let D(f) = Rn \ C(f).
In [8, 9] the following notion is investigated.
A function f : Rn → R is quasicontinuous at a point x (f ∈ Q(x)) if for

each positive real r and for each set U ∈ Te containing x there is a nonempty
open set I such that I ⊂ U and |f(t)− f(x)| < r for all points t ∈ I.

A function f is quasicontinuous, if f ∈ Q(x) for every point x ∈ Rn.
Analogously, as some particular cases of the notion of quasicontinuity of

real functions on topological spaces (compare [9]) we have the following defi-
nitions.

A function f : Rn → R is Tsd-approximately quasicontinuous (resp. Tod-
approximately quasicontinuous) at a point x if for each positive real r and for
each set U ∈ Tsd (resp. U ∈ Tod) containing x there is a nonempty set V ∈ Tsd

(resp. a nonempty set V ∈ Tod) contained in U and such that |f(t)−f(x)| < r
for all points t ∈ V .

If f is Tsd-approximately quasicontinuous (resp. Tod-approximately qua-
sicontinuous) at each point x ∈ Rn, then f is said to be Tsd-approximately
quasicontinuous (resp. Tod-approximately quasicontinuous).

A function f : Rn → R is integrally quasicontinuous at a point x (f ∈
Qi(x), [4]) if for each positive real r and for each bounded set U ∈ Te containing
x there is a nonempty open set I such that I ⊂ U , f is Lebesgue integrable
on I and ∣∣∣∫I

f(t)dt

µ(I)
− f(x)

∣∣∣ < r.
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A function f is integrally quasicontinuous (f ∈ Qi), if f ∈ Qi(x) for every
point x ∈ Rn.

A function f : Rn → R belongs to Qs(x) (resp. f ∈ Qo(x), [4]), if for each
positive real η and for each bounded set U ∈ Tsd (resp. U ∈ Tod) containing
x there is an open set I such that I ∩ U 6= ∅, the function f is Lebesgue
integrable on I ∩ U and∣∣∣ 1

µ(I ∩ U)

∫
I∩U

f(t)dt− f(x)
∣∣∣ < η.

If f ∈ Qs(x) (resp. f ∈ Qo(x)) for every point x ∈ Rn, then we will write
that f ∈ Qs (resp. f ∈ Qo).

In this article I consider some kinds of the convergence of sequences of
integrally quasicontinuous functions.

Observe that if a function f : Rn → R is integrally quasicontinuous, then
the set Z(f) of all points x ∈ Rn at which f is locally Lebesgue integrable is
open and dense in Rn.

We will show that there are quasicontinuous bounded functions f : R → R
such that Z(f) = ∅.

Example 1. (see [4]).
If A ⊂ R is a nowhere dense closed set of positive measure, then we find

a nonmeasurable (in the sense of Lebesgue) set B ⊂ A such that the interior
measures µi(B) and µi(A \B) are zero and we put

fA(x) =

{
1 for x ∈ B

0 for x ∈ A \B,

and if (a, b) is a component of the set R \A, then for x ∈ (a, b) we put

fA(x) = sin
( 1

min(x− a, b− x)

)
.

Evidently, the function fA is quasicontinuous,

fA(R) = [−1, 1], C(fA) = R \A

and the restricted function fA � A is not measurable (in the Lebesgue sense).
Now let E ⊂ R be a dense Gδ-set of measure zero and let H = R \ E.

Since H is a Fσ-set of the first category, by Sierpiński’s theorem from [10]
there are pairwise disjoint closed sets Fn such that H = ∪nFn. Without loss
of generality we can suppose that µ(Fn) > 0 for n ≥ 1. Let

f =
∞∑

n=1

1
2n

fFn
. (∗)
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If x ∈ E, then for each integer n ≥ 1 the point x belongs to R \ Fn = C(fFn).
Consequently, by the uniform convergence of the series in (∗), the function f
is continuous at x. So, f ∈ Q(x).

Now let x ∈ H. There is a unique integer k with x ∈ Fk. For n 6= k the
functions fFn

are continuous at x, so the sum
∑

n 6=k
1
2n fFn

is also continuous
at x. Since the function fFk

is quasicontinuous at x, by Theorem 1 from [7]
the sum

∞∑
n=1

1
2n

fFn
=

∑
n 6=k

1
2n

fFn
+

1
2k

fFk

is also quasicontinuous at x. So the function f is quasicontinuous.
Now let K ⊂ R be a Lebesgue measurable set of positive measure. Then

there is an integer j ≥ 1 with µ(K ∩ Fj) > 0. Since the sum
∑

n 6=j
1
2n fFn

is
continuous on K∩Fj and the restricted function fFj∩K is not measurable, the
restricted function f � K is not measurable. Consequently, Z(f) = ∅ and f is
not integrally quasicontinuous at any point.

