Zbigniew Grande, Institute of Mathematics, Bydgoszcz Academy, Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. email: grande@ab.edu.pl

ON THE CONVERGENCE OF SEQUENCES OF INTEGRALLY QUASICONTINUOUS FUNCTIONS

Abstract

A function $f : \mathbb{R}^n \to \mathbb{R}$ satisfies condition $(Q_i(x))$ (resp. $(Q_s(x))$, $[Q_o(x)]$) at a point x if for each real r > 0 and for each set $U \ni x$ belonging to the Euclidean topology in \mathbb{R}^n (resp. to the strong density topology [to the ordinary density topology]) there is an open set I such that $I \cap U \neq \emptyset$, f is Lebesgue integrable on $I \cap U$ and

$$\left|\frac{1}{\mu(U \cap I)} \int_{U \cap I} f(t) dt - f(x)\right| < r.$$

These notions are modifications of quasicontinuity or approximate quasicontinuity. In this article we investigate the limits of sequences of such functions.

Let \mathbb{R} be the set of all reals and let \mathbb{R}^n be the *n*-dimensional product space. For a point $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and positive reals r_1, \ldots, r_n put

$$I_i = (x_i - r_i, x_i + r_i)$$
 for $i = 1, 2, \dots, n$,

and

$$P(x; r_1, \ldots, r_n) = I_1 \times \ldots \times I_n.$$

The symbol Q(x, r) denotes the cube $P(x; r_1, \ldots, r_n)$, where $r_1 = \cdots = r_n = r$.

Denote Lebesgue measure in \mathbb{R}^n by μ . For a Lebesgue measurable set $A \subset \mathbb{R}^n$ and a point $x \in \mathbb{R}^n$ we define the lower strong density $D_l(A, x)$ of the set A at the point x by

$$\liminf_{h_1,\ldots,h_n\to 0^+} \frac{\mu(A\cap P(x;h_1,\ldots,h_n))}{\mu(P(x;h_1,\ldots,h_n))}.$$

Key Words: Density topologies, integral quasicontinuities,

quasicontinuity, sequences of functions

Mathematical Reviews subject classification: 26B05, 26A03, 26A15 Received by the editors February 15, 2005

Communicated by: B. S. Thomson

Similarly for a Lebesgue measurable set $A \subset \mathbb{R}^n$ and a point $x \in \mathbb{R}^n$ we define the lower ordinary density $d_l(A, x)$ of the set A at the point x by

$$\liminf_{h \to 0^+} \frac{\mu(A \cap Q(x,h))}{\mu(Q(x,h))}.$$

A point x is said to be a strong density point of a measurable set A if $D_l(A, x) = 1$.

Similarly we define the notions of an ordinary density point.

The family T_{sd} (T_{od}) of all Lebesgue measurable sets A for which the implication

$$x \in A \Longrightarrow x$$
 is a strong (resp. an ordinary) density point of A

is true, is a topology called the strong (resp. ordinary) density topology ([2, 3, 14]).

If T_e denotes the Euclidean topology in \mathbb{R}^n , then evidently $T_e \subset T_{sd} \subset T_{od}$. The continuity of mappings f from (\mathbb{R}^n, T_{sd}) (resp. from (\mathbb{R}^n, T_{od})) to (\mathbb{R}, T_e) is called the strong (ordinary) approximate continuity ([2, 3, 14]).

For an arbitrary function $f : \mathbb{R}^n \to \mathbb{R}$ denote by C(f) the set of all continuity points of f. Moreover let $D(f) = \mathbb{R}^n \setminus C(f)$.

In [8, 9] the following notion is investigated.

A function $f : \mathbb{R}^n \to \mathbb{R}$ is quasicontinuous at a point x $(f \in Q(x))$ if for each positive real r and for each set $U \in T_e$ containing x there is a nonempty open set I such that $I \subset U$ and |f(t) - f(x)| < r for all points $t \in I$.

A function f is quasicontinuous, if $f \in Q(x)$ for every point $x \in \mathbb{R}^n$.

Analogously, as some particular cases of the notion of quasicontinuity of real functions on topological spaces (compare [9]) we have the following definitions.

