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ON THE CONVERGENCE OF SEQUENCES
OF INTEGRALLY QUASICONTINUOUS
FUNCTIONS

Abstract

A function f : R®™ — R satisfies condition (Q;(z)) (resp. (Qs(x)),
[Qo(x)]) at a point z if for each real » > 0 and for each set U > z
belonging to the Euclidean topology in R™ (resp. to the strong density
topology [to the ordinary density topology]) there is an open set I such
that TNU # (0, f is Lebesgue integrable on I N U and

1

‘7M(U01) o F@dt — flz)| <.

These notions are modifications of quasicontinuity or approximate qua-
sicontinuity. In this article we investigate the limits of sequences of such
functions.

Let R be the set of all reals and let R™ be the n-dimensional product space.
For a point = (z1,...,z,) € R™ and positive reals rq,...,r, put

I = (i —ri,x;+r) fori=1,2,... n,
and
P(xyry,...orp) =11 X oo x I,

The symbol Q(z, r) denotes the cube P(xz;71,...,7y), wherery = -+ =1, = 7.

Denote Lebesgue measure in R™ by u. For a Lebesgue measurable set
A C R™ and a point € R™ we define the lower strong density D;(A, x) of the
set A at the point x by

— w(AN P(x;hy,..., hy))
Biseshn—0t (P h,y ... hy))
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768 7ZBIGNIEW GRANDE

Similarly for a Lebesgue measurable set A C R™ and a point x € R™ we define
the lower ordinary density d;(A,x) of the set A at the point = by
A h
lim inf —ﬂ( NQ(z, ))
P T QG b))
A point z is said to be a strong density point of a measurable set A if
Di(A,z) =1.
Similarly we define the notions of an ordinary density point.
The family Tsq (Toq) of all Lebesgue measurable sets A for which the
implication

x € A= x is a strong (resp. an ordinary) density point of A

is true, is a topology called the strong (resp. ordinary) density topology ([2,
3, 14]).

If T, denotes the Euclidean topology in R™, then evidently T, C Tsq C Toq-

The continuity of mappings f from (R",Ts4) (resp. from (R™,T,q)) to
(R, T.) is called the strong (ordinary) approximate continuity ([2, 3, 14]).

For an arbitrary function f :R™ — R denote by C(f) the set of all conti-
nuity points of f. Moreover let D(f) =R"™\ C(f).

In [8, 9] the following notion is investigated.

A function f : R™ — R is quasicontinuous at a point = (f € Q(z)) if for
each positive real r and for each set U € T, containing x there is a nonempty
open set I such that I C U and |f(¢) — f(x)| < r for all points ¢t € I.

A function f is quasicontinuous, if f € Q(x) for every point z € R™.

Analogously, as some particular cases of the notion of quasicontinuity of
real functions on topological spaces (compare [9]) we have the following defi-
nitions.

A function f : R™ — R is Tyg-approximately quasicontinuous (resp. T,q-
approximately quasicontinuous) at a point z if for each positive real r and for
each set U € Tyq (resp. U € T,q) containing x there is a nonempty set V € Ty
(resp. a nonempty set V' € T,4) contained in U and such that | f(t) — f(z)| <r
for all points t € V.

If f is Tyq-approximately quasicontinuous (resp. T,4-approximately qua-
sicontinuous) at each point x € R™, then f is said to be Ts4-approximately
quasicontinuous (resp. T,q-approximately quasicontinuous).

A function f : R™ — R is integrally quasicontinuous at a point z (f €
Qi(z), [4]) if for each positive real r and for each bounded set U € T, containing
x there is a nonempty open set I such that I C U, f is Lebesgue integrable
on I and f F0)di

I
’ (D) fl@)| <.
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A function f is integrally quasicontinuous (f € @;), if f € Q;(z) for every
point z € R™.

A function f:R™ — R belongs to Qs(z) (resp. f € Q,(x), [4]), if for each
positive real 7 and for each bounded set U € T,y (resp. U € T,4) containing
x there is an open set I such that I N U # @, the function f is Lebesgue
integrable on I N U and

1
dnm ) fOd = @] <

If f € Qs(x) (resp. f € Qo(x)) for every point x € R™, then we will write
that f € Qs (resp. f € Qo).