From the above example we obtain the following.

Remark 1. There is a uniformly convergent sequence of functions from Qi

such that its limit is not in Qi.

Proof. If Rn = R, then for m ≥ 1 let fm =
∑

k≤m
1
2k fFk

. Since the functions
fm are quasicontinuous and the restrictions fm � (R\Em) to the complements
of the nowhere dense sets Em =

⋃
k≤m Fk are continuous, the functions fm,

m ≥ 1, are integrally quasicontinuous by Theorem 1 from [4]. Moreover the
sequence (fm) converges uniformly to f /∈ Qi.

If n > 1, then for x = (x1, x2, . . . , xn) ∈ Rn and m ≥ 1 we put

gm(x) = fm(x1) and g(x) = f(x1),

and observe that gm ∈ Qi, the sequence (gm) uniformly converges to g and
g /∈ Qi.

Remark 2. Since there is a nonmeasurable quasicontinuous function f :
Rn → R which is continuous on a dense open set, there is a nonmeasurable
integrally quasicontinuous function.

Proof. One can use the function f(x1, x2, . . . , xn) = fA(x1), fA being defined
as in the above example.

Theorem 1. If functions fm : Rn → R are integrally quasicontinuous at a
point x and the sequence (fm) converges uniformly to a function f which is
locally measurable at x, then f is integrally quasicontinuous at x.



Integrally Quasicontinuous Functions 771

Proof. Fix a real η > 0 and a bounded open set W 3 x. Without loss of
generality we can assume that the restricted function f � W is measurable.
There is a positive integer k such that |fk(t)− f(t)| < η

3 for all t ∈ Rn. Since
fk is integrally quasicontinuous at x, there is a nonempty open set U ⊂ W
such that ∣∣∣∫U

fk

µ(U)
− fk(x)

∣∣∣ <
η

3
.

Observe that∣∣∣ ∫
U

f

µ(U)
− f(x)

∣∣∣ ≤ ∣∣∣ ∫
U

f

µ(U)
−

∫
U

fk

µ(U)

∣∣∣ +
∣∣∣∫U

fk

µ(U)
− fk(x)

∣∣∣ + |fk(x)− f(x)|

<
ηµ(U)
3µ(U)

+
η

3
+

η

3
= η,

so f is integrally quasicontinuous at x.

Theorem 2. If for a function f : Rn → R the set D(f) = Rn \C(f) is of the
first category, then there is a sequence of integrally quasicontinuous functions
fm : Rn → R such that f = limm→∞ fm.

Proof. As in [5] (for the case f : R → R) we can prove that there is a
sequence of quasicontinuous functions fm : Rn → R such that the sets D(fm)
are nowhere dense for m ≥ 1 and f = limm→∞ fm. By Theorem 1 from [4]
the functions fm are integrally quasicontinuous and the proof is completed.

The inclusions Qo ⊂ Qs ⊂ Qi follow immediately from the inclusions
Te ⊂ Tsd ⊂ Tod.

Since there are nonmeasurable integrally quasicontinuous function, by the
next theorem we obtain that Qs 6= Qi. In the case Rn = R the equality
Qo = Qs is true. In the following example I show that Qo 6= Qs in the case
Rn, n ≥ 2.

Example 2. Put

E = {(x, y) ∈ R2; x > 0 and − x2 ≤ y ≤ x2},
G = {(x, y) ∈ R2; x > 0 and − 3x2 < y < 3x2},

and

H = R2 \G.

Let f : R2 → [0, 1] be a function such that

f(x, y) = 0 for (x, y) ∈ E ∪ {(0, 0)}, f(x, y) = 1 for (x, y) ∈ H \ {(0, 0)},
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and C(f) = R2 \ {(0, 0)}. Observe that the ordinary density

dl(H, (0, 0)) = lim
h→0+

µ(H ∩ ((−h, h)× (−h, h)))
4h2

= 1− lim
h→0+

2h3

4h2
= 1.