A function $f : \mathbb{R}^n \to \mathbb{R}$ is T_{sd} -approximately quasicontinuous (resp. T_{od} -approximately quasicontinuous) at a point x if for each positive real r and for each set $U \in T_{sd}$ (resp. $U \in T_{od}$) containing x there is a nonempty set $V \in T_{sd}$ (resp. a nonempty set $V \in T_{od}$) contained in U and such that |f(t) - f(x)| < r for all points $t \in V$.

If f is T_{sd} -approximately quasicontinuous (resp. T_{od} -approximately quasicontinuous) at each point $x \in \mathbb{R}^n$, then f is said to be T_{sd} -approximately quasicontinuous (resp. T_{od} -approximately quasicontinuous).

A function $f : \mathbb{R}^n \to \mathbb{R}$ is integrally quasicontinuous at a point x ($f \in Q_i(x), [4]$) if for each positive real r and for each bounded set $U \in T_e$ containing x there is a nonempty open set I such that $I \subset U$, f is Lebesgue integrable on I and

$$\left|\frac{\int_{I} f(t)dt}{\mu(I)} - f(x)\right| < r.$$

A function f is integrally quasicontinuous $(f \in Q_i)$, if $f \in Q_i(x)$ for every point $x \in \mathbb{R}^n$.

A function $f : \mathbb{R}^n \to \mathbb{R}$ belongs to $Q_s(x)$ (resp. $f \in Q_o(x)$, [4]), if for each positive real η and for each bounded set $U \in T_{sd}$ (resp. $U \in T_{od}$) containing x there is an open set I such that $I \cap U \neq \emptyset$, the function f is Lebesgue integrable on $I \cap U$ and

$$\left|\frac{1}{\mu(I\cap U)}\int_{I\cap U}f(t)dt - f(x)\right| < \eta.$$

If $f \in Q_s(x)$ (resp. $f \in Q_o(x)$) for every point $x \in \mathbb{R}^n$, then we will write that $f \in Q_s$ (resp. $f \in Q_o$).

In this article I consider some kinds of the convergence of sequences of integrally quasicontinuous functions.

Observe that if a function $f : \mathbb{R}^n \to \mathbb{R}$ is integrally quasicontinuous, then the set Z(f) of all points $x \in \mathbb{R}^n$ at which f is locally Lebesgue integrable is open and dense in \mathbb{R}^n .

We will show that there are quasicontinuous bounded functions $f : \mathbb{R} \to \mathbb{R}$ such that $Z(f) = \emptyset$.

Example 1. (see [4]).

If $A \subset \mathbb{R}$ is a nowhere dense closed set of positive measure, then we find a nonmeasurable (in the sense of Lebesgue) set $B \subset A$ such that the interior measures $\mu_i(B)$ and $\mu_i(A \setminus B)$ are zero and we put

$$f_A(x) = \begin{cases} 1 & \text{for } x \in B \\ 0 & \text{for } x \in A \setminus B \end{cases}$$

and if (a, b) is a component of the set $\mathbb{R} \setminus A$, then for $x \in (a, b)$ we put

$$f_A(x) = \sin\left(\frac{1}{\min(x-a,b-x)}\right).$$

Evidently, the function f_A is quasicontinuous,

$$f_A(\mathbb{R}) = [-1, 1], \ C(f_A) = \mathbb{R} \setminus A$$

and the restricted function $f_A \upharpoonright A$ is not measurable (in the Lebesgue sense).

Now let $E \subset \mathbb{R}$ be a dense G_{δ} -set of measure zero and let $H = \mathbb{R} \setminus E$. Since H is a F_{σ} -set of the first category, by Sierpiński's theorem from [10] there are pairwise disjoint closed sets F_n such that $H = \bigcup_n F_n$. Without loss of generality we can suppose that $\mu(F_n) > 0$ for $n \geq 1$. Let

$$f = \sum_{n=1}^{\infty} \frac{1}{2^n} f_{F_n}.$$
 (*)

If $x \in E$, then for each integer $n \ge 1$ the point x belongs to $\mathbb{R} \setminus F_n = C(f_{F_n})$. Consequently, by the uniform convergence of the series in (*), the function f is continuous at x. So, $f \in Q(x)$.