In this article I consider some kinds of the convergence of sequences of
integrally quasicontinuous functions.

Observe that if a function f : R™ — R is integrally quasicontinuous, then
the set Z(f) of all points 2z € R™ at which f is locally Lebesgue integrable is
open and dense in R”.

We will show that there are quasicontinuous bounded functions f: R — R
such that Z(f) = 0.

Example 1. (see [4]).

If A C R is a nowhere dense closed set of positive measure, then we find
a nonmeasurable (in the sense of Lebesgue) set B C A such that the interior
measures p;(B) and p;(A\ B) are zero and we put

Fa(@) 1 forxzeB
) =
4 0 forxe A\ B,

and if (a,b) is a component of the set R\ A, then for x € (a,b) we put

fA(a:):sin( ! )

min(x — a,b — x)

Evidently, the function f4 is quasicontinuous,
faR) =[-1,1], C(fa)=R\ A

and the restricted function f4 | A is not measurable (in the Lebesgue sense).

Now let E C R be a dense Gs-set of measure zero and let H = R\ E.
Since H is a F,-set of the first category, by Sierpiriski’s theorem from [10]
there are pairwise disjoint closed sets F,, such that H = U, F,,. Without loss
of generality we can suppose that p(F,) > 0 for n > 1. Let

F=3 gide (%)
n=1



770 7ZBIGNIEW GRANDE

If z € E, then for each integer n > 1 the point z belongs to R\ F,, = C(fr,).
Consequently, by the uniform convergence of the series in (%), the function f
is continuous at x. So, f € Q(x).

Now let © € H. There is a unique integer k with z € Fj. For n # k the
functions fp, are continuous at x, so the sum ) K QL fr, is also continuous
at z. Since the function fp, is quasicontinuous at x, by Theorem 1 from [7]

the sum -
1 1 1
> o P = > o+ 5p IR
n=1 n#k
is also quasicontinuous at x. So the function f is quasicontinuous.

Now let K C R be a Lebesgue measurable set of positive measure. Then
there is an integer j > 1 with u(K N Fj) > 0. Since the sum -, > [, is
continuous on K N F}; and the restricted function f F;nK 18 not measurable, the
restricted function f | K is not measurable. Consequently, Z(f) =0 and f is
not integrally quasicontinuous at any point.

From the above example we obtain the following.

Remark 1. There is a uniformly convergent sequence of functions from Q;
such that its limit is not in Q;.

PROOF. If R" =R, then for m > 1let f,, = >, -, 5% fp, . Since the functions
fm are quasicontinuous and the restrictions f,, | (R\ E,,) to the complements
of the nowhere dense sets E,, = Uk,<m F}, are continuous, the functions f,,
m > 1, are integrally quasicontinuous by Theorem 1 from [4]. Moreover the
sequence (f,,) converges uniformly to f £ Q;.

If n > 1, then for x = (z1,%2,...,2,) € R™ and m > 1 we put

gm(2) = fm(21) and g(z) = f(z1),

and observe that g, € @;, the sequence (g,,) uniformly converges to g and

g £ Qi O]

Remark 2. Since there is a monmeasurable quasicontinuous function f :
R™ — R which is continuous on a dense open set, there is a nonmeasurable
integrally quasicontinuous function.

PROOF. One can use the function f(z1,22,...,2,) = fa(z1), f4 being defined
as in the above example. O

Theorem 1. If functions f,, : R® — R are integrally quasicontinuous at a
point x and the sequence (fy,) converges uniformly to a function f which is
locally measurable at x, then f is integrally quasicontinuous at x.
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ProoF. Fix a real n > 0 and a bounded open set W > z. Without loss of
generality we can assume that the restricted function f | W is measurable.
There is a positive integer k such that |fx(t) — f(¢)| < 3 for all t € R". Since
fr is integrally quasicontinuous at x, there is a nonempty open set U C W
such that

‘ fU L

w(U)

—h®ﬂ<g

Observe that

|20~ @] < [ =k |+ [ — @)+ 1) - s
nwW) n  n_
3u(0) T3 T3
so f is integrally quasicontinuous at z. O

Theorem 2. If for a function f:R™ — R the set D(f) =R"\ C(f) is of the
first category, then there is a sequence of integrally quasicontinuous functions
fm i R®™ = R such that f =limy, oo fin-

PROOF. As in [5] (for the case f : R — R) we can prove that there is a
sequence of quasicontinuous functions fy,, : R” — R such that the sets D(f,)
are nowhere dense for m > 1 and f = lim;, 00 frn. By Theorem 1 from [4]
the functions f,, are integrally quasicontinuous and the proof is completed.