Thus (0, 0) ∈ U = int(H)∪{(0, 0)} ∈ Tod. Since f(x, y) = 1 for (x, y) ∈ int(H)
and f(0, 0) = 0, the function f /∈ Qo.

On the other hand

lim sup
h→0+

µ(E ∩ ((−h, h)× (−h4, h4)))
4h5

≥ lim sup
h→0+

2(h5 − h12)
4h5

=
1
2

> 0.

So, for each set U ∈ Tsd containing (0, 0) the intersection U ∩ int(E) is
nonempty and consequently f ∈ Qs((0, 0)). Since at other points of R2 the
function f is continuous, it belongs to Qs. Thus in the case Rn = R2 the
relation Qs 6= Qo holds.

For the case of functions defined on Rn, where n > 2 it suffices to put
g(x1, x2, . . . , xn) = f(x1, x2) and observe that g ∈ Qs \Q0.

Remark 3. If a function f : Rn → R belongs to Qs, then f is measurable.

Proof. It suffices to prove that for each nonempty open set G of finite
measure the restricted function f � G is measurable. Fix an open set G of
positive finite measure and let

a = sup{µ(H); H ⊂ G is measurable and f � H is measurable}.

Assume, to a contrary, that a < µ(G). Then for each positive integer n there is
a measurable set Hn ⊂ G such that µ(Hn) > a− 1

n and the restricted function
f � Hn is measurable. Let H =

⋃∞
n=1 Hn. Then the set H ⊂ G is measurable

and µ(H) = a and f � H is measurable. So, the difference K = G \ H is a
measurable set of positive measure. By Lebesgue’s density theorem the set

M = {x ∈ K; Dl(K, x) = 1} is measurable and µ(M) = µ(K).

Since M ∈ Tsd and f ∈ Qs(x) for x ∈ M , there is an open set W such that
W ∩M 6= ∅ and f � (W ∩M) is measurable. Evidently µ(W ∩M) > 0 and
W ∩ M ∩ H = ∅. Consequently, the set H ∪ (W ∩ M) is measurable, the
restricted function f/(H ∪ (W ∩M)) is measurable and µ(H ∪ (W ∩M)) > a,
contrary to the definition of a.

Theorem 3. If a sequence of functions fm : Rn → R belonging to Qo (resp.
belonging to Qs) converges uniformly to a function f : Rn → R, then f ∈ Qo

(resp. f ∈ Qs).



Integrally Quasicontinuous Functions 773

Proof. By Remark 3 f is the uniform limit of a sequence of measurable
functions and thus is measurable. Now the proof is analogous to that of
Theorem 1.

A generalization of uniform convergence is Arzelà’s quasi-uniform conver-
gence.

Recall ([12]) that a sequence of functions fm : Rn → R quasi-uniformly (in
the sense of Arzelà) converges to a function f if it pointwise converges to f
and for each real η > 0 and for each integer m > 0 there is a positive integer
p such that for each point x ∈ Rn

min(|fm+1(x)− f(x)|, . . . , |fm+p(x)− f(x)|) < η.

From Strońska’s Theorem 2 in [13] it follows that for each measurable
function f : Rn → R there is a sequence of Tsd-approximately quasicontinuous
and simultaneously Tod-approximately quasicontinuous functions fm : Rn →
R, which quasi-uniformly (in Arzelà’s sense) converges to f . It is obvious to
observe that the above functions fm may be bounded whenever f is bounded.

Since bounded Tod-approximately quasicontinuous functions belong to Qo

([4]), we obtain that the family of all quasi-uniform limits of sequences of
functions from Qo (so also from Qs) is the family of all measurable functions
on Rn.

It is known ([9] and compare [5]) that if f : Rn → R is the pointwise limit
of a sequence of quasicontinuous functions fm : Rn → R, then the set C(f) of
all continuity points of f is dense in Rn.

In [1] Borsik proves that for each function f : R → R with dense set C(f)
there is a sequence of quasicontinuous functions fm : R → R which quasi-
uniformly converges to f in Arzelà’s sense. A generalization of this theorem
for functions from a pseudometrizable space X into a separable metric spaces
Y is proved in Richter’s article [10]. That generalization covers in particular
the case X = Rn and Y = R.

Now I prove the following theorem.

Theorem 4. Let f : Rn → R be a bounded function such that the set C(f) is
dense. There is a sequence of quasicontinuous and integrally quasicontinuous
functions fm : Rn → R which quasi-uniformly converges to f in Arzelà’s sense.