Now let $x \in H$. There is a unique integer k with $x \in F_k$. For $n \neq k$ the functions f_{F_n} are continuous at x, so the sum $\sum_{n \neq k} \frac{1}{2^n} f_{F_n}$ is also continuous at x. Since the function f_{F_k} is quasicontinuous at x, by Theorem 1 from [7] the sum

$$\sum_{n=1}^{\infty} \frac{1}{2^n} f_{F_n} = \sum_{n \neq k} \frac{1}{2^n} f_{F_n} + \frac{1}{2^k} f_{F_k}$$

is also quasicontinuous at x. So the function f is quasicontinuous.

Now let $K \subset \mathbb{R}$ be a Lebesgue measurable set of positive measure. Then there is an integer $j \geq 1$ with $\mu(K \cap F_j) > 0$. Since the sum $\sum_{n \neq j} \frac{1}{2^n} f_{F_n}$ is continuous on $K \cap F_j$ and the restricted function $f_{F_j \cap K}$ is not measurable, the restricted function $f \upharpoonright K$ is not measurable. Consequently, $Z(f) = \emptyset$ and f is not integrally quasicontinuous at any point.

From the above example we obtain the following.

Remark 1. There is a uniformly convergent sequence of functions from Q_i such that its limit is not in Q_i .

PROOF. If $\mathbb{R}^n = \mathbb{R}$, then for $m \ge 1$ let $f_m = \sum_{k \le m} \frac{1}{2^k} f_{F_k}$. Since the functions f_m are quasicontinuous and the restrictions $f_m \upharpoonright (\mathbb{R} \setminus E_m)$ to the complements of the nowhere dense sets $E_m = \bigcup_{k \le m} F_k$ are continuous, the functions f_m , $m \ge 1$, are integrally quasicontinuous by Theorem 1 from [4]. Moreover the sequence (f_m) converges uniformly to $f \notin Q_i$.

If n > 1, then for $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$ and $m \ge 1$ we put

$$g_m(x) = f_m(x_1)$$
 and $g(x) = f(x_1)$,

and observe that $g_m \in Q_i$, the sequence (g_m) uniformly converges to g and $g \notin Q_i$.

Remark 2. Since there is a nonmeasurable quasicontinuous function f: $\mathbb{R}^n \to \mathbb{R}$ which is continuous on a dense open set, there is a nonmeasurable integrally quasicontinuous function.

PROOF. One can use the function $f(x_1, x_2, ..., x_n) = f_A(x_1)$, f_A being defined as in the above example.

Theorem 1. If functions $f_m : \mathbb{R}^n \to \mathbb{R}$ are integrally quasicontinuous at a point x and the sequence (f_m) converges uniformly to a function f which is locally measurable at x, then f is integrally quasicontinuous at x.

PROOF. Fix a real $\eta > 0$ and a bounded open set $W \ni x$. Without loss of generality we can assume that the restricted function $f \upharpoonright W$ is measurable. There is a positive integer k such that $|f_k(t) - f(t)| < \frac{\eta}{3}$ for all $t \in \mathbb{R}^n$. Since f_k is integrally quasicontinuous at x, there is a nonempty open set $U \subset W$ such that

$$\left|\frac{\int_U f_k}{\mu(U)} - f_k(x)\right| < \frac{\eta}{3}.$$

Observe that

$$\left|\frac{\int_{U} f}{\mu(U)} - f(x)\right| \le \left|\frac{\int_{U} f}{\mu(U)} - \frac{\int_{U} f_{k}}{\mu(U)}\right| + \left|\frac{\int_{U} f_{k}}{\mu(U)} - f_{k}(x)\right| + |f_{k}(x) - f(x)| < \frac{\eta\mu(U)}{3\mu(U)} + \frac{\eta}{3} + \frac{\eta}{3} = \eta,$$

so f is integrally quasicontinuous at x.

Theorem 2. If for a function $f : \mathbb{R}^n \to \mathbb{R}$ the set $D(f) = \mathbb{R}^n \setminus C(f)$ is of the first category, then there is a sequence of integrally quasicontinuous functions $f_m : \mathbb{R}^n \to \mathbb{R}$ such that $f = \lim_{m \to \infty} f_m$.

PROOF. As in [5] (for the case $f : \mathbb{R} \to \mathbb{R}$) we can prove that there is a sequence of quasicontinuous functions $f_m : \mathbb{R}^n \to \mathbb{R}$ such that the sets $D(f_m)$ are nowhere dense for $m \ge 1$ and $f = \lim_{m \to \infty} f_m$. By Theorem 1 from [4] the functions f_m are integrally quasicontinuous and the proof is completed.