The inclusions @, C Qs C Q; follow immediately from the inclusions
T, CTsq C Tpa-

Since there are nonmeasurable integrally quasicontinuous function, by the
next theorem we obtain that Qs # @Q;. In the case R™ = R the equality
Q, = Qs is true. In the following example I show that @, # Qs in the case
R™ n > 2.

Example 2. Put
E={(z,y) €R*%2 >0 and —2°<y<a?},
G={(z,y) €R*z >0 and — 32 <y < 3z?},
and
H=R?\G.
Let f:R? —[0,1] be a function such that

f(x,y) =0 for (:Evy) €EEU {(070)}7 f(x,y) =1 for (:C’y) € H\{(0,0)},
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and C(f) =R?\ {(0,0)}. Observe that the ordinary density

p(H 0 ((=h,h) X (=h, b)) o
di(H,(0,0)) = lim, 0 =1 i e

=1.

Thus (0,0) € U = int(H)U{(0,0)} € Tpq. Since f(z,y) = 1 for (x,y) € int(H)
and f(0,0) = 0, the function f £ Q..
On the other hand

, MEN((=hh) x (=h%BY))
s e S

2h5 — h'2) 1
=5 >0.

So, for each set U € T4 containing (0,0) the intersection U N int(F) is
nonempty and consequently f € Q4((0,0)). Since at other points of R? the
function f is continuous, it belongs to Q,. Thus in the case R® = R? the
relation Qs # @, holds.

For the case of functions defined on R", where n > 2 it suffices to put
g(z1,2a,...,2,) = f(x1,22) and observe that g € Qs \ Qo.

Remark 3. If a function f:R"™ — R belongs to Qs, then f is measurable.

PRrOOF. It suffices to prove that for each nonempty open set G of finite
measure the restricted function f [ G is measurable. Fix an open set G of
positive finite measure and let

a =sup{u(H); H C G is measurable and f | H is measurable}.

Assume, to a contrary, that a < p(G). Then for each positive integer n there is
a measurable set H,, C G such that y(H,) > a— % and the restricted function
[ | H, is measurable. Let H = |J;—, H,. Then the set H C G is measurable
and pu(H) = a and f | H is measurable. So, the difference K = G\ H is a
measurable set of positive measure. By Lebesgue’s density theorem the set

M ={z € K;D|(K,z) =1} is measurable and pu(M) = p(K).

Since M € Tsq and f € Qs(x) for x € M, there is an open set W such that
WNM#Qand f | (WnN M) is measurable. Evidently p(W N M) > 0 and
WNMNH = (. Consequently, the set H U (W N M) is measurable, the
restricted function f/(H U (W N M)) is measurable and pu(HU(WNM)) > a,
contrary to the definition of a. O

Theorem 3. If a sequence of functions fn, : R™ — R belonging to Q, (resp.
belonging to Qs) converges uniformly to a function f: R™ — R, then f € Q,
(resp. f € Qs).
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PrROOF. By Remark 3 f is the uniform limit of a sequence of measurable
functions and thus is measurable. Now the proof is analogous to that of
Theorem 1. [

A generalization of uniform convergence is Arzela’s quasi-uniform conver-
gence.

Recall ([12]) that a sequence of functions f,, : R" — R quasi-uniformly (in
the sense of Arzeld) converges to a function f if it pointwise converges to f
and for each real 7 > 0 and for each integer m > 0 there is a positive integer
p such that for each point x € R”

min(|frmi1(z) = (@), [fmap (@) = f(@)]) <.

From Stronska’s Theorem 2 in [13] it follows that for each measurable
function f : R™ — R there is a sequence of Tgz-approximately quasicontinuous
and simultaneously T,4-approximately quasicontinuous functions f,, : R® —
R, which quasi-uniformly (in Arzeld’s sense) converges to f. It is obvious to
observe that the above functions f,,, may be bounded whenever f is bounded.