Proof. If f is constant, then we can put fm = f for m ≥ 1. In the contrary
case put

a = inf
Rn

f and b = sup
Rn

f

and observe that a < b. Since the set C(f) is dense, the set

P = {r ∈ [a, b]; cl(f−1(r)) is of the second category}
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is countable. For each positive integer m we find a system Pm ⊂ [a, b] \ P of
reals a1, a2, . . . , ai(m)−1 such that for i ∈ {1, 2, . . . , i(m)}

a = a0 < a1 < · · · < ai(m)−1 < ai(m) = b and ai − ai−1 <
1
m

and Pm ⊂ Pm+1 and Pm+1 \ Pm 6= ∅ for m ≥ 1. Let

gm(x) =

{
ai−1 if ai−1 ≤ f(x) < ai, 1 ≤ i < i(m)
ai(m)−1 if ai(m)−1 ≤ f(x) ≤ ai(m) = b.

Then |gm − f | < 1
m .

If x ∈ C(f) and gm is not quasicontinuous at x and gm(x) = ai (then
evidently i > 0), we put hm(x) = ai−1. For other points t ∈ Rn we put
hm(t) = gm(t).

Observe that |hm − f | ≤ 1
m and hm is quasicontinuous at each point x ∈

C(f). Since the set C(f) is dense and the image hm(Rn) is finite, the interior
int(C(hm)) is also dense and

int(C(hm)) = C(hm) =
i(m)−1⋃

i=0

int((hm)−1(ai)).

Moreover, for each point x ∈ Rn we obtain that

osc hm(x) ≤ osc f(x) +
2
m

.

For i ∈ {0, 1, . . . , i(m)− 1} let

Em,i = {x; hm(x) = ai and hm is not quasicontinuous at x}.

Put Em =
⋃i(m)−1

i=0 Em,i, and observe that Em is a nowhere dense set. Assume
that Em,0 6= ∅. Since C(hm) is open and dense, there is a smallest integer
i1 > 0 such that

Gm,0,i1 = Em,0 ∩ cl(int((hm)−1(ai1))) 6= ∅.

There is a family of pairwise disjoint closed balls Km,0,i1,k,j , k = 1, 2 and
j ≥ 1, such that:

(i) Km,0,i1,k,j ⊂ A(Gm,0,i1 ,
1
m ) ∩ int((hm)−1(ai1)),

where for a set X 6= ∅ and a positive real r
A(X, r) =

⋃
x∈X

K(x, r) and K(x, r) = {t ∈ Rn; |t− x| ≤ r};
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(ii) cl(
⋃

j Km,0,i1,k,j) =
⋃

j Km,0,i1,k,j ∪ cl(Gm,0,i1) for k = 1, 2;

(iii) cl(
⋃

k,j Km,0,i1,k,j) =
⋃

k,j Km,0,i1,k,j ∪ cl(Gm,0,i1);

(iv) the family {Km,0,i1,k,j ; j ≥ 1, k = 1, 2} is locally finite at each point
x ∈ Rn \ cl(Gm,0,i1).

If Em,0 \ cl(Gm,0,i1) 6= ∅, then there is a smallest integer i2 > i1 such that

Gm,0,i2 = (Em,0 \Gm,0,i1) ∩ cl(int((hm)−1(ai2))) 6= ∅.

There is a family of pairwise disjoint closed balls Km,0,i2,k,j , k = 1, 2 and
j ≥ 1, such that:

(i) Km,0,i2,k,j ⊂ A(Gm,0,i2 ,
1
m ) ∩ int((hm)−1(ai2));

(ii) cl(
⋃

j Km,0,i2,k,j) =
⋃

j Km,0,i2,k,j ∪ cl(Gm,0,i2) for k = 1, 2;

(iii) cl(
⋃

k,j Km,0,i2,k,j) =
⋃

k,j Km,0,i2,k,j ∪ cl(Gm,0,i2);

(iv) the family {Km,0,i2,k,j ; j ≥ 1, k = 1, 2} is locally finite at each point
x ∈ Rn \ cl(Gm,0,i2).