The inclusions $Q_o \subset Q_s \subset Q_i$ follow immediately from the inclusions $T_e \subset T_{sd} \subset T_{od}$.

Since there are nonmeasurable integrally quasicontinuous function, by the next theorem we obtain that $Q_s \neq Q_i$. In the case $\mathbb{R}^n = \mathbb{R}$ the equality $Q_o = Q_s$ is true. In the following example I show that $Q_o \neq Q_s$ in the case \mathbb{R}^n , $n \geq 2$.

Example 2. Put

$$\begin{split} E &= \{ (x,y) \in \mathbb{R}^2; x > 0 \ \text{ and } \ -x^2 \le y \le x^2 \}, \\ G &= \{ (x,y) \in \mathbb{R}^2; x > 0 \ \text{ and } \ -3x^2 < y < 3x^2 \}, \end{split}$$

and

$$H = \mathbb{R}^2 \setminus G.$$

Let $f: \mathbb{R}^2 \to [0,1]$ be a function such that

$$f(x,y) = 0$$
 for $(x,y) \in E \cup \{(0,0)\}, f(x,y) = 1$ for $(x,y) \in H \setminus \{(0,0)\}, (0,0) \in H \setminus \{(0,0)\}, (0,0)\}, (0,0) \in H \setminus \{(0,0)\}, (0,0)\}, (0,0) \in H \setminus \{(0,0)\}, (0,0)\}, (0,0) \in H \setminus$

and $C(f) = \mathbb{R}^2 \setminus \{(0,0)\}$. Observe that the ordinary density

$$d_l(H, (0,0)) = \lim_{h \to 0^+} \frac{\mu(H \cap ((-h,h) \times (-h,h)))}{4h^2} = 1 - \lim_{h \to 0^+} \frac{2h^3}{4h^2} = 1.$$

Thus $(0,0) \in U = int(H) \cup \{(0,0)\} \in T_{od}$. Since f(x,y) = 1 for $(x,y) \in int(H)$ and f(0,0) = 0, the function $f \notin Q_o$.

On the other hand

$$\limsup_{h \to 0^+} \frac{\mu(E \cap ((-h,h) \times (-h^4,h^4)))}{4h^5} \ge \limsup_{h \to 0^+} \frac{2(h^5 - h^{12})}{4h^5} = \frac{1}{2} > 0.$$

So, for each set $U \in T_{sd}$ containing (0,0) the intersection $U \cap \operatorname{int}(E)$ is nonempty and consequently $f \in Q_s((0,0))$. Since at other points of \mathbb{R}^2 the function f is continuous, it belongs to Q_s . Thus in the case $\mathbb{R}^n = \mathbb{R}^2$ the relation $Q_s \neq Q_o$ holds.

For the case of functions defined on \mathbb{R}^n , where n > 2 it suffices to put $g(x_1, x_2, \ldots, x_n) = f(x_1, x_2)$ and observe that $g \in Q_s \setminus Q_0$.

Remark 3. If a function $f : \mathbb{R}^n \to \mathbb{R}$ belongs to Q_s , then f is measurable.

PROOF. It suffices to prove that for each nonempty open set G of finite measure the restricted function $f \upharpoonright G$ is measurable. Fix an open set G of positive finite measure and let

 $a = \sup\{\mu(H); H \subset G \text{ is measurable and } f \upharpoonright H \text{ is measurable}\}.$

Assume, to a contrary, that $a < \mu(G)$. Then for each positive integer *n* there is a measurable set $H_n \subset G$ such that $\mu(H_n) > a - \frac{1}{n}$ and the restricted function $f \upharpoonright H_n$ is measurable. Let $H = \bigcup_{n=1}^{\infty} H_n$. Then the set $H \subset G$ is measurable and $\mu(H) = a$ and $f \upharpoonright H$ is measurable. So, the difference $K = G \setminus H$ is a measurable set of positive measure. By Lebesgue's density theorem the set

$$M = \{x \in K; D_l(K, x) = 1\}$$
 is measurable and $\mu(M) = \mu(K)$.

Since $M \in T_{sd}$ and $f \in Q_s(x)$ for $x \in M$, there is an open set W such that $W \cap M \neq \emptyset$ and $f \upharpoonright (W \cap M)$ is measurable. Evidently $\mu(W \cap M) > 0$ and $W \cap M \cap H = \emptyset$. Consequently, the set $H \cup (W \cap M)$ is measurable, the restricted function $f/(H \cup (W \cap M))$ is measurable and $\mu(H \cup (W \cap M)) > a$, contrary to the definition of a.