Since bounded T,4-approximately quasicontinuous functions belong to @,
([4]), we obtain that the family of all quasi-uniform limits of sequences of
functions from @, (so also from Q) is the family of all measurable functions
on R™.

It is known ([9] and compare [5]) that if f: R™ — R is the pointwise limit
of a sequence of quasicontinuous functions f,, : R* — R, then the set C(f) of
all continuity points of f is dense in R™.

In [1] Borsik proves that for each function f : R — R with dense set C(f)
there is a sequence of quasicontinuous functions f,, : R — R which quasi-
uniformly converges to f in Arzela’s sense. A generalization of this theorem
for functions from a pseudometrizable space X into a separable metric spaces
Y is proved in Richter’s article [10]. That generalization covers in particular
the case X = R™ and Y = R.

Now I prove the following theorem.

Theorem 4. Let f : R™ — R be a bounded function such that the set C(f) is
dense. There is a sequence of quasicontinuous and integrally quasicontinuous
functions fp, : R™ — R which quasi-uniformly converges to f in Arzeld’s sense.

ProoFr. If f is constant, then we can put f,, = f for m > 1. In the contrary
case put
a=1inf f and b=sup f
R R™

and observe that a < b. Since the set C(f) is dense, the set

P ={rcla,b);cl(f'(r)) is of the second category}
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is countable. For each positive integer m we find a system P,, C [a,b] \ P of
reals ay, as, . . ., G;(m)—1 such that for i € {1,2,...,i(m)}

1
a=ag<a;<- - <m)y-1 < Gjm) =b and ai—ai,1<E

and P, C Ppy1 and Pyyiq \ Py # 0 for m > 1. Let

o (z) = a;_1 ifa,—1 < flz) <a;y 1 <i<i(m)
" Aimy—1 i @imy—1 < f(x) < agom) = 0.

Then |gm — f| < &.

If x € C(f) and g,, is not quasicontinuous at = and g,,(z) = a; (then
evidently ¢« > 0), we put h,,(x) = a;—1. For other points ¢ € R™ we put
Ban(t) = g (1)

Observe that |h, — f] < % and h,, is quasicontinuous at each point z €
C(f). Since the set C(f) is dense and the image h,,(R™) is finite, the interior
int(C'(hy,)) is also dense and

i(m)—1
int(C(hm)) = Clhm) = | int((hm) ™" (a:)).
i=0

Moreover, for each point z € R™ we obtain that

2

08¢ hyy (x) < osc f(z) + —.

m

For i € {0,1,...,i(m) — 1} let
Epmi={z;hn(x) =a; and h,, isnot quasicontinuous at z}.

Put E,, = UZ(;E)_l E,, i, and observe that I, is a nowhere dense set. Assume
that E,, o # 0. Since C(h,,) is open and dense, there is a smallest integer
i1 > 0 such that

Gm,O,'Ll = Em,O n Cl(int((hm)il(ah))) 7£ @

There is a family of pairwise disjoint closed balls Ky, 04, 5,5, ¥ = 1,2 and

j > 1, such that:
(i) K01,k C A(Gmy0,i15 ) N int((h) 7 (ai,),

where for a set X = () and a positive real r
A(X,7) = U K(z,r) and K(z,r)={t e R™;|t —z| <r};
zEX
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(i) lU; Km,0,i1.k,5) = U; Km0,k Ul(Grmo,) for k=1,2;

(iii) cl(U,, ,; K A m,0,i1,k ki) = Up,; K j Bm.0,i1 k5 U (G0, )3

(iv) the family {Kp, 0, 5,5;7 = 1,k = 1,2} is locally finite at each point
r € R™ \ Cl(Gm,O,i1)~

If Evo\ cl(Gmo,iy) # 0, then there is a smallest integer i3 > i; such that
G0z = (Bmo \ Gm.o.i,) N el(int((hm) ™ (ai,))) # 0.