Proceeding with this reasoning we find a system i1 < i2 < · · · < ik0

of positive integers and families of pairwise disjoint closed balls Km,0,il,k,j ,
where k = 1, 2, l ≤ k0, j ≥ 1, such that:

(i) for l ≤ k0 the difference Em,0 \ (cl(Gm,0,i1) ∪ . . . ∪ cl(Gm,0,il−1)) is
nonempty and il is the smallest integer il > il−1 such that

Gm,0,il
= Em,0 ∩ cl(int((hm)−1(ai1))) 6= ∅;

(ii) Em,0 = Gm,0,i1 ∪ . . . ∪Gm,0,ik0
;

(iii) Km,0,il,k,j ⊂ A(Gm,0,il
, 1

m ) ∩ int((hm)−1(ail
));

(iv) cl(
⋃

j Km,0,il,k,j) =
⋃

j Km,0,il,k,j ∪ cl(Gm,0,il
) for k = 1, 2;

(v) cl(
⋃

k,j Km,0,il,k,j) =
⋃

k,j Km,0,il,k,j ∪ cl(Gm,0,il
);

(vi) the family {Km,0,il,k,j ; j ≥ 1, k = 1, 2} is locally finite at each point
x ∈ Rn \ cl(Gm,0,il

).
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Now we put

hm,0,1(x) =

{
a0 for x ∈ Km,0,il,1,j , j ≥ 1, l = 1, 2, . . . , k0

hm(x) otherwise on Rn

and

hm,0,2(x) =

{
a0 for x ∈ Km,0,il,2,j , j ≥ 1, l = 1, 2, . . . , k0

hm(x) otherwise on Rn.

Observe that the functions hm,0,1 and hm,0,2 are quasicontinuous at all points
x ∈ (Rn \ Em) ∪ Em,0. If Em,0 = ∅, then we put hm,0,1 = hm,0,2 = hm.

Proceeding with this reasoning for Em,1, . . . , Em,i(m)−1 we define quasi-
continuous functions f2m−1 = hm,i(m)−1,1 and f2m = hm,i(m)−1,2 such that
the interiors int(C(f2m−1)) and int(C(f2m)) are dense (so f2m−1 and f2m are
integrally quasicontinuous [4], Theorem 1),

min(|f2m−1 − f |, |f2m − f |) ≤ |hm − f | ≤ 1
m

(∗)

and
{x; f2m−1(x) 6= hm(x)} ∪ {x; f2m(x) 6= hm(x)} ⊂ A(Em,

1
m

). (∗∗)

It ought to be pointed out that for i ≥ 1 the functions hm,i,1 and hm,i,2

are obtained as modifications of hm,i−1,1 and hm,i−1,2 respectively on closed
balls Km,i,il,1,j or Km,i,il,2,j , i = 1, 2, . . . , i(m) − 1, l = 1, . . . , ki, j ≥ 1, and
that all the sets Km,i,il,1,j and Km,i,il,2,j , i = 1, 2, . . . , i(m)− 1, l = 1, . . . , ki,
j ≥ 1, are pairwise disjoint (not only for fixed i).

If x ∈ D(f) = Rn \ C(f), then for sufficiently large integers m we have

f2m−1(x) = f2m(x) = hm(x), so lim
m→∞

fm(x) = lim
m→∞

hm(x) = f(x).

Fix a point x ∈ C(f) and a positive real η. Let m1 be a positive integer
such that 4

m1
< η. For k ≥ 1 let

Ak = {x; osc f(x) ≥ 1
k
}.

Since D(f) = ∪kAk, we obtain x /∈ Ak for k ≥ 1. Let c = inf{|t−x|; t ∈ Am1}.
Evidently, c > 0. There is a positive integer k1 > m1 with 1

k1
< c. Let k > k1

be an integer. For t ∈ Rn \Am1 we have osc f(t) < 1
m1

and consequently,

osc hk(t) < osc f(t) +
2
k

<
1

m1
+

2
k

.
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Since x ∈ Rn \ A(Em, 1
k ), by (∗∗) we obtain that osc f(x) < 1

m1
and

max(|f2k−1(x)− hk(x)|, |f2k(x)− hk(x)|) <
1

m1
+

2
k

.

So

max(|f2k−1(x)− f(x)|, |f2k(x)− f(x)|)
≤|hk(x)− f(x)|+ max(|hk(x)− f2k−1(x)|, |hk(x)− f2k(x)|)

<
1
k

+
1

m1
+

2
k

<
1
k

+
1

m1
+

2
k1

<
4

m1
< η,

and limm→∞ fm(x) = f(x). So the sequence (fm) converges pointwise to f .
By (∗) it quasi-uniformly converges to f in Arzelà’s sense.

Acknowledgement. The author is grateful to the referee for a great many
corrections and suggestions for improving the article.
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