Theorem 3. If a sequence of functions $f_m : \mathbb{R}^n \to \mathbb{R}$ belonging to Q_o (resp. belonging to Q_s) converges uniformly to a function $f : \mathbb{R}^n \to \mathbb{R}$, then $f \in Q_o$ (resp. $f \in Q_s$).

PROOF. By Remark 3 f is the uniform limit of a sequence of measurable functions and thus is measurable. Now the proof is analogous to that of Theorem 1.

A generalization of uniform convergence is Arzelà's quasi-uniform convergence.

Recall ([12]) that a sequence of functions $f_m : \mathbb{R}^n \to \mathbb{R}$ quasi-uniformly (in the sense of Arzelà) converges to a function f if it pointwise converges to f and for each real $\eta > 0$ and for each integer m > 0 there is a positive integer p such that for each point $x \in \mathbb{R}^n$

$$\min(|f_{m+1}(x) - f(x)|, \dots, |f_{m+p}(x) - f(x)|) < \eta.$$

From Strońska's Theorem 2 in [13] it follows that for each measurable function $f : \mathbb{R}^n \to \mathbb{R}$ there is a sequence of T_{sd} -approximately quasicontinuous and simultaneously T_{od} -approximately quasicontinuous functions $f_m : \mathbb{R}^n \to \mathbb{R}$, which quasi-uniformly (in Arzelà's sense) converges to f. It is obvious to observe that the above functions f_m may be bounded whenever f is bounded.

Since bounded T_{od} -approximately quasicontinuous functions belong to Q_o ([4]), we obtain that the family of all quasi-uniform limits of sequences of functions from Q_o (so also from Q_s) is the family of all measurable functions on \mathbb{R}^n .

It is known ([9] and compare [5]) that if $f : \mathbb{R}^n \to \mathbb{R}$ is the pointwise limit of a sequence of quasicontinuous functions $f_m : \mathbb{R}^n \to \mathbb{R}$, then the set C(f) of all continuity points of f is dense in \mathbb{R}^n .

In [1] Borsik proves that for each function $f : \mathbb{R} \to \mathbb{R}$ with dense set C(f) there is a sequence of quasicontinuous functions $f_m : \mathbb{R} \to \mathbb{R}$ which quasiuniformly converges to f in Arzelà's sense. A generalization of this theorem for functions from a pseudometrizable space X into a separable metric spaces Y is proved in Richter's article [10]. That generalization covers in particular the case $X = \mathbb{R}^n$ and $Y = \mathbb{R}$.

Now I prove the following theorem.

Theorem 4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a bounded function such that the set C(f) is dense. There is a sequence of quasicontinuous and integrally quasicontinuous functions $f_m : \mathbb{R}^n \to \mathbb{R}$ which quasi-uniformly converges to f in Arzelà's sense.

PROOF. If f is constant, then we can put $f_m = f$ for $m \ge 1$. In the contrary case put

$$a = \inf_{\mathbb{R}^n} f$$
 and $b = \sup_{\mathbb{R}^n} f$

and observe that a < b. Since the set C(f) is dense, the set

 $P = \{r \in [a, b]; cl(f^{-1}(r)) \text{ is of the second category}\}\$

is countable. For each positive integer m we find a system $P_m \subset [a, b] \setminus P$ of reals $a_1, a_2, \ldots, a_{i(m)-1}$ such that for $i \in \{1, 2, \ldots, i(m)\}$

$$a = a_0 < a_1 < \dots < a_{i(m)-1} < a_{i(m)} = b$$
 and $a_i - a_{i-1} < \frac{1}{m}$

and $P_m \subset P_{m+1}$ and $P_{m+1} \setminus P_m \neq \emptyset$ for $m \ge 1$. Let

$$g_m(x) = \begin{cases} a_{i-1} & \text{if } a_{i-1} \le f(x) < a_i, \ 1 \le i < i(m) \\ a_{i(m)-1} & \text{if } a_{i(m)-1} \le f(x) \le a_{i(m)} = b. \end{cases}$$