There is a family of pairwise disjoint closed balls K, 0,i,,k,, ¥ = 1,2 and
j > 1, such that:

() Km,0,in k5 © A(Grm0,izs ) N int((hyn) ™ (aiy));
(ii) cl(U K oisk,j) = U K 0isk,; Ucl(Gmpo,i,) for k=1,2;

(iif) Cl(Uk,j m,0,ia.k,5) = Uy K om0z k5 U l(Gm0,i);

(iv) the family {Kp 0,i5,5,5;7 = 1,k = 1,2} is locally finite at each point
r € R™ \ Cl(Gm,O,i2)~

Proceeding with this reasoning we find a system i; < i3 < -+ < i,
of positive integers and families of pairwise disjoint closed balls K, 0,4, k.5,

where k = 1,2, 1 < kg, 7 > 1, such that:

(i) for I < ko the difference E,, 0 \ (l(Gm,04,) U ... U cl(Gmoyi_,)) is
nonempty and 4; is the smallest integer 4; > 4;_; such that

Gm.0,i = Emyo N el(int((hn) " (as,))) # 0;
() Buno = Gomoia U+ - U Gy
(iil) Km0,k C A(Grm0, ) Nint((he) " as,));
(iv) ¢ (U K 0,i.k,) = U K0,k UCcl(Gro4,) for k=1,2;

() Uk, ; Km.o,iik.5) = U j Kim,0i k5 U (G0, );

(vi) the family {K,, 04,47 > 1,k = 1,2} is locally finite at each point
r € R" \ Cl(Gm,O,il)-
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Now we put

i ( ) ao forweKm,O,il,l,j; 7>1, 1=1,2,....ko
xT) =
a0t hm(z) otherwise on R™

and

ap fOI‘ﬂCEKm7O,il72,j, jZl, l:1,2,...,k0

hm(z) otherwise on R™.

hm,O,Q(x) - {

Observe that the functions Ay, 0.1 and A, 0,2 are quasicontinuous at all points
z € (R"\ Ep)UE, o If E, =0, then we put hyn 01 = hmo2 = hm.

Proceeding with this reasoning for E,, 1,..., Ep, i(m)—1 We define quasi-
continuous functions fam—1 = A im)—1,1 and fam = R im)—1,2 such that
the interiors int(C'(fom—1)) and int(C(f2,)) are dense (so fon,—1 and fa,, are
integrally quasicontinuous [4], Theorem 1),

min(|fam—1 = fl, | fam = f]) < [hm — f| < (%)

1
m
and

{z; fam—1(x) # han ()} U{; fom () # hm(2)} C A(Em, %)- ()

It ought to be pointed out that for ¢ > 1 the functions Ay, ;1 and hp, 42
are obtained as modifications of Ay, ;—1,1 and hy,, ;—12 respectively on closed
balls Km,i,il,l,j or Km,i,il,Q,ja P = 1,2,. .. ,z(m) — ].7 [ = ]., .. .7161', j Z ]., and
that all the sets Ky, 4,1, and K425, 1= 1,2,...,i(m) — 1,1 =1,..., k;,
j > 1, are pairwise disjoint (not only for fixed ).

If v € D(f) =R™\ C(f), then for sufficiently large integers m we have

f2m—l(x) = f2m(x) = hm(x)’ so lim fm(x) = lim hm(x) = f(l‘)
m— 00 m— 00

Fix a point = € C(f) and a positive real . Let m; be a positive integer

such that mil <n. For k> 1 let

Ay ={z;0sc f(z) > %}

Since D(f) = Up Ay, we obtain . £ Ay, for k > 1. Let ¢ = inf{|t —x|;t € A, }.
Evidently, ¢ > 0. There is a positive integer k; > m; with 1711 <c. Let k> k;
be an integer. For t € R™ \ A,,, we have osc f(t) < mil and consequently,

1 2

2
osc hy(t) < osc f(t) + 7 < p— + T
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Since z € R™ \ A(Ey,, +), by () we obtain that osc f(z) < le and

1 2

max(| fzr-1(2) = b (@)]; | for(@) = (@) < o+ .

So

max(| fox—1(x) — f(2)], | far(z) — f(2)])
<|hx(z) — f(z)| + max(|hg(z) — for-1(2)], [he(z) — for(@)])
1 1 2 1 1 2 4

<o —+ <o+ —F < — <7,
E o TR S E Ty T Sy

and limy, o frm(z) = f(z). So the sequence (f,,) converges pointwise to f.
By (x) it quasi-uniformly converges to f in Arzeld’s sense. O
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