Then $|g_m - f| < \frac{1}{m}$. If $x \in C(f)$ and g_m is not quasicontinuous at x and $g_m(x) = a_i$ (then evidently i > 0), we put $h_m(x) = a_{i-1}$. For other points $t \in \mathbb{R}^n$ we put $h_m(t) = g_m(t).$

Observe that $|h_m - f| \leq \frac{1}{m}$ and h_m is quasicontinuous at each point $x \in C(f)$. Since the set C(f) is dense and the image $h_m(\mathbb{R}^n)$ is finite, the interior $int(C(h_m))$ is also dense and

$$\operatorname{int}(C(h_m)) = C(h_m) = \bigcup_{i=0}^{i(m)-1} \operatorname{int}((h_m)^{-1}(a_i)).$$

Moreover, for each point $x \in \mathbb{R}^n$ we obtain that

$$\operatorname{osc} h_m(x) \le \operatorname{osc} f(x) + \frac{2}{m}.$$

For $i \in \{0, 1, \dots, i(m) - 1\}$ let

$$E_{m,i} = \{x; h_m(x) = a_i \text{ and } h_m \text{ is not quasicontinuous at } x\}.$$

Put $E_m = \bigcup_{i=0}^{i(m)-1} E_{m,i}$, and observe that E_m is a nowhere dense set. Assume that $E_{m,0} \neq \emptyset$. Since $C(h_m)$ is open and dense, there is a smallest integer $i_1 > 0$ such that

$$G_{m,0,i_1} = E_{m,0} \cap \operatorname{cl}(\operatorname{int}((h_m)^{-1}(a_{i_1}))) \neq \emptyset.$$

There is a family of pairwise disjoint closed balls $K_{m,0,i_1,k,j}$, k = 1, 2 and $j \geq 1$, such that:

(i)
$$K_{m,0,i_1,k,j} \subset \mathcal{A}(G_{m,0,i_1},\frac{1}{m}) \cap \operatorname{int}((h_m)^{-1}(a_{i_1})),$$

where for a set $X \neq \emptyset$ and a positive real r
 $\mathcal{A}(X,r) = \bigcup_{x \in X} K(x,r)$ and $K(x,r) = \{t \in \mathbb{R}^n; |t-x| \leq r\};$

- (ii) $\operatorname{cl}(\bigcup_{j} K_{m,0,i_1,k,j}) = \bigcup_{j} K_{m,0,i_1,k,j} \cup \operatorname{cl}(G_{m,0,i_1})$ for k = 1, 2;
- (iii) $\operatorname{cl}(\bigcup_{k,j} K_{m,0,i_1,k,j}) = \bigcup_{k,j} K_{m,0,i_1,k,j} \cup \operatorname{cl}(G_{m,0,i_1});$
- (iv) the family $\{K_{m,0,i_1,k,j}; j \ge 1, k = 1, 2\}$ is locally finite at each point $x \in \mathbb{R}^n \setminus \mathrm{cl}(G_{m,0,i_1}).$
 - If $E_{m,0} \setminus cl(G_{m,0,i_1}) \neq \emptyset$, then there is a smallest integer $i_2 > i_1$ such that

$$G_{m,0,i_2} = (E_{m,0} \setminus G_{m,0,i_1}) \cap \operatorname{cl}(\operatorname{int}((h_m)^{-1}(a_{i_2}))) \neq \emptyset.$$

There is a family of pairwise disjoint closed balls $K_{m,0,i_2,k,j}$, k = 1, 2 and $j \ge 1$, such that:

- (i) $K_{m,0,i_2,k,j} \subset \mathcal{A}(G_{m,0,i_2},\frac{1}{m}) \cap \operatorname{int}((h_m)^{-1}(a_{i_2}));$
- (ii) $\operatorname{cl}(\bigcup_{j} K_{m,0,i_{2},k,j}) = \bigcup_{j} K_{m,0,i_{2},k,j} \cup \operatorname{cl}(G_{m,0,i_{2}})$ for k = 1, 2;
- (iii) $\operatorname{cl}(\bigcup_{k,j} K_{m,0,i_2,k,j}) = \bigcup_{k,j} K_{m,0,i_2,k,j} \cup \operatorname{cl}(G_{m,0,i_2});$
- (iv) the family $\{K_{m,0,i_2,k,j}; j \ge 1, k = 1, 2\}$ is locally finite at each point $x \in \mathbb{R}^n \setminus \mathrm{cl}(G_{m,0,i_2}).$

Proceeding with this reasoning we find a system $i_1 < i_2 < \cdots < i_{k_0}$ of positive integers and families of pairwise disjoint closed balls $K_{m,0,i_l,k,j}$, where $k = 1, 2, l \leq k_0, j \geq 1$, such that:

(i) for $l \leq k_0$ the difference $E_{m,0} \setminus (\operatorname{cl}(G_{m,0,i_1}) \cup \ldots \cup \operatorname{cl}(G_{m,0,i_{l-1}}))$ is nonempty and i_l is the smallest integer $i_l > i_{l-1}$ such that

$$G_{m,0,i_l} = E_{m,0} \cap \operatorname{cl}(\operatorname{int}((h_m)^{-1}(a_{i_1}))) \neq \emptyset;$$

- (ii) $E_{m,0} = G_{m,0,i_1} \cup \ldots \cup G_{m,0,i_{k_0}};$
- (iii) $K_{m,0,i_l,k,j} \subset \mathcal{A}(G_{m,0,i_l},\frac{1}{m}) \cap \operatorname{int}((h_m)^{-1}(a_{i_l}));$
- (iv) $\operatorname{cl}(\bigcup_{j} K_{m,0,i_{l},k,j}) = \bigcup_{j} K_{m,0,i_{l},k,j} \cup \operatorname{cl}(G_{m,0,i_{l}})$ for k = 1, 2;
- (v) $\operatorname{cl}(\bigcup_{k,j} K_{m,0,i_l,k,j}) = \bigcup_{k,j} K_{m,0,i_l,k,j} \cup \operatorname{cl}(G_{m,0,i_l});$
- (vi) the family $\{K_{m,0,i_l,k,j}; j \ge 1, k = 1, 2\}$ is locally finite at each point $x \in \mathbb{R}^n \setminus \mathrm{cl}(G_{m,0,i_l}).$

Now we put

$$h_{m,0,1}(x) = \begin{cases} a_0 & \text{for } x \in K_{m,0,i_l,1,j}, \ j \ge 1, \ l = 1, 2, \dots, k_0 \\ h_m(x) & \text{otherwise on } \mathbb{R}^n \end{cases}$$

and

$$h_{m,0,2}(x) = \begin{cases} a_0 & \text{for } x \in K_{m,0,i_l,2,j}, \ j \ge 1, \ l = 1, 2, \dots, k_0 \\ h_m(x) & \text{otherwise on } \mathbb{R}^n. \end{cases}$$

Observe that the functions $h_{m,0,1}$ and $h_{m,0,2}$ are quasicontinuous at all points $x \in (\mathbb{R}^n \setminus E_m) \cup E_{m,0}$. If $E_{m,0} = \emptyset$, then we put $h_{m,0,1} = h_{m,0,2} = h_m$.

Proceeding with this reasoning for $E_{m,1}, \ldots, E_{m,i(m)-1}$ we define quasicontinuous functions $f_{2m-1} = h_{m,i(m)-1,1}$ and $f_{2m} = h_{m,i(m)-1,2}$ such that the interiors $\operatorname{int}(C(f_{2m-1}))$ and $\operatorname{int}(C(f_{2m}))$ are dense (so f_{2m-1} and f_{2m} are integrally quasicontinuous [4], Theorem 1),

$$\min(|f_{2m-1} - f|, |f_{2m} - f|) \le |h_m - f| \le \frac{1}{m} \tag{(*)}$$

and

$$\{x; f_{2m-1}(x) \neq h_m(x)\} \cup \{x; f_{2m}(x) \neq h_m(x)\} \subset \mathcal{A}(E_m, \frac{1}{m}).$$
(**)

It ought to be pointed out that for $i \geq 1$ the functions $h_{m,i,1}$ and $h_{m,i,2}$ are obtained as modifications of $h_{m,i-1,1}$ and $h_{m,i-1,2}$ respectively on closed balls $K_{m,i,i_l,1,j}$ or $K_{m,i,i_l,2,j}$, $i = 1, 2, \ldots, i(m) - 1$, $l = 1, \ldots, k_i$, $j \geq 1$, and that all the sets $K_{m,i,i_l,1,j}$ and $K_{m,i,i_l,2,j}$, $i = 1, 2, \ldots, i(m) - 1$, $l = 1, \ldots, k_i$, $j \geq 1$, are pairwise disjoint (not only for fixed i).

If $x \in D(f) = \mathbb{R}^n \setminus C(f)$, then for sufficiently large integers m we have

$$f_{2m-1}(x) = f_{2m}(x) = h_m(x)$$
, so $\lim_{m \to \infty} f_m(x) = \lim_{m \to \infty} h_m(x) = f(x)$.

Fix a point $x \in C(f)$ and a positive real η . Let m_1 be a positive integer such that $\frac{4}{m_1} < \eta$. For $k \ge 1$ let

$$A_k = \{x; \operatorname{osc} f(x) \ge \frac{1}{k}\}.$$

Since $D(f) = \bigcup_k A_k$, we obtain $x \notin A_k$ for $k \ge 1$. Let $c = \inf\{|t-x|; t \in A_{m_1}\}$. Evidently, c > 0. There is a positive integer $k_1 > m_1$ with $\frac{1}{k_1} < c$. Let $k > k_1$ be an integer. For $t \in \mathbb{R}^n \setminus A_{m_1}$ we have $\operatorname{osc} f(t) < \frac{1}{m_1}$ and consequently,

$$\operatorname{osc} h_k(t) < \operatorname{osc} f(t) + \frac{2}{k} < \frac{1}{m_1} + \frac{2}{k}$$

776

Since $x \in \mathbb{R}^n \setminus \mathcal{A}(E_m, \frac{1}{k})$, by (**) we obtain that $\operatorname{osc} f(x) < \frac{1}{m_1}$ and

$$\max(|f_{2k-1}(x) - h_k(x)|, |f_{2k}(x) - h_k(x)|) < \frac{1}{m_1} + \frac{2}{k}$$

 So

$$\max(|f_{2k-1}(x) - f(x)|, |f_{2k}(x) - f(x)|)$$

$$\leq |h_k(x) - f(x)| + \max(|h_k(x) - f_{2k-1}(x)|, |h_k(x) - f_{2k}(x)|)$$

$$< \frac{1}{k} + \frac{1}{m_1} + \frac{2}{k} < \frac{1}{k} + \frac{1}{m_1} + \frac{2}{k_1} < \frac{4}{m_1} < \eta,$$

and $\lim_{m\to\infty} f_m(x) = f(x)$. So the sequence (f_m) converges pointwise to f. By (*) it quasi-uniformly converges to f in Arzelà's sense.

Acknowledgement. The author is grateful to the referee for a great many corrections and suggestions for improving the article.

References

- J. Borsik, Quasiuniform limits of quasicontinuous functions, Math. Slovaca, 42 (1992), 269–274.
- [2] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin, 1978.
- [3] C. Goffman, C. Neugebauer, T. Nishiura, Density topology and approximate continuity, Duke Math. J., 28 (1961), 497–506.
- [4] Z. Grande, E. Strońska, On the integral quasicontinuity, in preparation.
- [5] Z. Grande, Sur la quasi-continuité et la quasi-continuité approximative, Fund. Math., 129 (1988), 167–172.
- [6] Z. Grande, T. Natkaniec, D. Strońska, Algebraic structures generated by d-quasicontinuous functions, Bull. Pol. Acad. Sci., Math., 35 (1987), 717– 723.
- [7] Z. Grande, L. Sołtysik, Some remarks on quasicontinuous real functions, Problemy Matematyczne, No. 10 (1990), 79–86.
- [8] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math., 19 (1932), 184–197.

- [9] T. Neubrunn, Quasi-continuity, Real Anal. Exch., 14, No. 2 (1988-89), 259–306.
- [10] C. Richter, Representing cliquish functions as quasiuniform limits of quasicontinuous functions, Real Anal. Exch., 27, No. 1 (2001-02), 209–221.
- [11] W. Sierpiński, Sur une propriété des ensembles F_{σ} -linéaires, Fund. Math., 14 (1929), 216–220.
- [12] R. Sikorski, Real Functions (in Polish), Warsaw 1957.
- [13] E. Strońska, On quasi-uniform convergence of sequences of s_1 -strongly quasi-continuous functions on \mathbb{R}^m , Real Anal. Exch., **30**, No. 1 (2004-05), 217-234.
- [14] F. D. Tall, The density topology, Pacific J. Math., 62 (1976), 275–284.